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Algebraic filling inequalities and cohomological width

MERU ALAGALINGAM

In his work on singularities, expanders and topology of maps, Gromov showed,
using isoperimetric inequalities in graded algebras, that every real-valued map on the
n–torus admits a fibre whose homological size is bounded below by some universal
constant depending on n . He obtained similar estimates for maps with values in
finite-dimensional complexes, by a Lusternik–Schnirelmann-type argument.

We describe a new homological filling technique which enables us to derive sharp
lower bounds in these theorems in certain situations. This partly realises a programme
envisaged by Gromov.

In contrast to previous approaches, our methods imply similar lower bounds for maps
defined on products of higher-dimensional spheres.

55N05; 55P62, 55S35

1 Introduction

This paper is profoundly inspired by Gromov [8; 9], in which, among others, the
following two theorems were shown:

Theorem 1.1 [9, page 424] Let k < n
2

and let T n denote the n–dimensional torus.
Every continuous map f W T n ! R admits a point y 2 R such that the rank of the
restriction homomorphism satisfies

rkŒH k.T n/!H k.f �1.y//��
�
1�

2k

n

��n

k

�
:

The second theorem is the so-called maximal fibre inequality:

Theorem 1.2 [8, page 13; 9, Section 4.2] Let Y q be a q–dimensional simplicial
complex and n� p.qC 1/. Every continuous map f W T n! Y admits a point y 2 Y

satisfying
rkŒH�T n

!H�.f �1.y//�� 2p:

In the theorems above H� shall denote Čech cohomology with coefficients in Z.
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Definition 1.3 (cohomological width) Let R be a coefficient ring such that the rank
of a homomorphism between R–modules makes sense, eg Z, Z2 or Q. For every
y 2 Y we can consider the rank of the Čech cohomology restriction homomorphism

H�.X IR/!H�.f �1yIR/:

(i) For every continuous map f W X ! Y the expressions

width�.f IR/ WDmax
y2Y

rkŒH�.X IR/!H�.f �1yIR/�;

widthk.f IR/ WDmax
y2Y

rkŒH k.X IR/!H k.f �1yIR/�

are called the total and the degree k cohomological width of f .

(ii) For fixed topological spaces X and Y the minima

width�.X=Y IR/ WD min
f 2C.X ;Y /

width�.f IR/;

widthk.X=Y IR/ WD min
f 2C.X ;Y /

widthk.f IR/;

where C.X;Y / denotes the set of all continuous maps f W X ! Y are called
the total and the degree k cohomological width of X over Y .

For every continuous map f W X ! Y the preimages of points are called the fibres of f
and widthk.f / gives a lower bound for the topological complexity of one fibre of f .
The expression widthk.X=Y / measures the complexity of X in terms of continuous
maps to Y .

Up to now, Theorems 1.1 and 1.2 have been essentially the only two inequalities about
cohomological width. In this paper we will give new lower bounds for widthk.X=Y /

where X and Y are fixed manifolds.

A careful analysis of the proof of Theorem 1.2 shows that this y 2 Y actually satisfies

(1-1) rkŒH k.T n/!H k.f �1.y//��
�p

k

�
for every 0� k � p .

We can compare the different lower bounds, eg for widthk.T
2p=R/, Theorem 1.1 yields

(1-2) widthk.T
2p=R/�

�
1�

k

p

��2p

k

�
whereas we get from Theorem 1.2 that

(1-3) widthk.T
2p=R/�

�p

k

�
:
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The bound (1-2) is significantly stronger than (1-3) but the latter holds for all 1–
dimensional target spaces Y 1 , not just Y 1 DR.

When investigating widthk.X=Y / we will call the dimension of the target space Y

the codimension of the cohomological width problem. Theorem 1.1 is a codimension 1

result and its proof uses so-called isoperimetric inequalities in algebras. Theorem 1.2
on the other hand is a result admitting target spaces Y q of arbitrary codimension q � 1.
Its proof is far less geometric and uses a Lusternik–Schnirelmann-type argument.
This argument and isoperimetric inequalities in algebras have been the only known
techniques to prove cohomological waist inequalities.

Using a certain filling argument in a space of .n�q/–cycles in T n — which we will
sketch in a moment — we sharpen estimate (1-1) as follows:

Theorem 1.4 If N q is a manifold, we have

width1.T
n=N /D n� q;

ie for every continuous f W T n!N there exists a point y 2N such that

rkŒH 1.T n/!H 1.f �1.y//�� n� q:

Any projection f W T n!T q shows that this inequality is sharp. A slightly more general
construction shows equality can happen for every q–dimensional target manifold N .

It is the first nontrivial sharp evaluation of cohomological width, slightly improves the
best known lower bound for width1.T

n=R/ coming from Theorem 1.1, and generalises
to arbitrary source manifolds that need not be tori but can be arbitrary essential m–
manifolds with fundamental group Zn (see Theorem 3.23).

Gromov asked (see [9, Sections 4.1 and 4.13D]) whether one could use minimal models
to prove cohomological waist inequalities. Using rational homotopy theory we could
indeed prove the following estimate about cartesian powers of higher-dimensional
spheres:

Theorem 1.5 Let p � 3 be odd and n� p� 2. Consider M D .Sp/n or any simply
connected, closed manifold of dimension pn with the rational homotopy type .Sp/nQ .
For any orientable manifold N q we have

widthp.M=N IQ/� n� q:
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Consider the map

f W .Sp/n D .Sp/n�q
� .Sp/q! .Sp/q

gq

�!Rq;

where the first map is a projection and the second one is the q–fold Cartesian power of
a nonconstant map gW Sp!R. All fibres f �1.y/ are of the form .Sp/n�q �Aq �

.Sp/n for some proper subset A ¨ Sp . This proves at least the equality

widthp.M=N IQ/D n� q

for M D .Sp/n .

We have not been able to remove the assumption n� p�2 in this theorem but suspect
that this can be done. Theorems 1.1 and 1.2 can be adapted to show widthp..S

p/n=R/�

n� 2 and widthp..S
p/n=Y q/� n

qC1
, but our bound is stronger.

The proofs of Theorems 1.4 and 1.5, which admit target manifolds of arbitrary codi-
mension q � 1, use a new technique that is inspired by the metric filling argument
sketched below. Theorem 1.5 is the first lower bound on widthp with p > 1 that has
been proven using this technique.

Recall the important and classic waist of the sphere inequality:

Theorem 1.6 Every (for simplicity smooth and generic) Rq –valued map f on the
unit n–sphere admits a point y 2 Rq such that the .n�q/–dimensional Hausdorff
volume satisfies

voln�q f
�1.y/� voln�q Sn�q;

where Sn�q � Sn is the .n�q/–dimensional equator in Sn .

Equality can happen, eg if f is the restriction of a linear projection RnC1!Rq .

Proof scheme (see [7, page 134; 10]) We proceed by contradiction and assume that
there is a smooth generic map f W Sn!Rq such that every fibre f �1.y/ satisfies

(1-4) voln�q f
�1.y/ < voln�q Sn�q:

Choose a generic and fine triangulation T of Rq . Fine means that the preimage of
every k –simplex of T with k > 0 has sufficiently small .n�qCk/–volume; this can
be achieved by subdivision. The sum of the preimages of the q–simplices represent the
fundamental class ŒSn� 2Hn.S

nIZ/. But, using certain metric filling inequalities for
.n�qCl/–chains in Sn , we can inductively construct a cone of ŒSn�. This contradicts
the nonvanishing of the fundamental class ŒSn�. Thus, inequality (1-4) must be false
for some y 2Rq .

Algebraic & Geometric Topology, Volume 19 (2019)
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We prove cohomological width inequalities by feeding this proof scheme with a new
cohomological filling inequality (see the filling lemma, Lemma 3.13). This executes a
plan that was indicated by Gromov in [9, Section 4.13D].

This paper is organised as follows: In Section 2 we will define cohomological restriction
kernels and their connection to cohomological width. The core ideas already appeared
in [9, Section 4.1] but only as rough sketches and we allow ourselves the captatio
benevolentiae and give rigorous statements and proofs. In particular we give a complete
proof that the waist functional only increases under uniform limits, which allows us to
reduce waist inequalities to the case of generic maps. This is important for our and
possible further treatment of the subject. In Section 3 we define the space cln�q.M / of
.n�q/–cycles in a manifold M such that every continuous map f W M !N between
manifolds induces a nontrivial element in the homology of cln�q.M /. We show
cohomological filling inequalities and use all of these ingredients to prove our waist
inequalities.

Acknowledgements This paper arose from my Augsburg dissertation. I want to thank
my advisor Bernhard Hanke, Mikhail Gromov, Larry Guth and the anonymous referee.

