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Local cut points and splittings of relatively hyperbolic groups

MATTHEW HAULMARK

We show that the existence of a nonparabolic local cut point in the Bowditch boundary
@.G;P / of a relatively hyperbolic group .G;P / implies that G splits over a 2–ended
subgroup. This theorem generalizes a theorem of Bowditch from the setting of
hyperbolic groups to relatively hyperbolic groups. As a consequence we are able to
generalize a theorem of Kapovich and Kleiner by classifying the homeomorphism
type of 1–dimensional Bowditch boundaries of relatively hyperbolic groups which
satisfy certain properties, such as no splittings over 2–ended subgroups and no
peripheral splittings.

In order to prove the boundary classification result we require a notion of ends of
a group which is more general than the standard notion. We show that if a finitely
generated discrete group acts properly and cocompactly on two generalized Peano
continua X and Y , then Ends.X/ is homeomorphic to Ends.Y / . Thus we propose
an alternative definition of Ends.G/ which increases the class of spaces on which G
can act.

20F65, 20F67

1 Introduction

The notion of a group G being hyperbolic relative to a class of subgroups P was
introduced by Gromov [22] to generalize both word hyperbolic and geometrically
finite Kleinian groups. The subgroups in the class P are called peripheral subgroups,
and when G is hyperbolic relative to P we often say .G;P / is relatively hyperbolic.
Introduced by Bowditch [11] there is a boundary for relatively hyperbolic groups. The
Bowditch boundary @.G;P / generalizes the Gromov boundary of a word hyperbolic
group and the limit set of a geometrically finite Kleinian group. The homeomorphism
type of the Bowditch boundary is known to be a quasi-isometry invariant of the group —
see Groff [21] — under modest hypotheses on the peripheral subgroups. Consequently,
it is desirable to describe the topological features of the Bowditch boundary. Topological
features of the boundary are closely related to algebraic properties of the group; in
particular they are often related to splittings of the group as a fundamental group of a
graph of groups.
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A point p in @.G;P / is a local cut point if @.G;P /nfpg is disconnected or @.G;P /nfpg
is connected and has more than one end. For 1–ended hyperbolic groups, Bowditch [4]
shows that the existence of a splitting over a 2–ended subgroup (see Section 2.3) is
equivalent to the existence of a local cut point in the Gromov boundary. As evidenced
by the work of Kapovich and Kleiner [32], this result has proved useful in classifying
the homeomorphism type of 1–dimensional boundaries of hyperbolic groups. Kapovich
and Kleiner’s result relies on the topological characterization of the Menger curve of
R D Anderson [1; 2], which requires that the boundary has no local cut points. Because
the existence or nonexistence of 2–ended splittings can be verified directly in many
natural settings, Kapovich and Kleiner’s results provide techniques for constructing
examples of hyperbolic groups with Menger curve or Sierpinski carpet boundary.
Obstructions to 2–ended splittings are well understood for hyperbolic 3–manifold
groups — see Myers [34] — Coxeter groups — see Mihalik and Tschantz [33] — and
random groups; see Dahmani, Guirardel and Przytycki [15].

Papasoglu and Swenson [36; 37] and Groff [21] have extended Bowditch’s results [4]
from hyperbolic groups to CAT.0/ and relatively hyperbolic groups, respectively.
Their results describe the relationship between 2–ended splittings and cut pairs in the
boundary. In particular, their results make no mention of local cut points. Guralnik [27]
has observed that many of Bowditch’s local cut point results extend to relatively
hyperbolic groups provided that the Bowditch boundary has no global cut points.
However, that assumption is quite restrictive. Bowditch has shown [10] that the
Bowditch boundary often has many global cut points. Thus a general theorem relating
local cut points in the Bowditch boundary to 2–ended splittings was still missing from
the literature. The primary result of this paper addresses the general setting with the
following theorem, which makes no assumption about the existence or nonexistence of
global cut points in the Bowditch boundary.

Theorem 1.1 (splitting theorem) Let .G;P / be a relatively hyperbolic group with
tame peripherals. Assume that @.G;P / is connected and not homeomorphic to a
circle. If G does not split over a 2–ended subgroup, then @.G;P / does not contain
a nonparabolic local cut point. Moreover, if G splits over a nonparabolic 2–ended
subgroup relative to P, then @.G;P / contains a nonparabolic local cut point.

A relatively hyperbolic group .G;P / has tame peripherals if every P 2 P is finitely
presented, one- or two-ended, and contains no infinite torsion subgroup. Bowditch has
shown [10] that if .G;P / has tame peripherals and the Bowditch boundary @.G;P /
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is connected, then @.G;P / is locally connected. In this paper we will always assume
that @.G;P / is connected and that .G;P / has tame peripherals. Other terms used in
the statement of Theorem 1.1 will be defined in Section 2.

Kapovich and Kleiner’s classification result for 1–dimensional boundaries of hyperbolic
groups [32] shows that under certain group-theoretic conditions if the Gromov boundary
is 1–dimensional, then it must be a circle, a Sierpinski carpet, or a Menger curve.
Theorem 1.1 is used by the author in [28] to generalize the Kapovich–Kleiner result to
1–dimensional visual boundaries of CAT(0) groups with isolated flats which do not
split over 2–ended subgroups. (We point out that visual boundary and the Bowditch
boundary are not the same in general; see Tran [41].) The application of Theorem 1.1
is a critical step in the proof in Theorem 1.2 of [28] and requires an understanding of
the general case where the Bowditch boundary has global cut points.

In the present paper we use Theorem 1.1 to obtain an alternative generalization of
the Kapovich–Kleiner theorem for 1–dimensional Bowditch boundaries of relatively
hyperbolic groups with 1–ended and tame peripherals.

Theorem 1.2 (classification theorem) Let .G;P / be a 1–ended relatively hyperbolic
group with tame peripherals, and let P be the set of all subgroups of elements of P.
Assume that G does not split over a virtually cyclic subgroup and does not split over
any subgroup in P . If every P 2 P is one-ended and @.G;P / is 1–dimensional , then
one of the following holds:

(1) @.G;P / is a circle.

(2) @.G;P / is a Sierpinski carpet.

(3) @.G;P / is a Menger curve.

A CAT.0/ group with isolated flats is relatively hyperbolic with respect virtually
abelian subgroups — see Hruska and Kleiner [30] — and thus is relatively hyperbolic
with respect to a collection of tame 1–ended peripherals. However, there are distinctions
between Theorem 1.2 of this paper and Theorem 1.2 of [28] worth mentioning here.
First and foremost, the Bowditch boundary @.G;P / is generally a quotient space of
the visual boundary [41]. Second, peripheral splittings (see Section 2.3) play a role
in both theorems. Peripheral splittings are not allowed for Theorem 1.2, whereas in
the isolated flats setting only certain types of peripheral splittings are excluded. Lastly,
in the CAT.0/ setting the boundary has no global cut points [37], but the Bowditch
boundary of a relatively hyperbolic group may have many global cut points in general.
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1.1 Method of proof

The proof of Theorem 1.1 utilizes arguments of Bowditch [4] developed for hyperbolic
groups; however, because we are interested in the relatively hyperbolic setting and
Bowditch’s results depend on hyperbolicity in an essential way additional techniques
are required. In particular, Lemmas 5.2 and 5.17 of [4] are key steps in which Bowditch
explicitly uses hyperbolicity. Using results of Tukia [44], Guralnik [27] proved a
relatively hyperbolic version of Bowditch’s Lemma 5.2, which may be found as
Lemma 4.1 in this exposition. In Section 4.1 we provide a simple self-contained
proof of Lemma 4.1 using techniques different from those of [27]. Guralnik also
observed that given Lemma 4.1 and given the Bowditch boundary has no global cut
points, some of Bowditch’s local cut points carry over to the relatively hyperbolic
setting using Bowditch’s exact arguments. In [4, Lemma 5.17] Bowditch shows that
the stabilizer of a necklace (see Section 2.4 for the definition of a necklace) in the
boundary of a relatively hyperbolic group is quasiconvex. Proposition 4.5 provides
a relatively hyperbolic version of this result. Namely, we show that the stabilizer of
a necklace in the Bowditch boundary of a relatively hyperbolic group is relatively
quasiconvex. The importance of Lemma 4.1 and Proposition 4.5 is that they allow us
to use Bowditch’s arguments verbatim to determine the local cut point structure of the
Bowditch boundary in the special case that the Bowditch boundary does not contain
any global cut points.

If the boundary of a relatively hyperbolic group .G;P / is connected, then it is a Peano
continuum. However, @.G;P / may have many global cut points [10]. Our strategy
involves demonstrating that it suffices to consider only the case when @.G;P / has
no global cut points. In particular, using the theory of peripheral splittings [10] and
basic decomposition theory we are able to restrict our attention to “blocks” of @.G;P /,
where a block of @.G;P / is a maximal subcontinuum consisting of points which cannot
be separated from one another by global cut points. Blocks have two key features.
The first is that a block of @.G;P / is the limit set of a relatively hyperbolic subgroup
.H;Q/ of .G;P / (see Theorem 3.1(4)). The second is that there is a retraction
of @.G;P / onto any given block; moreover, the retraction map has nice decomposition-
theoretic properties. This combination of Bowditch’s theory of peripheral splittings
with decomposition theory techniques is one of the major contributions of this paper,
and it is the focus of Section 3. Using these techniques allows us to reduce the proof of
Theorem 1.1 to proving Theorem 4.20, which describes nonparabolic local cut points
in a boundary without global cut points. The proof of Theorem 4.20 can be found in
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Section 4.3 and relies on the observation from the above paragraph that Lemma 4.1
and Proposition 4.5 allow us to directly use the arguments of [4].

The other main result of this paper is Theorem 1.2. Two key tools used in the proof of
Theorem 1.2 are the topological characterization of the Menger curve due to Anderson
[1; 2] and the topological characterization of the Sierpinski carpet due to Whyburn [45].
Anderson’s theorem states that a compact metric space M is a Menger curve provided
M is 1–dimensional, M is connected, M is locally connected, M has no local cut
points, and no nonempty open subset of M is planar. We note that if the last condition
is replaced with “M is planar”, then we have the topological characterization of the
Sierpinski carpet (see Whyburn [45]).

In order to apply Anderson’s and Whyburn’s theorems we must rule out the existence
of local cut points. Theorem 1.1 can be used to rule out nonparabolic local cut points,
but we also need to rule out the existence of parabolic local cut points. In Theorem 1.2
we are in a setting where @.G;P / contains no global cut points, so @.G;P / n fpg
is connected. Thus we need only know that @.G;P / n fpg is 1–ended. Because the
group P D Stab.p/ is 1–ended, and Bowditch [11] has shown that P acts properly
and cocompactly on @.G;P / n fpg, a reader familiar with geometric group theory may
think that we are done. However, the author was unable to find sufficiently general
results in the literature. To define ends of a group one must make a choice of a space
on which the group acts, and it is well known that any two CW–complexes on which
G acts properly and cocompactly have the same number of ends; see Geoghegan [18]
and Guilbault [25].