2 Cohomological width and restriction kernels

In this paper we will give lower bounds of widthk.X=Y / for various fixed manifolds
X and Y . In Section 3 the proofs of these are given for generic maps f W X ! Y ,
eg we will find a lower bound of widthk.f / for all smooth f which intersect some
smooth triangulation of Y transversally. In this section we will show that the same
lower bound will also hold for all continuous f (see Proposition 2.7). In other words
it is sufficient to prove waist inequalities just for (in some sense) generic maps. This is
motivated by a sentence in [9, page 417] about a quantity which “may only increase
under uniform limits of maps”. The aim of this section is to render this precise. The
reader may feel free to skip ahead to Section 3, where the core argument (the case of
generic f ) is presented.

Let H� denote Čech cohomology with coefficients in a ring R. The following important
observation motivates the rest of this section. For every continuous map f W X ! Y

and every y 2 Y , we have

(2-1) rkŒH�X !H�f �1y�D rkŒH�X= kerŒH�X !H�f �1y��:
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Therefore we want to systematically study kernels of restriction homomorphisms
H�X ! H�C for closed subsets C � X and this motivates [9, Section 4.1, ideal-
valued measures] the following:

Definition 2.1 (cohomological restriction kernel) Let f W X ! Y be a continuous
map. The map �f W P.Y /! I.H�X / from the power set of Y to the set of graded
ideals in H�X defined by

�f .C / WD kerŒH�X !H�.f �1.C //�

is called the cohomological restriction kernel of X . For the sake of legibility we will
denote �idX

by �X .

Remarks 2.2 (i) For any continuous map f W X!Y the cohomological restriction
kernel �f satisfies �f .Y /D 0 (normalisation), �f .C1/� �f .C2/ for C1 � C2

(monotonicity) and �f .∅/DH�X (fullness).

(ii) Equation (2-1) becomes

rkŒH�X !H�f �1y�D rkŒH�X=�f .y/�

and, similarly,

rkŒH kX !H kf �1y�D rkŒH kX=�f .y/\H kX �:

Using the specific features of Čech cohomology we will derive the following property
of cohomological restriction kernels:

Proposition 2.3 (continuity) Let X be a compact topological space and f W X ! Y

continuous. The cohomological restriction kernel �f satisfies continuity, ie for any
decreasing nested sequence of closed subsets Y � V1 � V2 � V3 � � � � we have

(2-2) �f

� 1\
iD1

Vi

�
D

1[
iD1

�f .Vi/:

We will reduce this proposition to the so-called continuity of Čech cohomology. In
order to state this property properly we need a little preparation.

Definition 2.4 A compact pair .X;A/ is a pair of spaces such that X is compact
and A � X is closed. In particular, A itself is compact. Let Z be a topological
space. A sequence of pairs .Xi ;Ai/ � .Z;Z/ for i 2 N together with inclusions
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�
j
i W .Xi ;Ai/ ,! .Xj ;Aj / whenever i < j is called a nested sequence of pairs in Z

and we denote it by ..Xi ;Ai/i2N ; �
j
i /. For such a nested sequence its intersection is

the topological pair .X;A/� .Z;Z/ defined by X WD
T

i Xi and A WD
T

i Ai .

We will only need the following very weak version of continuity:

Theorem 2.5 (continuity of Čech cohomology [4, Theorem 2.6]) Let .X;A/ be the
intersection of a nested sequence of compact pairs. Let �i W .X;A/ ,! .Xi ;Ai/ denote
the inclusion. Each u 2 LH q.X;A/ is of the form ��i ui for some i 2 N and some
ui 2

LH q.Xi ;Ai/.

Proof of Proposition 2.3 Let us prove the continuity of �f assuming we have proven
that of �X . The subsets .f �1Vi/i2N form a decreasing nested sequence of closed
subsets of X and the continuity of �X implies

�f

� 1\
iD1

Vi

�
D�X

�
f �1

1\
iD1

Vi

�
D�X

� 1\
iD1

f �1Vi

�
D

1[
iD1

�f .f
�1Vi/D

1[
iD1

�f .Vi/:

It remains to prove the continuity of �X . Let V denote the intersection
T1

iD1 Vi . The
only inclusion of (2-2) not following from monotonicity is

�f

� 1\
iD1

Vi

�
�

1[
iD1

�X .Vi/;

ie given a cohomology class z 2H qX satisfying zjV D 0 2H qV we have to show
the existence of an index i 2N such that zjVi D 0.

Consider the nested sequence of compact pairs given by .X;Vi/i2N . The intersection
of this nested sequence is precisely .X;V /. For every i 2 N naturality of the long
exact sequence yields the commutative diagram

H q.X;Vi/ //

��

H qX // H qVi

��

H q.X;V / // H qX // H qV

In the diagram above every arrow is given by restriction. Because the class z 2H qX

satisfies zjV D 0 2 H qV we can lift z to a class zz 2 H q.X;V /. By Theorem 2.5
there exists an index i 2N and a class ui 2H q.X;Vi/ such that ui j.X;V /D zz . We
get ui jX D z and the top horizontal sequence yields zjVi D 0.
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Remarks 2.6 (i) The continuity axiom fails if X is not compact. Let X WDB2n0D

fx 2 R2 j 0 < x2
1
C x2

2
� 1g and Vi WD

˚
x 2 X j x1 �

1
i

	
. The intersectionT

i Vi D fx 2 X j x1 � 0g is contractible but the generator of LH 1X survives
when restricted to any Vi .

(ii) Continuity also fails when the Vi are not required to be closed. Consider
X WD Œ0; 1� and Vi WD

�
0; 1

i

�
. We have H 0X D H 0Vi D Z but

T
i Vi D ∅,

hence H 0
T

i Vi D 0.

(iii) Most interestingly, continuity fails if one uses singular instead of Čech cohomol-
ogy. Consider the closed topologist’s sine curve,

S WD f.t; sin t/ j t > 0g„ ƒ‚ …
SC

[f0g � Œ�1; 1�„ ƒ‚ …
S0

�R2;

and Vi WD
˚
.x;y/ 2 S j x � 1

i

	
. The space S and all the Vi have exactly two

path components, hence H 0
singS DH 0

singVi DZ2 , but
T

i Vi is homeomorphic to
an interval, hence H 0

sing
T

i Vi DZ. Consider the cohomology class z 2H 0
singS

which takes the value 1 on the path component SC and 0 on S0 . We have that
z
ˇ̌ T

i Vi D 0 but zjVi ¤ 0 for all i .

Let X and Y be topological spaces and R a coefficient ring such that the rank of a
homomorphism between R–modules makes sense, eg Z, Z2 or Q.

Recall from Definition 1.3 that for every continuous map f W X ! Y the total or
degree k cohomological width of f is given by

width�.f / WDmax
y2Y

rkŒH�X !H�f �1y�;

widthk.f / WDmax
y2Y

rkŒH kX !H kf �1y�:

They give rise to the waist functionals width� and widthk , both of which are (not
necessarily in any sense continuous) maps C.X;Y /! N0 , where C.X;Y / is the
space of all continuous maps f W X ! Y .

Proposition 2.7 (upper semicontinuity of waists) Let X and Y be compact and Y

metrisable. If the Čech cohomology algebra H�X is finite-dimensional, the waist
functionals width� and widthk W C.X;Y /!N0 are upper semicontinuous with respect
to the compact–open topology.
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Proof We will just show the upper semicontinuity of width� . The corresponding
statement for widthk can be proven analogously. Endow Y with an arbitrary metric d .
The compact–open topology is identical to the metric topology induced from the
uniform norm. As C.X;Y / is a metric space, semicontinuity is equivalent to sequential
semicontinuity. So, given a sequence of functions fnW X ! Y uniformly converging
to f , we need to show that width�.fn/� ˛ for every n implies

width�.f /� ˛:

Hence, for every n there exists a point yn 2 Y such that

rkŒH�X !H�f �1
n yn�D rkŒH�X=�fn

.yn/�� ˛;

where �fn
is the cohomological restriction kernel of fn and we used Remark 2.2(ii).

Since Y is sequentially compact we can pass to a subsequence and assume that the yn

converge to some point y 2 Y and that the convergences fn! f and yn! y are
controlled by

d.yn;y/ <
1

8n2
; d.fn; f / <

1

8n2
:

We claim the following equality of subsets of X :

(2-3)
\
n>0

�
x 2X

ˇ̌̌
d.fn.x/;yn/�

1

4n2
C

1

n

�
D f �1.y/:

Let us first discuss the inclusion “�”: for every x2X with d.fn.x/;yn/>1=.4n2/C 1
n

for some n, the reverse triangle inequality implies

d.f .x/;y/� d.fn.x/;yn/� d.fn.x/; f .x//� d.yn;y/

>
1

4n2
C

1

n
�

1

8n2
�

1

8n2
D

1

n
> 0:

Similarly the inclusion “�” can be shown as follows: if x 2X satisfies d.fn.x/;yn/�

1=.4n2/C 1
n

for every n, we can conclude

d.f .x/;y/� d.f .x/; fn.x//C d.fn.x/;yn/C d.yn;y/

<
1

8n2
C

1

4n2
C

1

n
C

1

8n2
! 0

and hence f .x/D y . This proves (2-3).
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Moreover, we claim that the sets on the left-hand side of (2-3) are nested, ie we have

(2-4)
�

x 2X
ˇ̌̌
d.fn.x/;yn/�

1

4n2
C

1

n

�
�

�
x 2X

ˇ̌̌
d.fnC1.x/;ynC1/�

1

4.nC 1/2
C

1

nC 1

�
:

If x 2X is an element of the right-hand side, we have

d.fn.x/;yn/� d.fn.x/; fnC1.x//C d.fnC1.x/;ynC1/C d.ynC1;yn/

�
1

4n2
C

1

4.nC 1/2
C

1

nC 1
C

1

4n2
�

1

4n2
C

1

n
;

proving (2-4).