In this paper we require an understanding of the ends of a connected open subset
of a Peano continuum on which a group acts properly and cocompactly. The study
of ends as introduced by Freudenthal [17] can be described as inverse limits in the
setting of generalized continua (ie locally compact, locally connected, � –compact,
connected Hausdorff spaces) as explained by Baues and Quintero [3]. Given a finitely
generated discrete group G acting properly and cocompactly on two “nice” topological
spaces X and Y a natural question to ask is: What topological properties are required
to guarantee that Ends.X/ homeomorphic to Ends.Y /? In other words, what is the
natural setting in which Ends.G/ is well defined?

A generalized Peano continuum is a generalized continuum which is metrizable. This
general class of spaces includes open connected subspaces of Peano continua, proper
geodesic metric spaces and locally finite CW–complexes. Theorem 1.3 extends known
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ends results to generalized Peano continua. For groups acting properly and compactly
on metric spaces with a proper equivariant geodesic metric, Theorem 1.3 follows from
Proposition I.8.29 of Bridson and Haefliger [12]. However, it is unknown whether a
generalized Peano continuum with a proper, cocompact action admits an equivariant
proper geodesic metric (see Section 6 of Guilbault and Moran [26]). Thus Theorem 1.3
is a new contribution to the literature. Theorem 1.3 has already proved useful outside
of this paper. Groves and Manning (see Section 7 of [24]) use Theorem 1.3 to prove a
result similar to Theorem 1.1 for the restricted case where @.G;P / has no global cut
points, and the peripheral subgroups are 1–ended and tame.

Theorem 1.3 Let X and Y be two generalized Peano continua, and assume that G
is a finitely generated group acting properly and cocompactly by homeomorphisms
on X and Y . Then Ends.X/ is homeomorphic to Ends.Y /.

A generalized Peano continuum X is locally path connected (see for example Willard
[46, Exercise 31C.1]). The proof of Theorem 1.3 depends heavily on this fact. In
particular, the existence of proper rays in X plays an important role in the proof of
Theorem 1.3. The author would be interested to know if there is an alternative argument
that could be extended from the metric setting to the more general, nonmetric setting
of generalized continua.

Problem 1.4 Let X and Y be two generalized continua, and G be a finitely gen-
erated discrete group acting properly and cocompactly on X and Y . Is Ends.X/
homeomorphic to Ends.Y /?

Theorem 1.3 is also closely related to the recent work of Guilbault and Moran [26].
Their work implies Theorem 1.3 for geometric actions on proper metric ARs.

Acknowledgements First I would like to thank my advisor Chris Hruska for providing
comments and guidance throughout this project. Second I would like to give special
thanks to Genevieve Walsh for encouraging me to write up the details of these results.
Lastly, I would like to thank Craig Guilbault for valuable conversations regarding
Freudenthal ends.

2 Preliminaries

In this section we review basic facts and definitions required by the exposition of this
paper. The topics in this section include convergence groups, relatively hyperbolic
groups, splittings, cut point structures in metric spaces, and ends of generalized continua.
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2.1 Convergence group actions

A detailed account of convergence group actions may be found in [8]. Let M be
a compact metrizable space. Let G be a group acting by homeomorphisms on M.
The group G is called a convergence group if for every sequence of distinct group
elements .gk/ there exist points ˛; ˇ 2M (not necessarily distinct) and a subsequence
.gki

/� .gk/ such that gki
.x/! ˛ locally uniformly on M n fˇg and g�1

ki
.x/! ˇ

converges locally uniformly on M n f˛g. By locally uniformly we mean that if C is a
compact subset of M n fˇg and U is any open neighborhood of ˛ , then there is an
N 2N such that gki

C � U for all i > N.

Elements of convergence groups can be classified into three types: elliptic, loxodromic
and parabolic. A group element is elliptic if it has finite order. An element g of G is
loxodromic if has infinite order and fixes exactly two points of M. A subgroup of G
is loxodromic if it is virtually infinite cyclic. If g 2 G has infinite order and fixes a
single point of M then g is parabolic. An infinite subgroup P of G is parabolic if it
contains no loxodromic elements and stabilizes a single point p of M. The point p is
uniquely determined by P, and the point p is called a parabolic point. We call p a
bounded parabolic point if P acts properly and cocompactly on M n fpg.

A point x 2 @.G;P / is a conical limit point if there exists a sequence of group elements
.gn/ 2 G and distinct points ˛; ˇ 2M such that gnx! ˛ and gny! ˇ for every
y 2M n fxg. Tukia has shown (see [44]) that:

Proposition 2.1 A conical limit point cannot be a parabolic point.

A convergence group G acting on M is called uniform if every point of M is a conical
limit point, or equivalently the action on space of distinct triples of M is proper and
cocompact (see [8]). Bowditch [5] has shown G acts as a uniform convergence group on
a perfect compact metric space if and only if it is hyperbolic. G is called geometrically
finite if every point of M is a conical limit point or a bounded parabolic point.

2.2 Relatively hyperbolic groups and their boundaries

We refer the reader to [11] for a more thorough introduction to relatively hyperbolic
groups. Let G be a group acting properly and isometrically on a ı–hyperbolic space X.
Tukia [43] has shown that G acts on the Gromov boundary of X as a convergence
group. Let P be a collection of infinite subgroups of G that is closed under conjugation,
called peripheral subgroups.
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Definition We say that G is hyperbolic relative to P if:

(1) P is the set of all maximal parabolic subgroups of G.

(2) There exists a G–invariant system of disjoint open horoballs based at the par-
abolic points of G such that if B is the union of these horoballs, then G acts
cocompactly on X nB .

Any action of a group G on a proper ı–hyperbolic space satisfying the above definition
is called cusp uniform. In [11] Bowditch shows:

Theorem 2.2 If G is hyperbolic relative to P, then P consists of only finitely many
conjugacy classes.

The Bowditch boundary @.G;P / is defined to be the Gromov boundary of X, ie the set
of equivalence classes of geodesic rays of X, where two geodesic rays are equivalent if
their Hausdorff distance is finite. It is a result of Bowditch [11] that @.G;P / does not
depend on the choice of X.

We say that a relatively hyperbolic group .G;P / has tame peripherals if every P 2P is
finitely presented, one- or two-ended, and contains no infinite torsion subgroup. Under
the assumption of tame peripherals Bowditch has shown the following two results in [7]
and [10], respectively.

Theorem 2.3 Suppose that .G;P / is relatively hyperbolic with tame peripherals and
that @.G;P / is connected. Then every global cut point of @.G;P / is a parabolic point.

Assume that @.G;P / is connected. A global cut point is a point whose removal
disconnects @.G;P /.

Theorem 2.4 If .G;P / is relatively hyperbolic with tame peripherals and @.G;P / is
connected, then @.G;P / is locally connected.

In this paper we are interested in the case where @.G;P / is locally connected, so we
will generally assume that .G;P / has tame peripherals and that @.G;P / is connected.

Remark (convergence groups and relatively hyperbolic groups) Recall from Section
2.1 that a group G acts as a uniform convergence group on a perfect compact metric
space if and only if G is hyperbolic. A generalization of this result was completed
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by Bowditch [11] and Yaman [47]. Bowditch [11] shows that a relatively hyperbolic
group with finitely generated peripheral subgroups acts on its Bowditch boundary as a
geometrically finite convergence group (see Proposition 2.5), and Yaman [47] proves
a strong converse. In general, geometrically finite convergence group actions are not
uniform (see Proposition 2.1).

Proposition 2.5 (Bowditch [11, Proposition 6.12]) Assume G acts properly and
isometrically on a proper ı–hyperbolic space X, and let P be a collection of infinite
subgroups of G. If the action of .G;P / on X is cusp uniform, then the action on @X
is geometrically finite.

2.3 Splittings

A graph of groups is called trivial [39; 38] if there exists a vertex group equal to G.
A splitting of a group G over a given class of subgroups is a nontrivial finite graph-
of-groups representation of G, where each edge group belongs to the given class. We
say that G splits over a subgroup A if G splits over the class fAg. The group G is
said to split relative to another class of subgroups P if each element of P is conjugate
into one of the vertex groups. Assume that G is hyperbolic relative to a collection P.
A peripheral splitting of .G;P / is a finite bipartite graph-of-groups representation
of G, where P is the set of conjugacy classes of vertex groups of one color of the
partition, called peripheral vertices. Nonperipheral vertex groups will be referred to as
components. This terminology stems from the tame peripheral setting, where there is
a correspondence between the cut point tree of @.G;P / and the peripheral splitting
of .G;P /. In this correspondence elements of P correspond to stabilizers of cut point
vertices and the components correspond to stabilizers of blocks in the boundary (see
Theorem 3.1).

A peripheral splitting G is a refinement of another peripheral splitting G0 if G0 can
be obtained from G via a finite sequence of foldings that preserve the vertex coloring.
In [10] Bowditch proves the following accessibility result:

Theorem 2.6 Suppose that .G;P / is relatively hyperbolic with tame peripherals and
connected boundary. Then .G;P / admits a (possibly trivial ) peripheral splitting which
is maximal in the sense that it is not a refinement of any other peripheral splitting.

Combining Proposition 5.1 and Theorem 1.2 of [6], Bowditch also shows:
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Theorem 2.7 If .G;P / is a relatively hyperbolic with tame peripherals, @.G;P / is
connected, and @.G;P / has a global cut point, then there exists a nontrivial peripheral
splitting of .G;P /.

2.4 Local cut point structures in Peano continua

We refer the reader to [4] for a more detailed account of local cut point structures in
Peano continua. Recall that a Peano continuum is a compact, connected and locally
connected metric space. Let M be a Peano continuum. A global cut point of M is
a point x 2M such that M n fxg is disconnected. A cut pair is a set of two distinct
points fa; bg �M which contains no global cut points and is such that M n fa; bg
is disconnected. The set of components of M n fa; bg will be denoted by U.a; b/,
and N .a; b/ will denote the cardinality of U.a; b/. We leave it as an exercise to
show if x is a global cut point and fa; bg is a cut pair, then a and b cannot lie in
different components of M n fxg. Two cut pairs fa; bg and fc; dg are said to mutually
separate M if c and d lie in different components of M n fa; bg and vice versa. A
cut pair fa; bg is called inseparable if there does not exist any other cut pair fc; dg
such that a and b lie in distinct components of M n fc; dg. Let G be a group acting
on M by homeomorphisms. A cut pair fa; bg will be called translate inseparable
(or G–translate inseparable) if there does not exist a cut pair fc; dg in OrbG.fa; bg/
such that a and b lie in distinct components of M n fc; dg. If .G;P / is relatively
hyperbolic and M D @.G;P /, then a cut pair fa; bg will be called loxodromic if it is
stabilized by a loxodromic element g 2G.

Let � be a subset of M. A cyclic order on � is a quaternary relation �.a; b; c; d/,
such that the following holds: if F is any finite subset of �, then there is an embedding
i W F ! S1 such that given any four a; b; c; d 2 F the relation �.a; b; c; d/ holds
if and only if the pairs fi.a/; i.c/g and fi.b/; i.d/g mutually separate in S1. The
set � is called a cyclically separating set if it has a cyclic order � such that for any
a; b; c; d 2� we have �.a; b; c; d/ if and only if fa; cg separates fb; dg in M. Two
points a and b in a cyclically separating set are called adjacent if fi.a/; i.b/g cannot
be mutually separated by fi.c/; i.d/g for any c; d 2�. An unordered pair of adjacent
points will be referred to as a jump. Notice that if two distinct jumps of a cyclically
separating set � intersect, they must intersect in an isolated point of �.