The continuity axiom (which holds by Proposition 2.3 since X is compact) implies[
n>0

�X

�
x 2X

ˇ̌̌
d.fn.x/;yn/�

1

4n2
C

1

n

�
D �X f

�1.y/D �f .y/:

The left-hand side is an increasing sequence of ideals in H�X and, since the latter is
finitely generated (as an R–module), there exists an n> 0 such that

�X

�
x 2X

ˇ̌̌
d.fn.x/;yn/ >

1

4n2
C

1

n

�
D �f .y/:

Monotonicity yields
�fn
.yn/� �f .y/;

proving
rkŒH�X=�f .y/�� rkŒH�X=�fn

.yn/�� ˛:

Remarks 2.8 (i) The waist functionals fail to be lower semicontinuous. Consider
the embedding gW S2 ,!D3 and the sequence fnW S

2 ,!D3 shrinking g to a point,
eg fn.x/D g.x/=n. This sequence uniformly converges to the constant map f with
value 0 2D3 but width2.fn/D 0 whereas width2.f /D 1.

(ii) One question which immediately arises about the definition of cohomological
width of a map f W X ! Y is why we defined it as

widthk.f /Dmax
y2Y

rkŒH kX !H kf �1y�;

where we could have equally been interested in

wk.f / WDmax
y2Y

rk H kf �1y:
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However this functional wk W C.X;Y /!N0 fails to be upper semicontinuous. Consider
the composition

gW S2 ,!D3
! Œ�1; 1�;

where the first map is the standard embedding and the second map is the restriction of a
linear projection, eg onto the x–axis. Again we consider the family fn.x/ WD g.x/=n,
which converges uniformly to f , the constant map with value 0 2 Œ0; 1�. All fibres
of fn are points or circles, so we have w1.fn/D 1, but the only nonempty fibre of f
is S2 , hence w1.f /D 0.

Nevertheless we clearly have wk.f /�widthk.f /, so any lower bound for widthk.f /

is also one for wk.f /.

(iii) The proposition above fails if X is noncompact. Consider again X D B2 n 0D

fx 2R2 j 0< x2
1
Cx2

2
� 1g and the compositions

B2
n 0

pr1
�!R

f"
�!R;

where the first map is the projection onto the first coordinate and

f"W x 7!

�
0 for x � ";

x� " for x > ";

for every " 2 R. The maps f1=n ı pr1 converge uniformly to f0 ı pr1 and satisfy
width1.f1=n ı pr1/D 1, whereas we have width1.f0 ı pr1/D 0.

(iv) Upper semicontinuity also fails if cohomological width is not defined via Čech
but singular cohomology. Define

widthsing
0
.f / WDmax

y2Y
rkŒH 0

singX !H 0
singf

�1y�

and consider again the closed topologist’s sine curve

S WD f.t; sin t/ j t > 0g„ ƒ‚ …
SC

[f0g � Œ�1; 1�„ ƒ‚ …
S0

�R2

together with the compositions

S
pr1
�!R

f"
�!R:

They satisfy
widthsing

0
.f1=n ı pr1/D 2

but widthsing
0
.f0 ı pr1/D 1.
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(v) The proof of Proposition 2.7 still shows the upper semicontinuity of widthk if
only H kX is finitely generated and that of width� if H�X is finitely generated as an
R–algebra since all finitely generated graded commutative algebras over Noetherian
base rings are Noetherian.

On the other hand there must be some finiteness condition on H�X. For X WD

f0g [
˚

1
n
j n 2 N

	
� R, the cohomology group H 0X is not finitely generated. We

have width0.f1=n/D1 for all n 2N but their limit satisfies width0.f0/D 1.

3 Filling argument

Prior to proving cohomological waist inequalities we need some preliminaries. We will
deal with various kinds of manifolds, such as smooth manifolds, topological manifolds
and manifolds with corners (see [12]). If any specifier is missing, by a manifold
we mean a smooth manifold. An example of a smooth manifold with corners up to
codimension k is the standard k –simplex �k . Another source of examples will given
in the following proposition.

Definition 3.1 (smooth, embedded simplices) Let N q be a manifold. A smooth,
embedded k –simplex � in N is a smooth map � W �k !N such that there exists an
open neighbourhood �k � U �Rk and a smooth extension z� W U !N which is an
embedding.

Definition 3.2 (stratum transversality) Let M n and N q be manifolds without bound-
ary, f W M !N smooth and � W �k !N a smooth, embedded simplex. We say that
f intersects � stratum transversally if f intersects the interior of � transversally
and all of its faces stratum transversally. The map f intersects a 0–simplex stratum
transversally if and only if its image point is a regular value of f .

Proposition 3.3 (generic preimages of simplices) Let M n and N q be closed, ori-
ented manifolds, � W �k !N a smooth, embedded simplex and f W M !N a smooth
map intersecting � stratum transversally.

The preimage f �1�.�k/ is an oriented topological .n�qCk/–manifold with bound-
ary

@f �1�.�k/D f �1�.@�k/:
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Proof Theorem 3 in [14] shows that f �1�.�k/ is a smooth manifold with corners
up to codimension k , hence it is a topological manifold with boundary. Note that
most of the technical assumptions are met since M and N do not have boundary.
Moreover the theorem states that the codimension l corner points of f �1�.�k/

are precisely the preimages of codimension l corner points of �k ; in particular,
@f �1�.�k/D f �1�.@�k/.

Mind the following notational convention:

Notation 3.4 In the situation of Proposition 3.3 we frequently denote the preimage of
a simplex � W �k !N by

F� WD f
�1�.�k/

and, similarly,
F@� WD f

�1�.@�k/D @F� :

We will often use this notation without explicitly mentioning it.

Definition 3.5 (smooth triangulations) Let N q be a smooth manifold. A smooth
triangulation T D .K; '/ of N consists of a finite simplicial complex K together with
a homeomorphism 'W jKj !N such that the restriction of ' to any simplex yields
a smooth, embedded simplex in N . The set of all of these smooth k –simplices of T
shall be denoted by Tk . We will often omit the specification smooth and simply talk
about a triangulation and its simplices.

Let R be a coefficient ring. If N q is R–oriented a triangulation T is called R–oriented
if and only if the sum of the elements in Tq , ie the top-dimensional simplices, represents
the R–oriented fundamental class of N q .

Any smooth manifold N admits a smooth triangulation [13, Theorem 10.6].

Proposition 3.6 Let f W M n ! N q be a smooth map between closed R–oriented
manifolds, and T an R–oriented triangulation of N such that f intersects all the
simplices � 2 Tq stratum transversally. For k D 0; : : : ; q we can inductively assign
singular chains c� 2Cn�qCk.F� IR/ to every � 2 Tk such that the following properties
hold :

(i) For � 2 T0 the chain c� 2 Cn�q.F� IR/ represents the (correctly oriented )
fundamental class of F� .
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(ii) For 1� k � q and � 2 Tk , we can view the sum

(3-1)
kX

iD0

.�1/ic@i�

as an element of Cn�qCk�1.@F� IR/ and this represents the (correctly oriented )
fundamental class of @F� with the boundary orientation. The element c� 2

Cn�qCk.F� IR/ satisfies

(3-2) @c� D

kX
iD0

.�1/ic@i�

as an equation in Cn�qCk�1.F� IR/ and c� represents the (correctly oriented )
relative fundamental class in Hn�qCk.F� ; @F� IR/.

(iii) The sum

(3-3)
X
�2Tq

c� 2 Cn.M IR/

represents the (correctly oriented ) fundamental class of M.

In Figure 1, on the right-hand side cŒu;w� is a cylinder and both cŒu;v� and cŒv;w� are
pairs of pants. The chain cŒu;v;w� is a solid torus. The bold line is mapped to the

dimf �1Œu; v; w�D 3

cŒu;v;w�

cŒu;w�

f

w

n� q D 1; k D 2

u v

Œu; v; w�

cu

Œv; w�

dimf �1Œv; w�

n� q D 1; k D 1

f

cwcv

cŒv;w�

Figure 1: Example for Proposition 3.6.
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barycentre of Œu; v; w� and the farther a point in cŒu;v;w� is from this core line, the
closer it is mapped to @Œu; v; w�.

Remark 3.7 Technically, the summands appearing in the expressions (3-1), (3-2)
and (3-3) are elements of different chain groups Cn�qCk�1F@i� (for varying i )
or CnF� (for varying � ). In order to make sense of the sums and equations, we
view these summands as chains in the chain group of the larger space F@� or M.
For the sake of legibility we omit all the inclusions and their induced maps on chain
groups and ask the reader to interpret such equations of cycles in a sensible way. This
convention holds for the rest of this paper.

Proof of Proposition 3.6 Proposition 3.3 shows that for all � 2 Tk the preimage F�

is an oriented topological .n�qCk/–manifold with boundary F@� . Hence the notion
of fundamental classes makes sense. Bear in mind that both F� and @F� may be empty
or have several components.

(i) For every � 2 T0 the preimage F� is a closed oriented .n�q/–dimensional
submanifold of M and it is easy to arrange (i). We proceed by induction over k and
assume that we have constructed chains c� for all simplices � 2 Tl of dimension l < k .

(ii) A standard calculation shows

@

kX
iD0

.�1/ic@i� D

kX
iD0

.�1/i@c@i� D

kX
iD0

.�1/i
k�1X
jD0

.�1/j c@j @i� D 0:

Hence
Pk

iD0.�1/ic@i� defines a homology class in Hn�qCk�1.@F� /. For every
0� j � k the induced maps of the inclusions satisfy

Hn�qCk�1.@F� /!Hn�qCk�1

�
@F� ;

[
i¤j

F@i�

�
;

� kX
iD0

.�1/ic@i�

�
7! Œ.�1/j c@j� �:

For every p 2 F@j� the image of these classes in Hn�qCk�1.F� ;F� n p/ is the
correct local orientation of F@j� in the point p , where F@j� � @F� is oriented as the
boundary of F� . This proves that

Pk
iD0.�1/ic@i� represents the (correctly oriented)

fundamental class of F@� .

The fundamental class Œc� � 2Hn�qCk.F� ; @F� / satisfies

(3-4) @W Hn�qCk.F� ; @F� /!Hn�qCk�1.@F� /; Œc� � 7!

� kX
iD0

.�1/ic@i�

�
;

and the relative cycle c� can be modified so as to achieve (3-2) on the chain level.
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(iii) We have

(3-5) @
X
�2Tq

c� D
X
�2Tq

qX
iD0

.�1/ic@i� D 0

since every .q�1/–simplex is the face of exactly two q–simplices and inherits different
orientations from them. Hence

P
�2Tq

c� defines a homology class in HnM. Again,
for every � 2 Tq , the inclusion .M;∅/!

�
M;

S
�2T n� F�

�
satisfies

Hn.M /!Hn

�
M;

[
�2T n�

F�

�
;

� X
�2Tq

c�

�
7! c� ;

and, for every p 2 F� arbitrary, the image of these classes in Hn.M;M np/ yields
the correct local orientation of M in p .

The rest of this section is devoted to the formulation and proof of Proposition 3.9,
a genericity result which for any map f W M ! N guarantees the existence of a
triangulation of the target manifold N which is (in a precise sense) generic and fine.

Repetition 3.8 Let M and N be manifolds without boundary. We will denote the
space of all continuous maps f W M !N by C 0.M;N / and it shall be equipped with
the compact–open topology. If M is compact, the subspace topology on C1.M;N /�

C 0.M;N / is coarser than the weak C1–topology.

Proposition 3.9 Let M and N be two closed manifolds. For every smooth map
f W M!N and every open cover UD .Ui/i2I of N , there exists a smooth triangulation
T of N and a sequence of smooth maps fnW M !N uniformly converging to f such
that the following properties hold :

(i) Every map fn intersects every simplex � 2 Tk stratum transversally.

(ii) For every � 2 Tk there exists an index i 2 I such that �.�k/� Ui .

Proof Choose a smooth triangulation T D .K; '/ of N and consider the preimage
'�1U WD .'�1Ui/i2I which is an open cover of jKj. Since N is compact this open
cover has a Lebesgue number with respect to some standard metric on jKj. After
barycentric subdivision we can assume that every simplex of jKj is contained in
some f �1Ui , ie its image is contained in Ui .

For every smooth, embedded simplex � W �k !N the subset

ff 2 C1.M;N / j f t im �g � C1.M;N /
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is a residual in the weak C1–topology, ie it is the countable intersection of open and
dense subsets [11, Transversality Theorem 2.1]. Moreover the Baire category theorem
applies to the weak C1–topology, ie every residual set is dense. The set

fg 2 C1.M;N / j every simplex intersects g stratum transversallyg

D

\
� simplex of T

fg 2 C1.M;N / j � intersects g stratum transversallyg

is the countable intersection of residual sets, hence itself residual and therefore dense.
Since the compact–open topology is coarser than the weak C1–topology, the claim
follows.

For the rest of this paper N q always denotes a smooth q–manifold. At the beginning
we allow N to be disconnected, to have nonempty boundary or to be noncompact.
Let us recall Theorem 1.4, which will hold for this general class of target manifolds.
We will quickly see that we can restrict ourselves to the case where N is closed and
connected.

Theorem 1.4 Every continuous map f W T n!N q admits a point y 2N q such that
the rank of the restriction homomorphism satisfies

rkŒH 1.T n
IZ/!H 1.f �1.y/IZ/�� n� q:

Remarks 3.10 (i) This inequality is nonvacuous only if n> q , which we will tacitly
assume. Furthermore, it shows width1.T

n=N /� n� q .

(ii) Let us assume for the moment that we have proven the theorem for closed con-
nected N . We will explain how the theorem extends to manifolds which are possibly
disconnected, noncompact or have nonempty boundary. Since T n is connected we can
restrict the target of f to the component which is hit. If N has boundary, consider the
inclusion N ,!D into the double D of N . Since D has no boundary we can apply
the theorem to the composition

T n f
�!N ,!D;

yielding the theorem for N .

If N is noncompact, we choose a sequence N1 �N2 � � � � �N such that each Ni is
a smooth compact codimension 0 submanifold with boundary and

S1
iD1 int Ni DN

(such an exhaustion exists by a strong form of the Whitney embedding theorem, where
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every — even noncompact — manifold can be embedded into some RN with closed
image). Since f .T n/ is compact it is contained in Ni for some i � 0, ie we can
view f as a map T n!Ni , and we already deduced the theorem for compact manifolds
with boundary. For the rest of this paper we will assume the target manifold N to be
closed and connected.

The theorem will essentially follow from the following:

Proposition 3.11 Let f W T n!N q be a smooth map where N is a closed manifold
together with a smooth triangulation T the simplices of which intersect f stratum
transversally. Then there exists a simplex � 2 Tk such that the preimage F� WD

f �1�.�k/ satisfies

rkŒH 1.T n
IZ/!H 1.F� IZ/�� n� q:

Proof of Theorem 1.4 assuming Proposition 3.11 Assume there is a continuous
map f W T n!N q such that width1.f / < n� q . Recall the cohomological restriction
kernel �f from Definition 2.1 given by

�f .A/ WD kerŒH�T n
!H�f �1A�

for a subset A�N . Since T n is compact, �f satisfies the continuity axiom.

Remark 2.2(ii) implies

rkŒH 1T n
!H 1f �1y�D rkŒH 1T n=�f .y/\H 1T n�

for every y 2N and therefore the condition width1.f / < n� q translates into

rkŒH 1T n=�f .y/\H 1T n� < n� q:

Choose an arbitrary metric on N . With respect to this metric we have
1\

mD1

B
�
y;

1

m

�
D fyg:

Continuity of �f yields

1[
mD1

�f

�
B
�
y;

1

m

��
D �f .y/:

Since H�T n is finitely generated there exists an m.y/� 0 depending on y such that

(3-6) �f

�
B
�
y;

1

m.y/

��
D �f .y/:
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For every subset A� f �1B.y; 1=m.y// we have

(3-7) rkŒH 1T n
!H 1A�� rk

h
H 1T n

!H 1
�
f �1B

�
y;

1

m.y/

��i
� rk

h
H 1T n=�f

�
B
�
y;

1

m.y/

��
\H 1T n

i
D rkŒH 1T n=�f .y/\H 1T n� < n� q:

Every continuous map f can be uniformly approximated by smooth maps gm . Since
M and N are compact and metrisable, the upper semicontinuity of width1 (see
Proposition 2.7) implies width.gm/� width.f / < n� q for m� 0. So without loss
of generality we can assume that f itself is smooth.

Since N is compact we can choose finitely many yi 2N so that
�
B
�
yi ; 1=.2m.yi//

��
i

is an open cover of N . Applying Proposition 3.9 to the smooth map f W T n!N q and
this finite open cover yields a smooth triangulation T of N and a sequence of smooth
maps fmW M !N uniformly converging to f such that the following two properties
hold:

(i) Every map fm intersects every simplex � 2 Tk stratum transversally.