A point x 2M is a local cut point if M n fxg is disconnected or M n fxg is connected
and has more than one end. If M n fxg is connected, the valence, val.x/, of a local
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cut point is the number of ends of M n fxg. A detailed discussion of ends of spaces
can be found in Section 2.5, but we remark that saying a point x 2M is a local cut
point is equivalent to saying that there exists a neighborhood U of x such that for
every neighborhood V of x with V � U, there exist points z; y 2 V n fxg such that
there does not exist a connected subset of U n fxg containing z and y . Alternatively,
to check that x is not a local cut point it suffices to show that given a neighborhood U
of x there exists a neighborhood V 3 x with V � U and V n fxg connected. We
wish to “collect” all the local cut points, so we introduce notation similar to that of
Bowditch [4] to describe the various “local cut point structures” in M. Let

M.n/D fx 2M j val.x/D n and x is not a global cut pointg;

M.nC/D fx 2M j val.x/� n and x is not a global cut pointg:

Now assume that a group G acts on M with a geometrically finite convergence group
action. Then G is relatively hyperbolic and M is homeomorphic to @.G;P / [5; 47].
Additionally, if .G;P / has tame peripherals, then global cut points in M correspond
to parabolic points (see Section 2.1). Because parabolic points cannot be conical limit
points (Proposition 2.1), the goal is to understand local cut points which are conical
limit points to ensure that the points we are considering do not separate M globally.
Define C to be the collection of conical limit points in M. We will denote by M �.n/
and M �.nC/ the intersections of M.n/ and M.nC/ with C . We define relations
on M �.2/ and M �.3C/. Let x; y 2M �.2/. We write x � y if and only if x D y
or N .x; y/ D 2. For two elements a; b 2 M �.3C/ we write a � b if a ¤ b and
N .a; b/D val.a/D val.b/� 3. From the definitions above we immediately obtain a
partition of the set of conical limit points which are local cut points. In other words:

Lemma 2.8 Let x 2 M be a conical limit point which is a local cut point. Then
x 2M �.2/[M �.3C/.

The following three results are proved using arguments analogous to those found in
Lemmas 3.1, 3.3 and 3.8 of [4].

Lemma 2.9 The collection of �–classes in M �.3C/ is partitioned into pairs which
do not mutually separate.

Lemma 2.10 The relation � is an equivalence relation on M �.2/.

We say that a cut pair fc; dg in M separates a subset C �M if C is contained in at
least two distinct components of M n fc; dg.
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Lemma 2.11 Let a; b; c; d 2 M �.2/. If a � b and fc; dg separates fa; bg, then
c � d � a � b , and the pairs fa; bg and fc; dg mutually separate.

An argument similar to that of Bowditch [4] shows that there are no singleton �–classes
in M �.2/; consequently, a �–class in M �.2/ consists of either a cut pair or a cyclically
separating collection of cut pairs. The closure of a �–class � containing at least three
elements will be called a necklace. Notice that if � is infinite, then x� may contain
parabolic points. Lastly note that because cut pairs cannot be separated by global cut
points, neither can �–classes or their closures.

2.5 Ends of generalized continua

In this section we review ends of spaces. Roughly speaking the number of ends of a
connected space X counts the number of components at infinity in X. A more detailed
discussion about ends of spaces may be found in [25, Section 3; 3, Section I.9].

A continuum is a compact, connected, locally connected Hausdorff space. A generalized
continuum is a connected, locally compact, locally connected, � –compact, Hausdorff
space. A generalized Peano continuum is a metrizable generalized continuum. A nested
sequence C1�C2�C3�� � � of compact sets in a space X is called an exhaustion of X
if X D

S1
iD1 Ci and Ci � Int.CiC1/ for every i . Note that � –compactness implies

that a generalized continuum can always be covered by a sequence of compact sets,
and by local compactness we may always assume that Ci � Int.CiC1/. Also note that
for generalized Peano continua the components of the complement of a compact set are
path components of the complement. The context of this paper makes it worth noting
that a connected open subset of a Peano continuum is a generalized Peano continuum.

Let X be a generalized continuum and let fCig1iD1 be an exhaustion of X. Define
U.Ci / to be the set of components of X nCi . Because the sequence fCig1iD1 is nested,
the sets U.Ci / form an inverse sequence,

U.C1/ U.C2/ U.C3/ � � � :

The set Ends.X/ is defined to be lim
 ��
fU.Ci / j i � 1g. The cardinality of Ends.X/ is the

number of ends of the space X. The set Ends.X/ is independent of choice of fCig (see
Remark I.9.2(a) of [3]). Let G be a finitely generated discrete group acting properly
and cocompactly on a generalized Peano continuum X. We define Ends.G/ to be
Ends.X/. We show in Theorem 1.3 that Ends.G/ is independent of the choice of X
and agrees with the more traditional notion of ends of a Cayley graph for any finite
generating set.
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The Freudenthal compactification of X is X [Ends.X/ with the topology generated
by the basis consisting of all open subsets of X and all sets Ei where Ei 2 U.Ci / for
some i � 1 and

Ei DEi [f.F1; F2; F3; : : : / 2 Ends.X/ j Fi DEig:

It is well known that the Freudenthal compactification is compact and metrizable. The
space Ends.X/ is given the subspace topology.

Recall that a map between two spaces f W X! Y is called proper if for every compact
subset C of Y we have f �1.C / is compact. The following well-known result can be
found as Proposition I.9.11 of [3].

Proposition 2.12 Let f W X!Y be a proper map between generalized Peano continua,
then f can be uniquely extended to a continuous map yf from X [ Ends.X/ to
Y [Ends.Y /.

The restriction of yf to Ends.X/ will be denoted by f � , and we say that f � is the
ends map induced by f .

A useful and more geometric way to describe the ends of a generalized Peano continuum
X is by proper rays. By proper ray we mean any proper map ˛W Œ0;1/! X. Two
rays ˛ and ˇ are ladder equivalent if there is a proper map h of the infinite ladder (or
simply ladder)

LŒ0;1/ D .Œ0;1/� f0; 1g/[ .N � Œ0; 1�/

such that ˛ and ˇ are the sides, ie ˛ D hjŒ0;1/�f0g and ˇ D hjŒ0;1/�f1g . We will
write ˛' ˇ to denote that ˛ is ladder equivalent to ˇ . The image under h of n� Œ0; 1�
is called a rung. Let L.X/ be the collection of ladder classes of proper rays in X.

Assume ˛ is a proper ray in X. By Proposition 2.12 there is a continuous extension
y̨W Œ0;1/[f1g!X [Ends.X/ of ˛ such that ˛.1/ is an element of Ends.X/. By
Proposition I.9.20 of [3] we have:

Proposition 2.13 Let X be a generalized Peano continuum. The map 'W L.X/!
Ends.X/ given by setting '.Œ˛�'/ equal to E D y̨.1/ defines a one-to-one correspon-
dence between Ends.X/ and L.X/.

Lemma 2.14 Let yf W X [ Ends.X/ ! Y [ Ends.Y / be the continuous extension
of a proper map f between two generalized Peano continua X and Y , and let f �
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denote the restriction of f to Ends.X/. Assume that '1W L.X/ ! Ends.X/ and
'2W L.Y /! Ends.Y / are the bijections as given in Proposition 2.13. Let the map
gW L.X/!L.Y / be given by g.Œ˛�/D Œf ˛� for every Œ˛�2L.X/. Then the following
diagram commutes:

L.X/ L.Y /

Ends.X/ Ends.Y /

g

'1 '2

f �

Proof Assume the hypotheses and let ˛W Œ0;1/!X be a proper ray. By Proposition
2.12 there is a continuous extension y̨W Œ0;1�! X [Ends.X/ of ˛ , and there is a
continuous extension bf ˛ W Œ0;1�! Y [ Ends.Y / of f ˛ . The composition yf y̨ is
also a continuous extension of ˛ to Œ0;1� with range space Y . The subspace Œ0;1/
is dense in Œ0;1�, and extensions of continuous maps into Hausdorff spaces from
dense subspaces to their closures are unique. So, yf y̨.1/ must equal bf ˛.1/. Thus
'2g.Œ˛�/D '2.f ˛/D bf ˛.1/D yf y̨.1/D f �.y̨.1//D f �'1.Œ˛�/.
2.6 Limit sets, joins and relative quasiconvexity

In this section let X be a ı–hyperbolic space, let .G;P / be a group acting on X
with a cusp uniform action, and let H be any subgroup of .G;P /. For a sequence
.hn/�H we write hn! � 2 @X if hnx! � for some x 2X. Note that if hnx! �

for some x , then hnx0! � for any x0 2 X. The limit set ƒ.H/ of H is the subset
of @X consisting of all such limits. The set ƒ.H/ is closed and H –invariant.

Given a subset � of @X containing at least two points, we will denote by Join.�/
the union of all geodesic lines joining points of �. If � is closed, then it follows
from a standard diagonal argument that Join.�/ is closed. The space Join.�/ is quasi-
isometric to a geodesic Gromov hyperbolic space JoinC.�/ (see [22, Section 7.5.A]).
In fact, JoinC.�/ is finite neighborhood of JoinC.�/ in the space X endowed with
the length metric. An infinite subgroup H of .G;P / is relatively quasiconvex if
H is parabolic, or .H;Q/ has a cusp uniform action on JoinC.ƒ.H// where Q D

fQ jQDH \P with Q infinite and P 2 Pg.

The following may be found as Proposition 7.1 of [29]:

Proposition 2.15 A subgroup H of .G;P / is relatively quasiconvex if and only if
the induced convergence action of H on ƒ.H/ is geometrically finite.
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We will implicitly be using the following proposition throughout Sections 3 and 4.
Proposition 2.16 is distillate from the proof of Theorem 9.1 of [29].

Proposition 2.16 Let H be a relatively quasiconvex subgroup of G, and let x2ƒ.H/;
then the following hold :

(1) x is a conical limit point of the induced action of H on ƒ.H/ if and only if it is
a conical limit point of the action of G on @.G;P /.

(2) x is a bounded parabolic point of the induced action of H on ƒ.H/ if and only
if it is a bounded parabolic point of the action of G on @.G;P /.

3 Reduction

Let .G;P / be a relatively hyperbolic group with tame peripherals. The results in this
section can be considered the first step in the proof of Theorem 1.1. In particular, we
show that the proof of Theorem 1.1 can be reduced to the case where the Bowditch
boundary @.G;P / has no global cut points.

3.1 Blocks and branches

In this subsection we look at cut point decompositions of @.G;P /. For a more in-depth
overview, see [9; 40].

Let M be a Peano continuum, and let … be the set of global cut points of M. We
define a relation R on M by xRy if x and y cannot be separated by an element of ….
In other words, xRy means there does not exist a z 2 … such that x and y lie in
different components of M n fzg. Assume x is not a global cut point; then the block
containing x is the collection of points y 2M such that xRy , and will be denoted
by Œx�. We make the exception that any singleton set satisfying these conditions will
not be considered a block. If two blocks Œu� and Œv� intersect, then they intersect in an
element of … or Œu�D Œv� (see [40]).

If M is the boundary of a relatively hyperbolic group with tame peripherals, then M is
a Peano continuum and the relation R naturally associates to M a simplicial bipartite
tree T [10]. The vertices of T correspond to elements of … and the set of blocks B.
Additionally, two vertices b 2 B and p 2… are adjacent if p 2 b .

Now, let T be the Bass–Serre tree for the maximal peripheral splitting G of G (see
Theorem 2.6), and assume that R and P are the collections of component and peripheral
vertices respectively. Let v 2 P. A subtree S of T is a branch rooted at v if it is the
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closure of a component of T nfpg. The following is a partial summary of results due to
Bowditch [10]. In particular, we refer the reader to Sections 7 and 8 of [10] for details.

Theorem 3.1 Let .G;P / be relatively hyperbolic with tame peripherals and connected
Bowditch boundary. Assume that T , R and P are as above. There exists an injective
map ˇW P[@T!@.G;P / and for every v2R there exists a unique set B.v/�@.G;P /
satisfying the following:

(1) B.v/ is a subcontinuum of @.G;P / for every v 2R which contains a point not
in the image of ˇ . If the maximal peripheral splitting is nontrivial then B.v/ is
a proper subcontinuum of @.G;P /. Additionally, if u; v 2R are distinct and
B.u/\B.v/¤∅, then B.u/\B.v/D fˇ.p/g for some p 2P adjacent to both
u and v .

(2) If x 2 P then ˇ.x/ is a parabolic point.

(3) If .xn/ � P is a sequence of points converging to i 2 @T , then the sequence
ˇ.xn/ converges to a point �D ˇ.i/ in @.G;P /. Such a point will be referred to
as an ideal point.

(4) If v is a vertex in R then B.v/ is block which cannot be separated by a cut
point. If H D StabG.R/, then the action of H on B.v/ is geometrically finite
with maximal parabolic subgroups

QD fQ jQD StabG.v/\P with Q infinite and P 2 Pg:

Consequently , .H;Q/ is relatively hyperbolic with @.H;Q/D B.v/. Addition-
ally, @.H;Q/ is locally connected (see [6]).

(5) Given a subtree S in T , let P.S/ and R.S/ be P \S and R\S, respectively.
Then the set ‰0.S/D ˇ.P.S//[

S
v2R.S/B.v/ is connected and its closure is

the set ‰.S/D ˇ.P.S/[ @S/[
S
v2R.S/B.v/. If S is a branch in T rooted

at v 2 P, then ‰.S/ is called a branch of @.G;P / rooted at ˇ.v/.

(6) ‰.T /D @.G;P /.

(7) If v is a vertex in R, then B.v/ does not contain any ideal points.

(8) Every ideal point � has a neighborhood base consisting of branches, and any
branch containing � is a neighborhood of �.

(9) Let ˇ�W .P [ @T /[R! @.G;P / be the multivalued map defined by ˇ�.v/D
ˇ.v/ for every v 2 P [ @T and ˇ�.v/ D B.v/ for any v 2 R. Then ˇ� is
G–equivariant.
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Corollary 3.2 A local cut point in @.G;P / must be in a block, ie ideal points are not
local cut points.

Proof Let � be an ideal point in @.G;P /. Then � is contained in some branch, ‰.B/.
We first show that ‰.B/ n fig connected. We have that ‰0.B/�‰.B/ n f�g �‰.B/,
the set ‰0.B/ is connected, and ‰.B/ is the closure of ‰0.B/. So, ‰.B/ n f�g must
be connected. Thus @.G;P / n f�g is connected.

Now if U is any neighborhood of �, we have from Theorem 3.1(8) that there is branch
B � U containing �. By the argument in the preceding paragraph B n f�g is connected
and � cannot be a local cut point (see Section 2.4).

The following theorem was communicated to the author by Chris Hruska and relies on
Theorem 3.1(4) and known results about the action of the G on @.G;P /. In particular,
Bowditch [11] has shown that the action of G on @.G;P / is minimal, ie @.G;P / does
not properly contain a closed G–invariant subset. (We refer the reader to Theorem 9.4
and the subsequent discussion in [11] for details regarding this claim.) Because it will
be of use in Section 7, it is worth noting that the action of G on @.G;P / is minimal if
and only if OrbG.m/ is dense for every m 2 @.G;P /.

Theorem 3.3 Assume .G;P / is relatively hyperbolic with tame peripherals, @.G;P /
is connected, and @.G;P / contains a global cut point. Then .G;P / splits nontrivially
over each edge group in the maximal peripheral splitting of .G;P / that corresponds to
an edge connecting a component vertex to a peripheral cut point vertex.

Proof Assume that T is the Bass–Serre tree for the maximal peripheral splitting
of G. Assume there exists an edge e in T connecting a component vertex c to a
peripheral cut point vertex p ; also assume that G does not split over the edge group Ge
nontrivially. Then there is a G–invariant subtree B in T which does not contain e
(see [31, Lemma 12.8]). As a cut point vertex, p is adjacent to at least two component
vertices. Because e š B, there is at least one component vertex u which is not in B.
Then by Theorem 3.1(1) there is a block B.u/ which is not entirely contained in ‰.B/.
Thus ‰.B/¤‰.T /. By Theorem 3.1(9) the map ˇ� is G–equivariant, so ‰.B/ is
a closed G–invariant proper subspace @.G;P /. This implies that the action of G on
@.G;P / is not minimal, a contradiction.

As a corollary we have:
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Corollary 3.4 Assume .G;P / is relatively hyperbolic with tame peripherals, @.G;P /
is connected, and let T D RtP be the Bass–Serre tree for the maximal peripheral
splitting of .G;P /. Suppose that p 2 P is a cut point vertex of T , and set P D
StabG.p/. If H D StabG.v/ for some v 2 R which is adjacent to p , then G splits
nontrivially relative to P over an infinite subgroup Ge of P \H.

Proof Theorem 3.1(2) gives that ˇ.p/ is a parabolic point of @.G;P /. By hypothesis
p separates T into at least two components, Theorem 3.1(5) gives that ˇ.p/ is a cut
point of @.G;P /. The result follows from Theorem 3.3 and [11, Proposition 10.1],
which says that @.G;P / is connected if and only if G does not split nontrivially over
any finite subgroup relative to P.

3.2 Decompositions and reduction

A decomposition D of a topological space X is a partition of X. Associated to D is
the decomposition space whose underlying point set is D, but denoted by X=D. The
topology of X=D is given by the decomposition map � W X ! X=D, with x 7! D,
and where D 2 D is the unique element of the decomposition containing x . A set
U in X=D is deemed open if and only if ��1.U / is open in X. A subset A of X is
called saturated (or D–saturated) if ��1.�.A//D A. The saturation Sat.A/ of A is
the union of A with all D 2 D that intersect A. The decomposition D is said to be
upper semicontinuous if every D 2D is closed and compact, and for every open set U
containing D there exists an open set V �U such that D�V and Sat.V / is contained
in U. In Proposition I.3.1 of [16], Daverman shows that the decomposition map of an
upper semicontinuous decomposition is proper. It is then an easy corollary that in an
upper semicontinuous decomposition the saturation of a compact set is compact. An
upper semicontinuous decomposition D is called monotone if the elements of D are
connected. The following is a key characteristic of monotone decompositions and may
be found as Proposition I.4.1 of [16]:

Proposition 3.5 Let D be a decomposition of a space X. Then D is monotone if and
only if ��1.A/ is connected for every connected subset A of X nD.

A collection of subsets S of a metric space is called a null family if for every � > 0
there are only finitely S 2 S with diam.S/ > � . The following proposition can be
found as Proposition I.2.3 in [16]:

Proposition 3.6 Let S be a null family of closed disjoint subsets of a compact metric
space X. Then the associated decomposition of X is upper semicontinuous.
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Lemma 3.7 If D is an upper semicontinuous decomposition of a space X, then the
saturation of a closed set is closed.

Lemma 3.7 follows from Proposition I.1.1 of [16].

Lemma 3.8 If D is an upper semicontinuous decomposition of a generalized Peano
continuum X, then X=D is a generalized Peano continuum.

Proof Let Y DX=D. We want that Y is connected, locally connected, locally compact,
� –compact and metrizable. Clearly, Y is connected. By Theorem 27.12 of [46] the
quotient of a locally connected space is locally connected.

To prove local compactness note that Lemma 3.7 implies the quotient map f W X ! Y

is closed. The image of a locally compact space under a closed map is locally compact
provided the preimage of each point is compact (see [46, Exercise 18C.2]). Thus Y is
locally compact, because the elements of D are compact.

We still require that Y is � –compact and metrizable. The continuous image of a
� –compact space is � –compact, so Y is � –compact. Proposition I.2.2 of [16] gives
that the image of a metric space under an upper semicontinuous decomposition is
metrizable. Thus Y is a generalized Peano continuum.

Lemma 3.9 Let X be a generalized continuum. Assume that D is a monotone upper
semicontinuous decomposition, and let f W X !X=D be the decomposition map. If
QDX=D, then f induces a homeomorphism between Ends.X/ and Ends.Q/.

Proof By Proposition I.3.1 of [16] the decomposition map of an upper semicontinuous
decomposition is proper. So, by Proposition 2.12, we have that f can be continuously
extended to a map yf W X[Ends.X/!Q[Ends.Q/. We only need that the restriction
f �W Ends.X/! Ends.Q/ is a bijection.

Let .C1; C2; C3; : : : / be an exhaustion of X. The elements of D are compact and
we have that the saturation of a compact set is compact. So, we may assume that
each Ci is saturated. We first show that f � is surjective. The sequence .f .Ci //1iD1D
.f .C1/; f .C2/; f .C3/; : : : / is an exhaustion of Q and Ends.Q/ is independent of
choice of exhaustion, so let .A1; A2; A3; : : : / 2 Ends.Q/ be defined using the exhaus-
tion .f .Ci //. For each i the preimage f �1.Ai / is contained in f �1.Q nf .Ci //D
X n Ci , and by monotonicity f �1.Ai / is connected by Proposition 3.5. Since
f �1.A1/ � f �1.A2/ � f �1.A3/ � � � � , we have that .f �1.Ai //1iD1 is an end
of Ends.X/.
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Now, let .Ei /1iD1 and .Fi /1iD1 be distinct elements of Ends.X/. Then there exists an
i 2N such that Ej ¤ Fj for all j � i . Because the Ci are saturated, monotonicity
implies f .Ej /¤f .Fj / for all j � i . Thus .f .En//1nD1 and .f .Fn//1nD1 are distinct.

Corollary 3.10 Assume that D is a monotone upper semicontinuous decomposition,
let f W X !X=D be the decomposition, and let x be a point of X such that fxg 2 D.
If x is a local cut point which is not a global cut point, then f .x/ is a local cut point
and val.x/D val.f .x//.

Returning to the setting of Bowditch boundaries we will use the notation introduced
in Section 3.1. Let r be an element of R. Any branch not containing the block B.r/
but rooted at a point in the block B.r/ is said to be attached to B.r/. The union of
all branches attached to B.r/ with common root will be called a full branch attached
to B.r/.

Lemma 3.11 Let RDB.v/ for some v 2R. The collection of full branches attached
to R forms a null family of disjoint connected closed sets.

Proof Let F be a full branch attached to R with root ˇ.p/ for some p 2 P. Then F
is the subcontinuum associated by ‰ to the subtree S of T consisting of all branches
in T rooted at p which do not contain the vertex v . By Theorem 3.1, F is connected
and closed.