(ii) For every simplex � 2 Tk there exists an i (which depends on � ) such that

(3-8) �.�k/� B
�
yi ;

1

2m.yi/

�
:

Without loss of generality we can assume that the uniform convergence fm! f is
controlled by

(3-9) kfm�f k1 <
1

2m
:

Let M WDmaxi m.yi/. For any � 2 Tk we have

f �1
M �.�k/� f �1

M B
�
yi ;

1

2m.yi/

�
(for some i , by (3-8))

� f �1B
�
yi ;

1

m.yi/

�
(by (3-9)).

Estimate (3-7) shows that fM contradicts Proposition 3.11.

Remark 3.12 In the future, whenever we want to prove a lower bound for cohomo-
logical waist we will reduce it to the proof of a statement similar to Proposition 3.11.
We will not carry out this reduction in detail anymore.
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Recall that Theorem 1.4, which we are trying to prove, is about a map f W T n!N q

and its fibres Fy WD f
�1y . Initially we will apply the following statements to the

inclusions of the fibres fy W Fy ,! T n .

Lemma 3.13 (filling lemma) Let K be a CW complex, kW K! T n a continuous
map and rk H 1.kIZ/ < n� q . There exists a relative CW complex .Fill.k/;K/ and
an extension fill.k/W Fill.k/! T n such that the diagram

Fill.k/
fill.k/

##

K
k

//
?�
�

OO

T n

commutes and the following properties hold :

(i) Up to homotopy, Fill.k/ is the disjoint sum of a number of tori , one copy for
each component of K , ie

Fill.k/' T r1qT r2q� � � ;

and the dimensions satisfy ri < n�q . In particular , H�n�q.Fill.k/IG/D 0 and
H�n�q.�IG/D 0 for any abelian coefficient group G.

(ii) .Fill.k/;K/ is homologically 1–connected.

(iii) rk H 1.fill.k/IZ/D rk H 1.kIZ/.

Before we prove the lemma we need an analysis of the discrepancy between cohomology
and homology.

Remarks 3.14 (i) For every continuous map f W X ! Y we have rk H1.f IZ/D

rk H 1.f IZ/.

(ii) If f induces an isomorphism on H1 then it induces an isomorphism on H 1

(both with coefficients in Z).

Proof This follows from the universal coefficient theorem.

We will frequently change our point of view between cohomology and homology and
we will do so without further reference to the remark above.

Notation 3.15 From now on we will have to introduce a lot of spaces, all of which
come with reference maps to T n . As with fy W Fy ! T n these reference maps are
denoted by the lowercase letters corresponding to the uppercase letters representing
the spaces.
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Proof of Lemma 3.13 Let us first discuss the case where K is connected and let
r WD rk H 1.kIZ/. By the naturality of the Hurewicz homomorphism the following
diagram commutes:

(3-10)

�1K //

����

�1T n D Zn

Š

��

H1.KIZ/ // H1.T
nIZ/D Zn

This proves that im�1k � Zn is also a rank r subgroup. Consider a covering
T r�Rn�r!T n corresponding to this subgroup. There exists a lift zkW K!T r�Rn�r

such that

T r �Rn�r

��

K

zk

99

k

// T n

commutes. On the level of fundamental groups this turns into the diagram

�1.T
r �Rn�r /� _

��

�1K

�1
zk

77

�1k

// �1T n

where (by construction of the covering) the vertical arrow is the inclusion im�1k �Zn .
Thus �1

zk is obtained from �1k by restricting the target to im�1k ; in particular, �1
zk is

surjective. Using the naturality of the Hurewicz homomorphism similar to (3-10), we
conclude that H1.zkIZ/ is surjective.

We want to turn zk into the inclusion of relative CW complexes. Substitute T r �Rn�r

by the mapping cylinder Mzk and choose a relative CW approximation .Fill.k/;K/ of
.Mzk ;K/, ie there is a weak homotopy equivalence Fill.k/ '�!Mzk restricting to the
identity on K . Define � and fill.k/ as in the diagram

Fill.k/

fill.k/

%%
'
// Mzk

// T n

K
Q1

�

cc OO

k

==
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The induced map H�.�IZ/ is an isomorphism for � D 0 and surjective for � D 1

since H�.zkIZ/ has these properties. This implies that .Fill.k/;K/ is homologically 1–
connected. The surjectivity of H1.�IZ/ also implies im H1.fill.k/IZ/D im H1.kIZ/

and, together with Remark 3.14(i), we get property (iii). If K is not connected, we can
apply the construction above to all of its components.

Remark 3.16 In the lemma above it is important to assume that the rank rk H 1.kIZ/

is measured with coefficients in Z. This is due to the usage of the Hurewicz theorem and
covering space theory. There is no simple analogue to the filling lemma with coefficients
in Z2 since eg the double cover map kW S1 ! S1 satisfies rk H 1.kIZ2/ D 0 but
cannot be filled.

Actually we could finish the proof of Theorem 1.4 right now but we want to introduce
the language of cycle spaces, which offer a more conceptual viewpoint.

In the following part, two kinds of chain complexes will appear, namely singular and
the simplicial chain complexes and it should always be clear from the context which
one we mean depending on whether we apply it to topological spaces or simplicial
sets. Nevertheless, in order to avoid confusion we will consistently denote the singular
chain complex by C� and the simplicial chain complex by C� .

Let f W M n!N q be a smooth map between closed R–oriented manifolds, and � a
smooth embedded k –simplex in N which intersects f stratum transversally. Recall
Proposition 3.6, by which we can assign to every vertex v of � an .n�q/–cycle cv

in M and to any l –dimensional face � of � an .n�qCl/–chain c� such that we have

@c� D

lX
iD0

c@i� :

This motivates the following:

Definition 3.17 (see [9, Section 2.2]) Let .D�; @/ be a chain complex of abelian
groups with differential @nW Dn ! Dn�1 . The space of .n�q/–cycles in D� is a
simplicial set, denoted by cln�q.D�; @/, the level sets of which are given by

.cln�q.D�; @//k WD .cln�qD�/k WD Hom.C��Œk�;D�C.n�q//:

Some explanations are in order:

(i) �Œk� denotes the k –dimensional standard simplex in the category sSet.
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(ii) C��Œk� denotes its normalised chain complex, ie the chain groups are generated
only by the nondegenerate simplices of �Œk�.

(iii) The Hom set is meant as the set of morphisms of chain complexes of abelian
groups.

The right-hand side defines a contravariant functor �! Set where � is the ordinal
number category. This turns cln�qD� into a simplicial set.

The main example of a chain complex D� to which we want to apply the construction
above is the singular chain complex of the source manifold, eg a torus.

Remarks 3.18 (i) Consider the unique nondegenerate k –simplex ck 2 �Œk�k �

Ck�Œk�. For every � 2 .cn�qD�/k DHom.C��Œk�;D�C.n�q// we will call the image
of ck under � the top chain of � and denote it by evk � 2D.n�q/Ck . Sometimes it
will be convenient to abbreviate it by y� .

The maps ev� extend and fit together such that

ev�W C� cln�qD�!D�C.n�q/

is a morphism of chain complexes.

(ii) We are now able to give a more intuitive description of the simplices of cln�qD� .
The 0–simplices c 2 .cln�qD�/0 are precisely given by their top chains, which are
.n�q/–cycles c 2 ker @n�q �Dn�q . A 1–simplex c01 2 .cln�qD�/1 is given by its
two faces @0c01 DW c0 2 .cln�1D�/0 and @1c01 DW c1 2 .cln�qD�/0 and its top chain
yc01 2D.n�q/C1 satisfying

(3-11) @yc01 D yc0� yc1:

Thus a 1–simplex c01 2 .cln�qD�/1 consists of two homologous chains yc0; yc1 2

ker @n�q �Dn�q together with a choice of filling yc01 2D.n�q/C1 satisfying (3-11). A
2–simplex c012 2 .cln�qD�/2 consists of its three 1–dimensional faces c12; c02; c01 2

.cln�qD�/1 whose respective 0–dimensional faces agree and a filling yc012 2D.n�q/C2

satisfying

(3-12) @yc012 D yc12� yc02Cyc01:

In particular, for such an 2–simplex c012 to exist, the right-hand side of (3-12) needs
to be an .n�qC1/–boundary in D� .
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Generally, the following lemma tells how kC1 simplices 'i 2 .cln�qD�/k can be glued
together to form the faces of a simplex � 2 .cln�qD�/kC1 if the obvious homological
restriction in D� vanishes.

Lemma 3.19 (gluing lemma) Let '0; : : : ; 'kC1 2 .cln�qD�/k such that

@i'j D @j�1'i for 0� i < j � kC 1:

If there exists an element x� 2D.n�q/CkC1 with

@x� D

kC1X
iD0

.�1/i y'i ;

there is a unique � 2 .cln�qD�/kC1 satisfying y� D x� and @i� D 'i .

Proof A proof is given in [1, Lemma 4.4.4].

Construction 3.20 Recall Proposition 3.6. Let f W M n ! N q be a smooth map
between closed R–oriented manifolds, T an R–oriented triangulation of N such that
f intersects all the simplices � 2 Tq stratum transversally. We can assign to any � 2 Tk

a singular chain c� 2 Cn�qCk.F� IR/ such that the following properties hold:

(i) For � 2 T0 the chain c� 2 Cn�q.F� IR/ represents the (correctly oriented)
fundamental class of F� .

(ii) For 1� k � q and � 2 Tk we have

@c� D

kX
iD0

.�1/ic@i�

as an equation in Cn�qCk�1.F� IR/ and c� represents the (correctly oriented)
relative fundamental class in Hn�qCk.F� ; @F� IR/.

(iii) The sum X
�2Tq

c� 2 Cn.M IR/

represents the (correctly oriented) fundamental class of M.

For every � 2 T0 we can use Remark 3.18(ii) to turn the cycles c� into 0–simplices
z� 2 .cln�q C�.F� IR//0 satisfying yz� D c� .
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For higher-dimensional � 2 Tk one can inductively use the gluing lemma, Lemma 3.19,
to construct elements z� 2 .cln�q C�.F� IR//k satisfying

(3-13) @iz� D z@i� and yz� D c� :

The simplicial chain

Z.f; T / WD
X
�2Tq

z�

can be viewed as an element in Cq cln�q C�.M IR/ and it satisfies @Z.f; T / D 0.
Since

ev�W C� cln�q C�.M IR/!D�C.n�q/

is a morphism of chain complexes and maps Z.f; T / to
P
�2Tq

c� we conclude that
ŒZ.f; T /�¤ 0 in Hq cln�q C�.M IR/.

Comment 3.21 (i) There is an analytic analogue to the construction above. Let
M n �RN be a smooth closed embedded manifold, Ik.M / be the topological space
of integral currents with the flat topology and Zk.M /� Ik.M / the subspace of cycles.
Almgren [2] proved that the homotopy groups of the latter are given by

�iZk.M /ŠHiCk.M /:

A priori the homotopy groups of a space do not determine its homotopy type since
it could have nonzero k –invariants, but in the case of Zk.M / the topological group
completion theorem implies that the k –invariants of every topological abelian monoid
vanish. In particular we get

(3-14) Zk.M /'

n�kY
iD0

K.HiCk.M /; i/:

One reasonable corollary from this is �0Zk.M / D HkM. Another consequence is
that

(3-15) �qZn�q.M /ŠHn.M /Š Z

with the generator given as follows. Let f W M �RN !Rq be a generic projection.
For any y 2Rq the preimage f �1.q/ defines an .n�q/–dimensional integral cycle
and the map

f̂ W R
q
!Zn�q.M /; y 7! f �1.y/;
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is continuous and maps everything outside of imf to the zero cycle. Hence it deter-
mines an element Œ f̂ � 2 �qZn�q.M / which is independent of f and corresponds
exactly to the fundamental class under the correspondence (3-15).

R1

y

f f̂

T 2

Figure 2: Example for Comment 3.21.

It is an important observation — especially when proving waist inequalities — that
every map f W M n!Rq yields a homotopically nontrivial map f̂ W R

q!Zn�q.M /.
There are different ways to formalise the notion of spaces of cycles. For obvious
reasons we chose a definition with the flavour of algebraic topology.

(ii) Of course, one wonders what is the homotopy type of cln�qD� for a given
chain complex D� . Up to an index shift, cln�q is just the Dold–Kan correspondence
between chain complexes and simplicial abelian groups and from that we get, in analogy
to (3-14),

cln�qD� '

1Y
iD0

K.Hn�qCi.D�/; i/:

(iii) In the construction above the cycle Z.f; T / in cln�q C�.M IR/ is called the
canonical cycle associated to f and T and ŒZ.f I T /� 2 Hq cln�q C�.M IR/ the
canonical homology class. The cycle Z.f; T / depends heavily on the map f and the
triangulation T , whereas one can show that ŒZ.f I T /� is independent of these choices.
We could define the canonical homology class far easier as being represented by the
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q–simplex given by the diagram

0 //

��

Cq�Œq� //

�q

��

� � � // C0�Œq� //

�0

��

0

��

CnC1M // CnM // � � � // Cn�qM // D.n�q/�1

where �q maps cq to a fundamental cycle of M and all other ci vanish. This cycle
arises from the geometric construction above if there exists one large q–simplex
containing imf .

However, this cycle does not incorporate the map f and the fine triangulation T in
such a way, which will enable us to execute the proof of Proposition 3.11, which we
restate for convenience.

Proposition 3.11 Let f W T n!N q be a smooth map where N is a closed manifold
together with a smooth triangulation T the simplices of which intersect f stratum
transversally. Then there exists a simplex � 2 Tk such that the inclusion f� W F� WD
f �1�.�k/ ,! T n satisfies

(3-16) rk H 1.f� IZ/� n� q:

In the following proof there will be a certain unpleasant mixture of coefficients between
Z and Z2 . After all, this could not have been totally avoided since we do not want
to assume the target manifold N to be orientable, which introduces Z2 coefficients
at some places. On the other hand, as explained in Remark 3.16(iii), the usage of
Lemma 3.13 forces us to interpret some expressions, eg (3-16), with coefficients in Z.

Proof We proceed by contradiction and assume that there exist N , f and T just as
in Proposition 3.11 above but violating estimate (3-16) for every � 2 Tk . Recall the
simplices z� 2 .cln�q C�.F� IZ2//k and the canonical cycle

Z.f I T / WD
X
�2Tq

z� 2 Cq cln�q C�.T
n
IZ2/

from Construction 3.20.

We will build the cone of Z inside cln�q C�.T
nIZ2/. For every � 2 Tk we will

construct simplices w� 2 .cln�q C�.T
nIZ2//kC1 satisfying

(3-17) @iw� D

�
w@i� if 0� i � k;

z� if i D kC 1:

For � 2 T0 and i D 0, equation (3-17) shall be interpreted as @0w� D w@0� D 0.

Algebraic & Geometric Topology, Volume 19 (2019)



2882 Meru Alagalingam

z�

w�

w@i�

z@i�

Figure 3: Illustration for the proof of Proposition 3.11.

If we have constructed such simplices w� , the standard cone calculation shows

@
X
�2Tq

w� D .�1/qC1Z.f I T /;

contradicting Construction 3.20, in which we have seen that ŒZ.f I T /� ¤ 0 in
Hq cln�q C�.T

nIZ2/. So we are only left with constructing simplices w� satisfying
equation (3-17).

Recall Notation 3.15, that every map from a topological space to T n is denoted by
the lowercase letter corresponding to the uppercase letter representing the space. For
every 0 � k � q and � 2 Tk , we will inductively construct triples .L� ;K� ;F� / of
topological spaces and simplices w� 2 .cln�qC�.L� IZ2//kC1 such that the following
properties hold:

(i) .L� ;F� / is a homologically 1–connected relative CW complex and we write

(3-18) L� D F� [ e� ;

where e� is an abbreviation for all the cells which we need to attach to F� in
order to obtain L� .
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(ii) There are canonical inclusions as in the diagram

L@i�
� � //
� q

""

L�

K@i�
� � //

?�

OO

K�

?�

OO

F@i�
� � //

?�

OO

F�
?�

OO

(iii) There exist extensions such that the diagram

L�

l�

!!

K�
k�
//

?�

OO

T n

F�

f�

==

?�

OO

commutes.

(iv) rk H 1.l� IZ/D rk H 1.k� IZ/D rk H 1.f� IZ/ < n� q .

(v) We have H�n�q.L� IZ2/D 0 and, in particular, H�.K� IZ2/!H�.L� IZ2/

vanishes for � � n� q .

(vi) The simplices w� satisfy (3-17) as a relation of simplices cln�q C�.L� IZ2/.
Naturally it can also be seen as a relation in cln�q C�.T

nIZ2/.

In the base case k D 0 we can set K� WDF� . By assumption we have rk H 1.f� IZ/ <

n� q and we can apply Lemma 3.13 to it. We get a relative CW complex .L� ;F� /
and an extension

(3-19)

L�

l�

!!

K�

?�

OO

// T n

F�

id
f�

==
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wv

� D Œv; w�

f

F�

Lv

Lw

K� DK0
�

n� q D 1; k D 1

Figure 4: Illustration for the proof of Proposition 3.11.

satisfying (iv). Consider the cycle yz� 2Cn�q.F� IZ/ and its image under the inclusion
F� DK� ,!L� . Since Hn�q.L� IZ2/D 0 there exists a (suggestively denoted) chain
yw� 2 Cn�qC1.L� IZ2/ such that

(3-20) @ yw� D yz� :

Using the gluing lemma, Lemma 3.19, we get a simplex w� 2 .cln�qC�.L� IZ2//1

satisfying (3-17) for k D 0.

Assume K� , L� and w� have already been constructed for all simplices � of dimension
strictly less than k � 1.