Let F 0 be another full branch attached to R , and assume that F 0 is rooted at ˇ.q/
for some q ¤ p . If S 0 is the subtree of T of all branches in T rooted q and not
containing v , then ‰.S 0/D F 0. As S \S 0 D∅, we have that F \F 0 D∅, because
the map ˇ is injective and blocks associated to component vertices are unique.

Now, let � > 0. Bowditch has shown in Section 8 of [10] that the set of all branches
attached to a component of @.G;P / forms a null family, so there are only finitely
many branches of diameter �

2
. Let x1 and x2 be two points in a full branch D, and let

B1 �D and B2 �D be branches containing x1 and x2 , respectively. The distance
between x1 and x2 is at most diam.B1/C diam.B2/. If there were infinitely many
full branches of diameter greater than � , then there would be infinitely many branches
of diameter greater than �

2
, a contradiction.

It follows from Lemma 3.11 that:
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Lemma 3.12 Let RD B.v/ for some v 2R, and define f W @.G;P /! R to be the
quotient map obtained by identifying all full branches attached to R with their roots.
Then f is an upper semicontinuous monotone retraction onto R .

Lemma 3.13 Let x be a point contained in a block R . The point x is a local cut
point of @.G;P / and a conical limit point of the action of G on @.G;P / if and only
if f .x/ is a local cut point of R and a conical limit point of the action of StabG.R/
on R .

Proof Notice that x is not contained in a full branch attached to R , so fxg is an
element of the decomposition which is not a global cut point. Lemma 3.12 gives that f
is an upper semicontinuous decomposition. Then Corollary 3.10 implies that f .x/ is a
local cut point of R . By Proposition 2.16, f .x/ is a conical limit point of the action
of StabG.R/ on R . The reverse direction follows from Lemma 3.12, Proposition 2.16
and the observation that if f .x/ is a local cut point, then jEnds.R n ff .x/g/j � 2 and
Lemma 3.9 implies jEnds.@.G;P / n fxg/j � 2.

Lemma 3.14 Let fx; yg�R and assume that x and y are not parabolic points. Then
fx; yg is a cut pair in @.G;P / if and only if ff .x/; f .y/g is a cut pair in R . Moreover,
f induces a bijection between components of @.G;P / n fx; yg and components of
R n ff .x/; f .y/g.

Proof This result follows from Proposition 3.5. We first show that there is a bijection
between components of @.G;P /nfx; yg and components of Rnff .x/; f .y/g. Assume
ff .x/; f .y/g is a cut pair in R . Because fxg; fyg2D the preimage of each component
of R n ff .x/; f .y/g is a saturated connected set in @.G;P / n fx; yg. Because D is
monotone, the connected components of @.G;P /nfx; yg are saturated, and therefore not
identified under f . Thus we have a bijection between components of @.G;P / n fx; yg
and components of R n ff .x/; f .y/g.

Now, assume fx; yg is a cut pair. Then @.G;P /nfx; yg has at least two components and
the above implies that R n ff .x/; f .y/g has at least two components. If ff .x/; f .y/g
is a cut pair, then again the result follows from the above.

By Proposition 2.16 a conical limit point of the action of StabG.R/ on R is a conical
limit point of the action of G on @.G;P /, so as a corollary of Lemma 3.14 we obtain:

Corollary 3.15 Let x; y 2R be conical limit points of the action of StabG.R/ on R .
Then x � y in @.G;P / if and only if f .x/� f .y/ in R .
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Lemma 3.16 Assume RD B.v/ for some v 2R� @.G;P / and let H D StabG.R/.
A cut pair fa; bg in R is H –translate inseparable if and only if it is G–translate
inseparable.

Proof Notice that, by Lemma 3.14, fa; bg is a cut pair of @.G;P /. If h 2H, then
by Lemma 3.14 a translate fha; hbg separates fa; bg in R if and only if fha; hbg
separates fa; bg in @.G;P /. So, if fa; bg is G–translate inseparable, then fa; bg is
H –translate inseparable.

Now assume that fa; bg is H –translate inseparable and let g 2G. Because cut pairs
cannot be separated by cut points, the pair fga; gbg must be in R or @.G;P / nR . If
fga; gbg is in @.G;P / nR then fga; gbg cannot separate fa; bg. If fga; gbg is in R
then g must be in H. That g 2H follows from the definition of a block as a maximal
set of points of @.G;P / which cannot be separated by cut points and the fact that g
is a homeomorphism. For if g sent a point x 2 R n fa; bg to a point of @.G;P / nR ,
then by the definition of R there must exist a cut point of @.G;P / which separates
either the pair fgx; gag or the pair fgx; gbg. Thus gR contains points which can be
separated by a cut point, but g is a homeomorphism. So, R contains points which can
be separated by a cut point, a contradiction. Thus fa; bg is H –translate inseparable,
so fa; bg is G–translate inseparable.

Corollary 3.17 Let RD B.v/ for some v 2R. If fa; bg is a cut pair of R which is
StabG.R/–translate inseparable and does not contain any parabolic points, then fa; bg
is G–translate inseparable cut pair of @.G;P / which does not contain any parabolic
points. Additionally, if R contains a necklace � and i W R ,! @.G;P / is the inclusion
map, then i.�/ is a necklace in @.G;P /.

Proof The first result follows from Lemma 3.16.

Let � be a necklace in R . Then � is the closure of an �–class which is contained
in R . Call this class C. Because cut pairs in @.G;P / cannot be separated by global
cut points and the elements of C are conical limit points, Corollary 3.15 implies that
i.C / is a �–class in @.G;P /. R is closed, so the inclusion map is closed. Thus,
i.�/D i.C /D i.C /, which is a necklace in @.G;P /.

4 Local cut points in @.G; P /

The goal of this section is to describe the ways local cut points occur in @.G;P / (see
Theorem 4.22). In the hyperbolic setting, Bowditch [4] showed that a local cut point
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must be contained in a translate inseparable loxodromic cut pair or a necklace. We
wish to adapt Bowditch’s result to the relatively hyperbolic setting (see Theorem 4.20).
As first observed by Guralnik [27], a careful examination of [4] reveals that much of
Bowditch’s argument in [4] could directly translate to the Bowditch boundary @.G;P /
if one only considers local cut points which are conical limit points and assumes that
@.G;P / has no global cut points. However, there are two key steps [4, Lemmas 5.25
and 5.17] in the proof where Bowditch depends heavily on hyperbolicity. Namely,
in Section 5 of [4] Bowditch requires that G act as a uniform convergence group
on its boundary, ie that the action on the triple space is proper and cocompact. As
mentioned in Section 2, in the relatively hyperbolic setting the action of G on @.G;P /
is not uniform in general. Lemma 4.1 and Proposition 4.5 generalize the critical steps
[4, Lemmas 5.2 and 5.17] of Bowditch’s argument to the relatively hyperbolic setting
and allow us to use Bowditch’s results concerning local cut points to prove the main
result of this section (Theorem 4.22). We remark that Lemma 4.1 is also proved in [27],
but for completeness we include an alternative more self-contained proof, which uses
different techniques.

4.1 A key lemma

In this section we prove the following technical lemma:

Lemma 4.1 Let .G;P / be a relatively hyperbolic group. There exist finite collections
.Ui /

p
iD1 and .Vi /

p
iD1 of open connected sets of @.G;P / with Ui \V i D∅, and such

that if K � @.G;P / is closed and x 2 @.G;P /nK is a conical limit point then there
exists g 2G and i 2 f1; : : : ; pg such that gx 2 Ui and gK � Vi .

We postpone the proof of Lemma 4.1, as it will require a few lemmas. Let X be the
proper ı–hyperbolic space on which G acts as given by the definition of relatively
hyperbolic (see Section 2). We know from Theorem 2.2 that there are finitely many
orbits of horoballs in B . Let B1; B2; : : : ; Bn be representatives from each orbit and
p1; p2; : : : ; pn the associated parabolic points for each representative horoball. In
Lemma 6.4 of [11] it is shown that Ci D Fr.Bi /=StabG.pi / is compact for every
i 2 f1; 2; : : : ; ng and from the definition of relatively hyperbolic we know that G acts
cocompactly on .X n B/. Let A be the fundamental domain of the action of G on
.X nB/, and define

C D A[C1[C2[ � � � [Cn:

Then C is a compact subset of X and OrbG.C /�X nB .
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Let ‚2@.G;P / the space of distinct pairs in @.G;P / and define E.C/ � ‚2@X to
be the collection of pairs .x; y/ such that x D c.1/ and y D c.�1/ for some line
cW R!X with im.c/\C ¤∅.

Lemma 4.2 The set E.C/ is compact in ‚2@.G;P /.

Lemma 4.2 follows from the fact that for any pair .x; y/ 2‚2@.G;P / we may find a
line whose ends are x and y (see [12, Chapter III]). Then sequential compactness and
a standard diagonal argument show that a sequence of lines each meeting C converges
to a line meeting C. We leave the details as an exercise.

The action of G is by isometries, the translates of C cover X nB , and a line ` cannot
be completely contained in a horoball. So, there must be a g 2G and a line `0 such
that gC \ `¤∅, `0\C ¤∅ and g`0 D `. Consequently, we obtain:

Corollary 4.3 (Tukia, Gerasimov) G acts cocompactly on ‚2@.G;P /.

Corollary 4.3 was first observed by Gerasimov [19], following results of Tukia [44].

Lemma 4.4 There exist finite collections .Ui /
p
iD1 and .Vi /

p
iD1 such that Ui\V i D∅

for every i 2 f1; : : : ; pg, and such that if x; y 2 @.G;P / then there exists g 2G and
i 2 f1; : : : ; pg with gx 2 Ui and gy 2 Vi .

Proof Let d be a metric on @.G;P /, and let K be a compact set whose G–translates
cover ‚2@.G;P /. Clearly the intersection of K with the diagonal of @.G;P /�@.G;P /
is empty. For every .x;y/2K define r.x;y/D 1

4
d.x;y/ and define UxDB.x;r.x;y//

and Vy D B.y; r.x; y//. Then
S
.x;y/2C .Ux �Uy/ covers K . By compactness there

exist finitely many .xi ;yi /2K such that Uxi
�Vxi

cover K . Notice that by construction
Uxi
\Vyi

D∅. Thus by the cocompactness of the action we are done.

Proof of Lemma 4.1 Let x be a conical limit point. By the definition of conical limit
point there exists .gn/ 2G and distinct points ˛; ˇ 2 @.G;P / such that gnx! ˛ and
gny! ˇ for every y 2 @.G;P /n fxg; moreover, by passing to a subsequence we may
assume that the members of the sequence .gn/ are distinct.

Because G acts on @.G;P / as a convergence group, every sequence .gn/ of distinct
group elements has a subsequence .gi / such that if K � @.G;P / n fxg then for any
neighborhood V 3 ˇ there exists gi0 2 .gi / such that gi0 2 V .

Algebraic & Geometric Topology, Volume 19 (2019)



Local cut points and splittings of relatively hyperbolic groups 2819

Let .U 0i /
p
iD1 and .V 0i /

p
iD1 be the neighborhoods found in Lemma 4.4. As .˛; ˇ/ 2

‚2@.G;P / there exists g 2 G and i 2 f1; : : : ; pg such that g˛ 2 U 0i and gˇ 2 V 0i .
Set Ui D g�1U 0i and Vi D g�1V 0i . Then for large enough n we have gnx 2 Ui and
gnK � Vi .