For � 2 Tk and 0� i < k we inductively define spaces and maps k
.i/
� W K

.i/
� ! T n by

setting K
.�1/
� WD F� , k

.�1/
� WD f� and

K
.i�1/
� [

S
i–dimensional faces � of � e� DWK

.i/
�

k
.i/
�

""

K
.i�1/
�

k
.i�1/
�

//

?�

OO

T n

where we used the notation introduced in (3-18). This is well defined since the targets
of the attaching maps of e� are F� , which canonically are subspaces of F� �K

.i�1/
�

for every i .
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We have a homeomorphismW
i–dimensional faces � of � .L@i�=F@i� /

Š
�!K.i/

� =K
.i�1/
� :

Since the pairs .L@i� ;F@i� / are homologically 1–connected, we conclude

H�.K
.i/
� ;K

.i�1/
� /Š

M
i–dimensional faces � of �

H�.L@i� ;F@i� /D 0

for � D 0; 1, proving that the .K.i/
� ;K

.i�1/
� / are homologically 1–connected.

Let K� WDK
.k�1/
� and k� WD k

.k�1/
� . Since all the .K.i/

� ;K
.i�1/
� / are homologically

1–connected, the same holds for .K� ;F� /. In particular, the inclusion F� ,! K�

induces a surjective homomorphism H1.F� IZ/ ! H1.K� IZ/. This surjectivity,
Remark 3.14(i) and the diagram

K�
k�
// T n

F�

f�

==

?�

OO

show that rk H 1.k� IZ/D rk H1.k� IZ/D rk H1.f� IZ/D rk H 1.f� IZ/.

In particular, we have rk H 1.k� IZ/ < n� q and we can apply Lemma 3.13 to it in
order to obtain the space L� WD Fill.k� / and the map l� WD fill.�/ satisfying (iii). The
pair .L� ;K� / is homologically 1–connected and with the same calculation as above
we get rk H 1.l� IZ/D rk H 1.k� IZ/.

Using the inclusions L@i� �K� and F� �L� we can consider the chain

(3-21) y� WD

kX
iD0

.�1/i yw@i� C .�1/kC1
yz� 2 Cn�qCk.K� IZ2/:

Since @y� D 0 and Hn�qCk.L� IZ2/D 0 there exists a (suggestively denoted) chain
yw� 2 Cn�qCkC1.L� IZ2/ satisfying @ yw� D y� . Using Lemma 3.19 we get a simplex
w� 2 .cln�q C�.L� IZ2//kC1 satisfying (3-17).

The proof above exhibits a close relationship between 1–dimensional quantities and
fundamental classes and calls to mind the statement and proof of the systolic inequality.

There is a natural generalisation of Theorem 1.4 to essential source manifolds M. We
will recall this notion.
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Definition 3.22 (essentialness; see [7]) Let G be an abelian coefficient group and
M n be a closed connected G –oriented manifold with fundamental group �1.M /DW�

and fundamental class ŒM �G 2Hn.M IG/. Let ˆW M ! B� denote the classifying
map of the universal cover �M !M. The manifold M is said to be G –essential if the
image

ˆ�W Hn.M IG/!Hn.B� IG/DHn.� IG/; ŒM �G 7!ˆ�ŒM �G ¤ 0;

does not vanish.

Theorem 3.23 Let M m be a manifold with fundamental group Zn and assume that
at least one of the following properties holds:

(i) M is Z2 –essential.

(ii) M and N are orientable and M is Z–essential.

Then every continuous map f W M !N admits a point y 2N such that the rank of
the restriction homomorphism satisfies

rkŒH 1.M IZ/!H 1.f �1yIZ/��m� q:

Remarks 3.24 (i) With the assumptions of the theorem above we automatically
have m � n since H>n.BZnIG/ D H>n.T

nIG/ D 0. Examples of G–essential
n–manifolds with fundamental group Zn (m D n) that are not necessarily tori are
connected sums of T n with any simply connected manifold in dimensions n� 3. If
4�m< n, we can start with a map 'W T m! T n such that Hm.'IG/ŒT

m�¤ 0 and
use surgery to turn this into an essential m–manifold with fundamental group Zn .
More generally, manifolds satisfying largeness conditions, such as enlargeability, are
Z–essential; compare [3, Theorem 3.6], in connection with Corollary 3.5 there.

(ii) For orientable manifolds M m with fundamental group Zn and classifying map
ˆW M ! T n , we have the commutative diagram

Hm.M IZ/
Hm.ˆIZ/

//

��

Hm.T
nIZ/

��

Š
// Z.

n
m/

��

Hm.M IZ2/
Hm.ˆIZ2/

// Hm.T
nIZ2/

Š
// Z
.n

m/
2

The vertical arrows are change-of-coefficient homomorphisms and the leftmost vertical
arrow maps ŒM �Z to ŒM �Z2

. This diagram shows that for manifolds with free abelian
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fundamental group, Z2 –essentialness implies Z–essentialness. This explains the
somehow inorganic essentialness assumption in the theorem above.

Proof of Theorem 3.23 We only discuss case (i) and indicate the necessary adaptations
to the existing proof. Like we reduced Theorem 1.4 to Proposition 3.11, we proceed by
contradiction and assume that N is connected and closed, and there exists a smooth
f W M !N and a triangulation T of N such that the following two properties hold:

(i) The smooth simplices of T intersect f stratum transversally.

(ii) For every � 2 Tk the inclusion f� W F� WD f �1�.�k/ ,!M satisfies

rk H 1.f� IZ/ <m� q:

Again, for every � 2 Tk we consider the simplices z� 2 .clm�q C�.F� IZ2//k and the
canonical cycle Z.f I T / 2 Cq clm�q C�.M IZ2/ from Construction 3.20. Every F�

comes with a reference map to M and naively we would think that we are in need
of a replacement for Lemma 3.13 where all the maps have target M instead of T n .
Instead, consider the classifying map ˆW M ! T n . The diagram

Z.f I T / � ˆ�
//

_

evq

��

ˆ�Z.f I T /_

evq

��

C� clm�q C�.M IZ2/ //

��

C� clm�q C�.T
nIZ2/

��

C.m�q/C�.M IZ2/ // C.m�q/C�.T
nIZ2/

3Z.f I T / �
ˆ�

// ˆ�3Z.f I T /

commutes, the bottom left cycle represents the fundamental class ŒM �Z2
2Hm.M IZ2/

and, since M is Z2 –essential, the bottom right cycle defines a nonzero element in
Hm.T

nIZ2/. Therefore, the top right cycle defines a nonzero element in the space
Hq clm�q C�.T

nIZ2/.

The map ˆ induces an isomorphism on �1 as well as on H1 by the Hurewicz theorem
and H 1 by Remark 3.14(ii) (both with coefficients in Z). This proves that every map
kW K! T n satisfying rk H 1.kIZ/ < n� q also satisfies

rk H 1.ˆ ı kIZ/D rk H 1.kIZ/ < n� q:

Algebraic & Geometric Topology, Volume 19 (2019)



2888 Meru Alagalingam

Hence we can proceed as earlier and deduce a contradiction by constructing a cone of
ˆ�Z.f I T / in clm�q C�.T

nIZ2/ via simplices w� 2 .cln�q C�.T
nIZ2//qC1 satis-

fying

@iw� D

�
w@i� if 0� i � k;

z� if i D kC 1:

For � 2 T0 and i D 0, the equation above shall be interpreted as @0w� Dw@0� D 0.

Question 3.25 (i) Theorem 1.4, the more general Theorem 3.23, and the core input
of both, Lemma 3.13, give the impression that we have not proven something
about tori but about the geometry of the group Zn . Are there analogues for
other groups G ? Even in the case where G is abelian with torsion, this is harder
because BZp has cohomology classes in arbitrary high degrees and not every
cohomology class in H�G is a product of degree 1 classes.

(ii) Michał Marcinkowski has asked whether Theorem 3.23 fails if M has funda-
mental group Zn but is inessential.

There is another natural generalisation of Theorem 1.4 from tori to cartesian powers of
higher-dimensional spheres. Our previous proof of Lemma 3.13 used covering space
theory and cannot be generalised to simply connected manifolds. Instead we will use
rational homotopy theory.

Theorem 1.5 Let p � 3 be odd and n� p� 2. Consider M D .Sp/n or any simply
connected, closed manifold of dimension pn with the rational homotopy type .Sp/nQ
and N q an arbitrary orientable q–manifold. Every continuous map f W M !N admits
a point y 2N such that the rank of the restriction homomorphism satisfies

rkŒH p.M IQ/!H p.f �1yIQ/�� n� q:

Remark 3.26 Examples of manifolds M as above that are not .Sp/n are products of
rational homology spheres of dimension p or connected sums of .Sp/n with rational
homology spheres of dimension pn.

In this section the coefficient ring is always RDQ. We assume that the reader already
got a rough idea of rational homotopy theory but before we prove the theorem above
we will briefly recap the notions and concepts we are going to need (see [5; 6]).