4.2 The stabilizer of a necklace is relatively quasiconvex

The goal of this section is to prove the following proposition:

Proposition 4.5 Suppose .G;P / is relatively hyperbolic with tame peripherals, and
set M D @.G;P /. Assume M is connected, has no global cut points and is not homeo-
morphic to S1, and � is a necklace in M. Then StabG.�/ is relatively quasiconvex, acts
minimally on � , and any jump in � is a loxodromic cut pair and translate inseparable.

The proof of Proposition 4.5 is divided into the following series of lemmas and corol-
laries.

A collection of subspaces A of a metric space Z is called locally finite if only finitely
many members of A intersect any compact set K � Z . To prove Proposition 4.5
we will use the following proposition twice, which may be found as Proposition 7.2
of [31].

Proposition 4.6 Let G be a group acting properly and cocompactly on a metric
space Z , and let A be a locally finite collection of closed subspaces of Z . Then
Stab.A/ acts cocompactly on A for every A 2A, and the elements of A lie in finitely
many G–orbits.

Until otherwise stated we will assume the following hypotheses in this section. Let
.G;P /, M and � be as in the statement of Proposition 4.5. Let X be a ı–hyperbolic
space on which G acts with a cusp uniform action (see Section 2.2). Let B be
a G–equivariant family of open horoballs based at the parabolic points of @X as
given by the definition of relatively hyperbolic, and let K be a compact set such that
X nB � OrbG.K/.

The following lemma was observed by Gromov in Section 7.5.A of [22]. The following
proof is based on an argument due to Dahmani (see Proposition 1.8 of [14]).

Lemma 4.7 The limit set ƒ.Join.�// is equal to � .

Algebraic & Geometric Topology, Volume 19 (2019)



2820 Matthew Haulmark

Before we prove Lemma 4.7, we recall some basic definitions from the theory of
hyperbolic groups (see for example [22] or [20]). Let z be a basepoint of X. The
Gromov product of x; y 2X with respect to z is defined to be

.x jy/z D
1
2
.d.x; z/C d.y; z/� d.x; y//:

The Gromov product is extended to X [ @X by setting

.x jy/z D sup lim inf
i;j!0

.xi j xj /;

where the supremum is taken over all sequences .xi /! x and .yj /! y . The Gromov
product measures the distance from the point z to the geodesic between x and y up to
finite error (see for example [12, Definition III.H.1.19 and Exercise III.H.3.18(3)]); in
other words, we have:

Lemma 4.8 There is a constant � such that j.x jy/z �d.z; Œx; y�/j< � for all z 2X
and all x; y 2X [ @X.

Also, by [12, Remark III.H.3.17(6)] we have:

Lemma 4.9 If .ai / is a sequence of points in X \ @X and a 2 @X, then .ai /! a if
and only if .ai j a/!1.

Proof of Lemma 4.7 Clearly � � ƒ.Join.�//. Let .xn/ be a sequence of points
from distinct lines in Join.�/, and converging to a point x in @X. For each i let
ci be the line containing xi , and set ai D ci .1/ and bi D ci .�1/. The pairs
fai ; big form a sequence in ‚2� . As ‚2� is a compact subset of ‚2@.G;P /, by
passing to a subsequence if necessary we may assume .fai ; big/ converges to some
pair fa; bg 2‚2� . We claim that x D a or x D b .

Let z be a basepoint for X. For each i let yi denote the point of ci nearest z . The points
yi divide the lines ci into two sides Ai and Bi with Ai\BiDfyig, ai 2Ai and bi 2Bi .
The infinitely many members of the sequence .xi / must be in one of the collections
fAig or fBig. We may assume without loss of generality that infinitely many members
of the sequence .xi / are in fBig. Let ti 2 Œxi ; bi ��Bi . Then d.z; ti /� d.z; xi /�2ı ;
taking the minimum over all ti we have that d.z; Œxi ; bi �/� d.z; xi /� 2ı . Thus, by
Lemma 4.8, .xi j bi /z � d.z; xi /� 2ı� � .

Now, as .bi /! b we have that .bi j b/!1. By ı–hyperbolicity of X we have
.x jb/�minf.xi jbi /z; .bi jb/zg�ı0, where ı0 is some multiple of ı . Thus .x jb/z!1,
which implies that .xi /! b .

Algebraic & Geometric Topology, Volume 19 (2019)



Local cut points and splittings of relatively hyperbolic groups 2821

Lemma 4.10 Let J D fJoin.�/ j � is a necklace in @Xg. J is locally finite in X.

Proof Let C be a compact subset in X. Lemma 4.2 implies that endpoints of the
set of all lines intersecting C gives us a compact subset E.C/ of ‚2@.G;P /. If
J D Join.�/ 2 J and J \C is nonempty, then there exists a line ` contained in J
such that f`.1/; `.�1/g� � and f`.1/; `.�1/g 2E.C/. Lemma 3.16 of [4] shows
that a compact set of ‚2@.G;P / can only intersect finitely many �–classes, thus only
finitely many members of J can intersect C.

For the remainder of this section define H DStabG.Join.�// for some fixed necklace � .

Lemma 4.11 The subgroup H acts properly and cocompactly on Join.�/\ .X nB/.

Proof Lemma 4.10 implies that OrbG.Join.�// is locally finite in X. Thus only finitely
many members of OrbG.Join.�// intersect any compact set C � Join.�/\ .X nB/,
which implies that only finitely many members of the collection

AD OrbG.Join.�/\ .X nB//

intersect C. Setting Z D .X n B/, relative hyperbolicity of G implies that G acts
cocompactly on Z . Applying Proposition 4.6 we get that H acts cocompactly on
Join.�/\ .X nB/.

Lemma 4.12 Let B 2 B be a horoball intersecting JoinC.�/. Then S D StabH .B/
acts cocompactly on the horosphere Fr.B/\ JoinC.�/.

Proof The family B of G–equivariant horoballs based at the parabolic points is locally
finite. As H acts cocompactly on Join.�/\.X nB/, we have that H acts cocompactly
on JoinC.�/\ .X nB/. By Proposition 4.6 the group S D StabH .B/ acts cocompactly
on Fr.B/\ JoinC.�/.

Lemma 4.13 Let p 2 � be a parabolic point of the action of G on X. A horoball
Bp 2B based at p has unbounded intersection with JoinC.�/, the stabilizer StabH .Bp/
is an infinite subgroup of H, and p 2ƒ.H/.

Proof Assume p2� is a bounded parabolic point, and let Bp be the open horoball in B
based at p . Because a necklace is the closure of a �–class, p must be an accumulation
point. So, we may find a sequence of conical limit points .xn/ which converge to p . As
JoinC.�/ is a visibility space we find a sequence of geodesic lines .Œp; xn�/ connecting
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p to the elements of the sequence .xn/. Define yn D Œp; xn�\ Fr.Bp/. Then .yn/
must be unbounded, because the sequence of endpoints .fp; xng/ converges to the
pair fp; pg. Thus, by Lemma 4.9, the Gromov product .p j xi /z!1 as i !1.

By Lemma 4.12, S D StabH .Bp/ acts cocompactly on Fr.Bp/\ JoinC.�/. Let A
be the fundamental domain for this action. By covering the sequence .yn/ with
the S –translates of A we may find a sequence of group elements .h0n/ in H such
that hn! p .

Lemma 4.14 Let B� be the collection of all horoballs for the action of G which are
based at parabolic points outside of � . The elements of B� have uniformly bounded
intersections with Join.�/.

Proof The family of G–equivariant horoballs is locally finite, and H acts properly
and cocompactly on Join.�/\ .X nB/. So, there are only finitely many H –orbits of
horoballs in Join.�/\ .X nB/. In particular, there are only finitely many H –orbits of
horoballs based outside of � which intersect Join.�/.

By Lemma 4.12, if Bp is a horoball based at a parabolic point p … � which intersects
Join.�/, then S D StabH .Bp/ acts cocompactly on Fr.Bp/\ JoinC.�/. This implies
that if the intersection of Bp with Join.�/ is infinite, then p 2 ƒ.H/. The limit set
ƒ.H/ is the minimal closed H –invariant subset of @X. Thus, p 2 ƒ.H/ implies
p 2 � , a contradiction. Therefore any horoball based outside of � must have bounded
intersection with Join.�/.

Let B0 � B be the collection of horoballs based at parabolic points of � .

Corollary 4.15 Let H D StabG.�/. Then H acts properly and cocompactly on
Y D Join.�/\ .X nB0/.

Proof Lemma 4.11 gives us that H acts cocompactly on Join.�/\ .X nB/. Let C
be a fundamental domain for the action of H on Join.�/\ .X nB/. Since there are
only finitely many orbits of horoballs meeting C, there are only finitely many orbits of
horoballs from B nB0 which meet C, so Lemma 4.14 implies that we may increase C
to a larger compact set C 0 such that H acts cocompactly on Y .

Let P 0 � P be fP 2 P j P D StabG.B 0/ for some B 0 2 B0g.

Corollary 4.16 Let Q D fH \P j P 2 P 0g. The action of .H;Q/ on JoinC.�/ is
cusp uniform.
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Proof By definition each group in Q stabilizes a horoball in B0, and Lemma 4.13 gives
that every Q 2Q is infinite. The collection B0 is H –equivariant and Corollary 4.15
gives us that the action is cocompact on Y D Join.�/\ .X nB0/. Therefore the action
of .H;Q/ on JoinC.�/ is cusp uniform.

Corollary 4.17 H acts geometrically finitely on � .

Proof Corollary 4.16 shows that the action on Y is cusp uniform, and Lemma 4.7
shows that � D @ JoinC.�/. Then, by Proposition 2.5, the action on @ JoinC.�/ is
geometrically finite.

Thus, � Dƒ.H/. In other words, we have shown:

Corollary 4.18 H acts minimally on �

To complete the proof of Proposition 4.5 it remains to show:

Lemma 4.19 The stabilizer of a jump in � is a loxodromic and translate inseparable.

Proof We first show that he stabilizer of a jump is loxodromic. Let Jump.�/ be the
set of jumps in � and let K 0 � Y be a compact set whose H –translates cover Y . In
the hyperbolic setting Bowditch showed that Jump.�/=H is finite (see Lemma 5.19
of [4]). Bowditch’s argument only used the fact that G acts cocompactly on the
space of unordered pairs in the boundary of G and the fact that � D ƒ.H/. Thus,
using Corollary 4.3 and Lemma 4.7, and the argument of Lemma 5.19 of [4], we may
conclude that Jump.�/=H is finite. Thus fJoin.J /\Y j J 2 Jump.�/g is locally finite
in Y , and we may apply Proposition 4.6 to show that StabH .J / acts cocompactly on
Join.J /\Y for any jump J 2 Jump.�/. Notice that if we knew that parabolic points
did not participate in jumps, then we would know that for every jump J there is a
line in Join.J / having bi-infinite intersection with Y . Then the action of StabH .J / on
Join.J /\Y is cocompact and by isometries we may extend the action of StabH .J /
to R, which implies that StabH .J / is loxodromic.

Let S D StabH .J /. To see that we may extend the action of S to R, first let ` be a
line in Join.J / and notice that if C is a fundamental domain for the action of S on `
then the convex hull Hull.C / of C is a connected subset of `. Because the action of S
on ` is cocompact, there is a bound on the diameter of components of ` n fOrbS .C /g.
Additionally, there are at most two components of `nfOrbS .C /g which are adjacent to
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Hull.C /. Let V be the collection of components of ` n fOrbS .C /g whose intersection
with Hull.C / is nonempty and define C 0 to be the closure of Hull.C /\V . Then C 0

is compact and `� OrbS .C 0/. As ` is isometric to R, we are done.

We now show that parabolic points cannot participate in jumps. Let J D fx; yg be
a jump of � and assume that x was parabolic. Then StabH .x/ cannot fix y . Let
h 2 StabH .x/ be nontrivial. Then h is a homeomorphism of @X, so fx; h.y/g is
also a jump. Thus x is a point participating in two jumps and must be isolated (see
Section 2.4), but by definition the parabolic points in a necklace cannot be isolated.
Therefore x could not have been parabolic.

Let J D fx; yg be a jump in � . If N .x; y/ � 3, then fx; yg is inseparable and thus
G–translate inseparable. So, assume that x� y . To see that fx; yg cannot be separated
by a pair fa; bg with val.a/D val.b/DN .a; b/D 2, notice that given such an fa; bg
Lemma 2.11 would imply that x � y � a � b , contradicting the fact that fx; yg is a
jump.

Assume fa; bg is a cut pair with N .a; b/ � 3. Arguments of Bowditch [4] show
that such a pair is an inseparable M.3C/ class (see specifically [4, Lemma 3.8 and
Proposition 5.13]). As fa; bg is inseparable, fa; bg must lie in a single component of
M n fx; yg. Because fx; yg is a cut pair, there exists at least one component U of
M n fx; yg which does not contain fa; bg. Then U is a connected set contained in
M n fa; bg such that fx; yg � U. Thus fa; bg cannot separate fx; yg.

As every loxodromic cut pair has two or more components in its complement, we have
shown that fx; yg is translate inseparable.

4.3 Collecting local cut points

Now that we have proved Lemma 4.1 and Proposition 4.5, we may plug into the
arguments of Bowditch [4] in the case when @.G;P / has no global cut points to
describe the ways local cut points occur in @.G;P /.

Theorem 4.20 Let .G;P / be relatively hyperbolic and set M D @.G;P /. If M is
connected , has no global cut points and is not homeomorphic to S1, then we have the
following:

(1) A point m 2M �.2/ is either in a necklace or a translate inseparable loxodromic
cut pair.
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(2) M �.3C/ consists of equivalence classes of translate inseparable loxodromic cut
pairs.

(3) A necklace � in M is homeomorphic to a Cantor set. Moreover , if � is a Cantor
set the jumps are loxodromic cut pairs which are translate inseparable.

As first observed by Guralnik [27], Lemma 4.1 allows us to apply Bowditch’s arguments
verbatim when considering only conical limit points to obtain Theorem 4.20(1)–(2).
Part (3) also follows from the arguments of Bowditch, by substituting Proposition 4.5
for Bowditch’s Lemma 5.17. We refer the reader to arguments of Section 5 of [4] for
details.

As an immediate corollary we have:

Corollary 4.21 Assume @.G;P / is connected with no global cut points and not
homeomorphic to S1. If @.G;P / has a nonparabolic local cut point, then @.G;P /
contains a G–translate inseparable loxodromic cut pair.

We remark that Theorem 4.20(3) is related to the work of Groff (see Proposition 7.2
and the definition of relatively QH in [21]). Also note that cut pairs are not separated
by global cut points. Thus a necklace � will be contained in some block of the
form @.H;Q/. This means we may now invoke the results of Section 3 to remove the
hypothesis that @.G;P / has global cut points and show:

Theorem 4.22 Let .G;P / be a relatively hyperbolic group with tame peripherals and
assume @.G;P / is connected. If p 2 @.G;P / is a local cut point, then one of the
following holds:

(1) p is parabolic point.

(2) p is contained in a G–translate inseparable loxodromic cut pair.

(3) p is in a necklace.

Proof Let p be a local cut point. By Corollary 3.2, p must be either a parabolic point
or a conical limit point contained in a block. If p is parabolic, we are done, so assume
that p is a conical limit point. By Theorem 3.1 the block is stabilized by a subgroup H,
and H is hyperbolic relative to Q. Theorem 3.1 also implies that @.H;Q/ is connected
and has no global cut points; if @.H;Q/ is not a circle, we may apply Theorem 4.20
to @.H;Q/. Thus @.H;Q/ contains a necklace or an inseparable loxodromic cut pair
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which contains p . Corollary 3.17 implies that inseparable loxodromic cut pairs and
necklaces in @.H;Q/ correspond to inseparable loxodromic cut pairs and necklaces
in @.G;P /. If @.H;Q/ is a circle, then @.H;Q/ is a necklace containing p , and we
are done by Corollary 3.17.

5 Splitting theorem

Throughout this section we will assume that .G;P / is relatively hyperbolic with tame
peripherals and that @.G;P / is connected. Having developed the appropriate tools in
Sections 3 and 4, we now wish to prove Theorem 1.1. We start with a few lemmas.

Lemma 5.1 Assume that @.G;P / is not homeomorphic to a circle. If H is the
stabilizer of a block and @.H;Q/ is homeomorphic to a circle, then there exists a
nontrivial peripheral splitting of G over a 2–ended subgroup.

Proof If @.H;Q/ is a circle, then Theorem 3.1(4) and a result of Tukia (see [42,
Theorem 6B]) imply that H is virtually a surface group, and the peripheral subgroups
are the boundary subgroups of that surface. Because @.G;P / is not a circle, there is a
global cut point p of @.G;P / contained in @.H;Q/ such that StabH .p/ is a 2–ended
subgroup. As the boundary is connected, Corollary 3.4 implies that G must split over
an infinite subgroup of StabH .p/.

Lemma 5.2 Let fa; bg be a translate inseparable cut pair in @.G;P / and Q the
quotient space obtained by identifying ga to gb for every g 2G. Then Q contains a
cut point for each pair in OrbG.fa; bg/.

Proof Let M D @.G;P / and assume fa; bg is a translate inseparable cut pair. As the
action of G is by homeomorphisms, fga; gbg is inseparable for every g 2G.

Define qW @.G;P /!Q to be the quotient map described in the statement of the lemma.
Let C be the collection of components of @.G;P / n fc; dg for some pair fc; dg in
OrbG.fa; bg/. Because every pair in OrbG.fa; bg/ is inseparable, there does not exist
a pair fx; yg 2 OrbG.fa; bg/ which meets two elements of C . Thus, if C1 and C2 are
distinct components of @.�;P / n fc; dg, we have that q.C1/ and q.C2/ are disjoint
connected components of Q n fq.c/D q.d/g.

By Corollary 1.7 of [35] we have:
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Lemma 5.3 Let .G;P / be relatively hyperbolic. Assume that g is a loxodromic
element contained in a maximal 2–ended subgroup H. By adding H and all of its
conjugates to P, we may extend P to a new peripheral structure P 0 such that .G;P 0/
is relatively hyperbolic.

Let .G;P / and .G;P 0/ be as in Lemma 5.3. We say that .G;P 0/ is the loxodromic
extension of .G;P / by g .

Lemma 5.4 Assume @.G;P / contains an inseparable loxodromic cut pair fa; bg
stabilized by a loxodromic element g , and let Q the quotient space obtained by
identifying g0a to g0b for every g0 2 G. If .G;P 0/ is the loxodromic extension of
.G;P / by g , then Q is equivariantly homeomorphic to @.G;P 0/.

Lemma 5.4 was proved by Dahmani [14] in the case where hgi is a maximal 2–ended
subgroup and follows from Lemma 4.16 of [48] in the general case.

Lemma 5.5 Assume @.G;P / contains a translate inseparable loxodromic cut pair.
Then G splits relative to P over a two-ended group.

Proof Assume the hypothesis. Then there is a loxodromic group element g 2 G
which stabilizes the loxodromic cut pair and is such that hgi is contained in a maximal
2–ended subgroup H. Let .G;P 0/ be the loxodromic extension of .G;P / by g .
By Lemmas 5.2 and 5.4 there is a cut point @.G;P 0/ stabilized by H, which by
Corollary 3.4 implies that .G;P 0/ has a nontrivial peripheral splitting over a subgroup
of H. As @.G;P 0/ is connected, G does not split over a finite group relative to P.
Since every infinite subgroup of H is 2–ended, we are done.

Lastly, to prove Theorem 1.1 we will use the following lemma, taken from the first
paragraph in the proof of Theorem 7.8 of [24]. Lemma 5.6 below is more general than
what is stated in [24], but follows directly from Groves and Manning’s proof, which we
include for completeness. The proof of Lemma 5.6 uses the cusped space for .G;P /,
and we refer the reader to [23, Section 3] for the construction of the cusped space.

Lemma 5.6 Let .G;P / be relatively hyperbolic with tame peripherals. Assume that
@.�;P / is connected and not homeomorphic to a circle. If G splits over a nonparabolic
2–ended subgroup relative to P, then @.G;P / contains a nonparabolic local cut point.

Proof Assume the hypotheses, and let H be a nonparabolic 2–ended subgroup over
which G splits relative to P. Because H is nonparabolic, H quasi-isometrically
embeds in the cusped space X.G;P /. Since this splitting is relative to P, the cusped
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space X.G;P / can be realized as a tree of cusped spaces glued together in the pattern
of the Bass–Serre tree for the splitting over H. Thus H coarsely separates X.G;P /
into at least two components, and the limit set of H is a pair of nonparabolic local cut
points which separate @.G;P /.

Proof of Theorem 1.1 By Lemma 5.6, if G splits over a nonparabolic 2–ended
subgroup relative to P, then @.�;P / contains a nonparabolic local cut point.

Now, assume that x 2 @.G;P / is a nonparabolic local cut point. By Theorem 4.22
we know that x is contained in either a translate inseparable loxodromic cut pair or
a necklace. If x is in a translate inseparable loxodromic cut pair, we are done by
Lemma 5.5.

Assume x is in a necklace � . Then � is either a circle or it is not. If � is homeomorphic
to S1, we are done by Lemma 5.1. If � is not a circle, then � contains a translate
inseparable loxodromic cut pair by Theorem 4.20, and again we are done by Lemma 5.5
and Corollary 3.17.

6 Ends of generalized Peano continua admitting proper and
cocompact group actions

Let G be a group with finite generating set S, and let ‡.G; S/ denote the Cayley graph
of .G; S/. We define Ends.G/ to be Ends.X/ for any generalized Peano continuum X

on which G acts properly and cocompactly. The goal of this section is to prove that
Ends.G/ is well defined (see Theorem 1.3). In particular, we show that Ends.‡.G; S//
is homeomorphic to Ends.X/ for all generalized Peano continua X. A special case of
this result is well known for groups acting on CW–complexes (see for example [18]).
Theorem 1.3 provides a generalization to generalized Peano continua, a class of spaces
which need not be CW–complexes. We remark that the techniques used to prove
Theorem 1.3 differ from those found in [18].

One consequence of Theorem 1.3 for the boundary @.G;P / of a relatively hyperbolic
group G is that if the peripherals are one-ended then a parabolic point can be a local
cut point if and only if it is a global cut point (see Corollary 6.6). This particular fact
will be required for the proof of Theorem 1.2.

Let G be a finitely generated discrete group acting properly and cocompactly on a
generalized Peano continuum X. We will use Proposition 2.12 to prove Theorem 1.3.
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To begin the proof first construct a proper map ˆW ‡.G; S/! X from the Cayley
graph of G to S in the following way:

Let S be a finite generating set for the group G. Fix a basepoint x0 in the funda-
mental domain of the action of G on X, and for every vertex vg in ‡.G; S/ define
ˆ.vg/ D g:x0 . For every s 2 S [ S�1 fix a path ps in X with ps.0/ D x0 and
ps.1/D s:x0 . We will denote by P.S/ the collection of paths found in this way, ie
P.S/D fps j s 2 Sg. Now, for any edge es 2 ‡.G; S/ with endpoints vg and vgs ,
define ˆ.es/ to be gps . Notice that ˆ is well defined because gps is a path with
endpoints gx0 and gsx0 for every g and s . Also, note that, by the pasting lemma,
ˆ is continuous.

Lemma 6.1 The map ˆW ‡.G; S/!X is proper for all S.

Proof Let A�X be compact. As X is Hausdorff, A is closed, therefore ˆ�1.A/ is
closed. We show that ˆ�1.A/ intersects only finitely many vertices and edges. Assume
that ˆ�1.A/ meets infinitely vertices. This implies that A contains gnx0 for infinitely
many gn 2G, contradicting properness of the action of G on X.

Now assume that infinitely many edges meet ˆ�1.A/. As there are finitely many orbits
of edges, there must be infinitely many edges with the same label, say s , meeting
ˆ�1.A/. Thus we may find an infinite sequence of group elements, .gi /1iD1 , such that
gips \A¤ ∅ for every i . Set C D ps [A; then C is compact and C \ giC ¤ ∅
for every i , again a contradiction.

Define ˆ�W Ends.‡.G; S//! Ends.X/ to be the ends map induced by ˆ.

Lemma 6.2 ˆ� is a surjection for all S.

Proof Let K � X be a compact connected set whose G–translates cover X, let
fCig

1
iD1 be an exhaustion of X, and let E D .E1; E2; E3; : : : / 2 Ends.X/.

Let xi 2 Ei for some i . The translates of K cover X, so there exists some gi 2 G
such that xi 2 giK . As giK is compact, there exists some j 2N such that gK � Cj .
Let xj 2 Ej � XnCj ; as before, there exists some gj 2 G such that xj 2 gjK and
some Ck containing gjK . So we may pass to a subsequence .Ei1 ; Ei2 ; Ei3 ; : : : / of E
corresponding to a sequence of distinct group elements .gi1 ; gi2 ; gi3 ; : : : / of G found
in the manner just described.
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The sequence .gi1 ; gi2 ; gi3 ; : : : / corresponds to an infinite sequence, .vgij
/1jD1 , of

distinct vertices in ‡.G; S/. Because the map ˆ is proper, by compactness of
‡.G; S/[Ends.‡.G; S// we have that some subsequence .vgijk

/1
kD1

of .vgij
/1jD1

must converge to an end of ‡.G; S/. Using the path-connectedness of Ei we may find
a proper ray, r , in ‡.G; S/ containing the vertices .vgijk

/1
kD1

. The ray r determines
an end of ‡.G; S/, which, by construction, ˆ maps to the end E under ˆ� . Thus
ˆ� is surjective.

To complete the proof of Theorem 1.3 we will need the following well-known result
about ends of Cayley graphs [38], which is a special case of Theorem 1.3:

Theorem 6.3 Assume G is finitely generated, and let S and T be two finite generat-
ing sets for G. Then Ends.‡.G; S// is homeomorphic to Ends.‡.G; T //.

We will also require the following lemma:

Lemma 6.4 Let G act properly and cocompactly on a generalized Peano continuum X.
Then there exists a connected compact set K whose G–translates cover X.

Proof The proof is similar to that of Lemma 9.6 of [31]. Let C be a compact set
whose G–translates cover X. Let x 2 C. By local compactness we have that x
has a compact neighborhood U, and local connectedness implies that the interior
Int.U / contains a connected neighborhood V of x . The closure V of V is a compact
connected neighborhood of x . As C is compact we may cover C by finitely many
such neighborhoods. The union of these neighborhoods K 0 is compact and consists of
finitely many components. As X is arcwise connected, we may attach finitely many
arcs to K 0 to find a compact connected set K such that C �K 0 �K .

Proof of Theorem 1.3 By Lemma 6.4 there exists a connected compact set K whose
G–translates cover X. We will also assume that K contains the basepoint x0 . Define S
to be fs 2G jK \ sK ¤∅g. It is a standard result that S generates G. By Theorem 6.3,
Ends.‡.G; S// is independent of the choice of generating set.

Let ˆW ‡.G; S/ ! X be the map defined at the beginning of this section with
ˆ.1G/ D x0 . By Lemma 6.2 we need only show that ˆ� is injective. To do this
we will make use of Lemma 2.14.

Let ˛ and ˇ be proper rays in ‡.G; S/ and .ai / and .bi / the corresponding sequences
of vertices. Note that, if necessary, ˛ and ˇ may be homotoped to combinatorial proper

Algebraic & Geometric Topology, Volume 19 (2019)



Local cut points and splittings of relatively hyperbolic groups 2831

rays, so we may assume that no vertex in .ai / or .bi / occurs infinitely many times.
Assume that ˆ.˛/ and ˆ.ˇ/ are in the same ladder equivalence class. Then we may
find a proper map of the infinite ladder into X such that ˆ.˛/ and ˆ.ˇ/ form the sides;
moreover, by concatenating paths if necessary we may assume that the rungs, ri , of
the ladder have endpoints ˆ.ai / and ˆ.bi /. Call this ladder L. Note that the rungs ri
of L may not pull back to paths in ‡.G; S/ under ˆ�1 . We show that we can find
an alternative sequence of rungs �i connecting ˆ.ai / to ˆ.bi / and such that each �i
pulls back to an edge path in ‡.G; S/.

For any rung ri we may find a finite number of translates of K that cover ri . Let
fg1; g2; : : : ; gng be such that im.ri /�

Sn
jD1 gjK . Notice that by connectedness of

the rung ri we may assume that fg1; g2; : : : ; gng is enumerated in such a way that
gjK \ gjC1K ¤ ∅. Consequently, the gjK form a chain of connected compact
neighborhoods such that the points gix0 in the translates of K can be connected by
paths which are translates of paths in P.S/ (see the construction of ˆ); in other words,
because of the specific choice of generating set they are the images of edges in ‡.G; S/.
By concatenating paths in OrbG.P.S// we may find a path �i which pulls back to an
edge path in ‡.G; S/ connecting .ai / and .bi /.

Lastly, we need to check that some subladder of the ladder L pulls back to a ladder in
‡.G; S/ under ˆ. Let C � ‡.G; S/ be a compact. We find a �i such that ˆ�1.�i /
is in ‡.G; S/ nC.

Set C 0 D ˆ.C/ and K 0 D
�S

s2S sK
�
[P.S/. Assume that there does not exist a

subsequence of rungs f�ig entirely outside of C 0. Then we may find a compact set
N D

S
g2I gK

0, where I D fg 2 G j K 0 \ gK 0 ¤ ∅g, such that every rung ri of L
meets N. As the ladder L was proper this is a contradiction. Thus there must exist
a �i outside of ˆ.C/, which implies that ˆ�1.�i /� ‡.G; S/ nC. Therefore, as C
was chosen to be arbitrary, ˛ and ˇ represent the same end of ‡.G; S/.

As an immediate corollary we obtain:

Corollary 6.5 Let G be a one-ended finitely generated group acting properly and
cocompactly on a generalized Peano continuum X. Then X is 1–ended.

In particular, we have:

Corollary 6.6 Let .G;P / be relatively hyperbolic with tame peripherals and every
P 2 P 1–ended. If p is parabolic point in @.G;P / which is not a global cut point,
then p cannot be a local cut point.
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Proof Assume the hypotheses and let P be the maximal parabolic subgroup which
stabilizes p . Bowditch [11] has shown that P acts properly and cocompactly on
@.G;P / n fpg. Because p is not a global cut point, we know that @.G;P / n fpg is
connected. We are assuming that .G;P / has tame peripherals, so @.G;P / is locally
connected. Thus, @.G;P / n fpg is an open connected subset of a Peano continuum;
consequently, @.G;P / n fpg is a generalized Peano continuum and we may apply
Corollary 6.5.

7 Classification theorem

In this section we prove Theorem 1.2. This theorem is a generalization of a theorem
due to Kapovich and Kleiner [32] concerning the boundaries of hyperbolic groups.
Kapovich and Kleiner’s proof used the topological characterizations of the Menger
curve [1; 2] and Sierpinski carpet [45]. A compact metric space M is a Menger curve
provided M is 1–dimensional, M is connected, M is locally connected, M has no
local cut points and no nonempty open subset of M is planar. If the last condition
is replaced with “M is planar”, then we have the topological characterization of the
Sierpinski carpet. Having proved Theorems 1.1 and 1.3, the only remaining step in the
proof of Theorem 1.2 is the following argument, inspired by Kapovich and Kleiner [32]:

Proof of Theorem 1.2 Assume the hypotheses and assume that @.G;P / is not homeo-
morphic to a circle. Then @.G;P / is a compact and 1–dimensional metric space.
Because G is one-ended, @.G;P / is connected. Since we are assuming .G;P / has tame
peripherals, connectedness of @.G;P / implies that it must also be locally connected
(see Theorem 2.4).

There are two types of local cut points: those that separate @.G;P / globally and
those that do not. By Theorem 2.7 the “no peripheral splitting” hypothesis implies
that @.G;P / is without global cut points. Additionally, the peripheral subgroups are
assumed to be 1–ended, so by Theorem 1.3 there are no parabolic local cut points.
Thus any local cut point must be a conical limit point. If there were a conical limit
local cut point, then Theorem 1.1 would imply that G splits over a 2–ended subgroup,
a contradiction.

Now, @.G;P / is planar or it is not. If it is planar then it is a Sierpinski carpet. Assume
@.G;P / is not planar; then, by the Claytor embedding theorem [13], it must contain a
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topological embedding of a nonplanar graph K . It suffices to find a homeomorphic
copy of K inside any open neighborhood V in @.G;P /.

As conical limit points are dense, let x be a conical limit point in @.G;P / n fKg. By
definition of conical limit point there exist a; b 2 @.G;P / and a sequence of group
elements .gi /�G such that gix! a and giz! b ¤ a for every z 2 @.G;P / n fxg.
Now, G acts on @.G;P / as a convergence group. Thus the sequence .gi / restricted to
@.G;P /n fxg converges locally uniformly to b , so we may find a homeomorphic copy
of K inside any neighborhood U of b .

Let V be any neighborhood in @.G;P /. The action of G on @.G;P / is minimal
(see [11]), so there exists some group element g such that gb 2 V . Let W be a
neighborhood of gb inside V and set U from the previous paragraph equal to g�1.W /.
Then we may find a homeomorphic copy of K inside of V .
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