Definition 3.27 (rationalisations) For a map f W X ! Y between simply connected
spaces the following three conditions are equivalent:
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(i) ��f ˝QW ��X ˝Q! ��Y ˝Q are isomorphisms.

(ii) H�.f IQ/ are isomorphisms.

(iii) H�.f IQ/ are isomorphisms.

In this case f is called a rational homotopy equivalence, which is denoted by

X
ŠQ

f
�! Y:

A space X is called rational if it is simply connected and all ��X are rational Q–
vector spaces. A rational homotopy equivalence between rational spaces is a homotopy
equivalence.

For any simply connected X there exists a rational space XQ and a continuous map
rX W X !XQ which is a rational homotopy equivalence. The space XQ is called the
rationalisation of X and rX the rationalisation map of X . With these properties the
homotopy type of XQ is uniquely determined and is called the rational homotopy type
of X .

Definition 3.28 (piecewise polynomial differential forms) To any topological space X

we can associate a commutative differential graded algebra (henceforth abbreviated by
cgda) APL.X / WDAPL.X IQ/. This cgda is called the algebra of piecewise polynomial
differential forms on X and by definition an element ! 2 Ak

PL.X / assigns to every
singular n–simplex in X a polynomial degree k differential form on the standard
n–simplex, consistent with face and degeneracy maps. This yields a contravariant
functor APLW sSet! cgda and there is a natural isomorphism

(3-22) H�APL.X /ŠH�.X IQ/:

Definition 3.29 (Sullivan and minimal algebras, minimal models) A Sullivan algebra
is a cdga

�V
V; d

�
whose underlying algebra is free commutative for some graded

Q–vector space V D
L

n�1 V n and such that V admits a basis .x˛/ indexed by a
well-ordered set such that dx˛ 2

V
.xˇ/ˇ<˛ . It is called a minimal algebra if it satisfies

the additional property d.V /�
V�2

V .

A morphism of cgdas is called a quasi-isomorphism if it induces isomorphisms on all
cohomology groups. A quasi-isomorphism�V

V; d
�
! .A; d/
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from a minimal algebra to an arbitrary cgda .A; d/ is called a minimal model of .A; d/.
If X is a topological space, any minimal model�V

V; d
�
!APL.X /

is called a minimal model of X .

Every simply connected space admits such a minimal model. For any simply connected
X the maps H�.rX IQ/ are isomorphisms and using (3-22) we conclude that APL.rX /

is a quasi-isomorphism. If mW
�V

V; d
�
! APLXQ is a minimal model of XQ , the

composition �V
V; d

�
m
�!APLXQ

APL.rX /
����!X

yields a minimal model for X.

Example 3.30 (minimal models of spheres, products) (i) For the spheres S
p
Q we

can give explicit models depending on the parity of p . If p is odd, one particular
model is given by �V

Œx�; 0
�
!APLS

p
Q

with deg x D p and d D 0. If p is even, there is a model�V
Œx;y�; d

�
!APLS

p
Q

with deg x D p , deg y D 2p� 1, dx D 0 and dy D x2 .

(ii) If
�V

V; d
�
!APLX is a minimal model for X and

�V
W; d

�
!APLY one for Y

then �V
ŒV ˚W �; d

�
Š
�V

V; d
�
˝
�V

W; d
�

is a minimal model for the product X �Y .

Definition 3.31 (spatial realisation) There is also a contravariant functor j � jW cgda!
Top, called spatial realisation, and for every space X a continuous map

hX W X ! jAPL.X /j:
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These maps are called unit maps and they are natural in X, ie for any continuous map
f W X ! Y the square

X
f

//

hX

��

Y

hY

��

jAPLX j
jAPLf j

// jAPLY j

commutes.

Theorem 3.32 The unit maps hX are always rational homology equivalences, ie
H�.hX IQ/ (or equivalently H�.hX IQ/) are isomorphisms. For any rational space XQ

and any minimal model mW
�V

V; d
�
!APLXQ , the maps

hXQ W XQ
'
�! jAPLXQj

and

jmjW jAPLXQj
'
�!

ˇ̌V
V; d

ˇ̌
are homotopy equivalences.

Now we can start proving Theorem 1.5.

Lemma 3.33 Let
�V
Œx1; : : : ;xn�; 0

�
be the minimal cgda with all generators concen-

trated in degree p and .A; d/ an arbitrary cgda. Let

f W
�V
Œx1; : : : ;xn�; 0

�
! .A; d/

be a morphism of cdgas such that the induced map on degree p cohomology

f�W H
p
�V
Œx1; : : : ;xn�; 0

�
!H p.A; d/

has rank less than n� q . Then the induced map f� vanishes in all degrees greater than
or equal to .n� q/p .

Proof The statement is nonvacuous only in degrees divisible by p , ie lp with l �n�q .
It suffices to prove the case l D n�q . Consider an arbitrary monomial of length n�q ,
without loss of generality x1 � � �xn�q . Due to the rank assumption there exists one
factor, without loss of generality xn�q , such that Œf xn�q � can be expressed as

Œf xn�q �D
X

i<n�q

�i Œf xi �
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and hence

Œf .x1 � � �xn�q/�D Œf x1� � � � Œf xn�q �D Œf x1� � � � Œf xn�q�1� �
X

i<n�q

�i Œf xi �D 0:

Lemma 3.34 Let n� p� 2. For any 0� a< n the linear diophantine equation

(3-23) �.p� 1/C�p D np� a

has exactly one solution .�; �/ 2 Z2
�0

, given by .�; �/D .a; n� a/.

Proof The integer solutions of (3-23) are parametrised by

f.�; �/D .aC kp; .n� a/� k.p� 1// j k 2 Zg:

Then the additional requirement �;�� 0 translates into

(3-24) �
a

p
� k �

n�a

p�1
:

Since
n�a

p�1
�

�
�

a

p

�
�

n�a

p�1
C

a

p�1
D

n

p�1
< 1;

inequality (3-24) has at most one solution. It is easy to check that .a; n� a/ satisfies
all desired properties.

The lemma above will enable us to prove the following rational version of Lemma 3.13:

Lemma 3.35 (rational filling lemma) Let p � 3 be odd , n � p � 2, q < n, K a
topological space and kW K! .Sp/nQ a continuous map with rk H p.kIQ/ < n� q .
There exists a relative CW complex .Fill.k/;K/ and an extension fill.k/W Fill.k/!
.Sp/nQ such that the diagram

Fill.k/
fill.k/

$$

K
?�

�

OO

k

// .Sp/nQ

commutes and the following properties hold :

(i) H�np�q.�IQ/D 0.

(ii) H p.Fill.k/;KIQ/D 0.

(iii) rk H p.fill.k/IQ/D rk H p.kIQ/ < n� q .
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Proof The proof strategy is to solve the problem on the algebraic level of cgdas and
then use spatial realisation to obtain the desired spaces and maps. Since p is odd we
have a minimal model �V

Œx1; : : : ;xn�; 0
�
!APL.S

p/nQ

with generators xi concentrated in degree p . Consider k] given by the diagram

(3-25)

APLK APL.S
p/nQ

APLk
oo

�V
Œx1; : : : ;xn�; 0

�k]

gg OO

Morphisms between cdgas are denoted by a lowercase letter endowed with the super-
index ]. This notation shall hint at which continuous map we will get after spatial
realisation. The map k] can be factored as

(3-26)

APLK

�V
ŒH p�1K˚ im H p.k]/�; 0

��]

OO

�V
Œx1; : : : ;xn�; 0

�k]

jj

g]
oo

The morphism g] is the obvious one. The map �] can be defined by choosing represent-
ing cocycles, ie choose yi 2A

p�1
PL K such that Œyi � constitutes a basis of H p�1.APLK/

and define

�]W
�V
ŒH p�1K˚ im H p.k]/�; 0

�
!APLK; Œyi � 7! yi ; H p.k]/Œxi � 7! k]xi :

With this definition, H p�1�] is surjective and H p�] is injective, which together imply
(ii) and (iii).

We are left to prove (i), which is equivalent to H�pn�q�] D 0. For 0 � a � q < n

consider a degree pn� a element x 2
V
ŒH p�1K˚ im H p.k]/�. We will show that

H pn�a�]Œx�D02H pAPLK . Without loss of generality, x is a product of � generators
of degree p�1 and � generators of degree p . Since n� p� 2, Lemma 3.34 yields
.�; �/D .a; n� a/. Thus x contains at least n� q generators of degree p , ie

x D yz1 � � � zn�q

Algebraic & Geometric Topology, Volume 19 (2019)
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and the zi can be written as zi D g]wi for some wi 2 Œx1; : : : ;xn�. We conclude

H pn�a�]Œx�D Œ�]x�D Œ�].yz1 � � � zn�q/�D Œ.�
]y/.�]z1/ � � � .�

]zn�q/�

D Œ.�]y/.�]g]w1/ � � � .�
]g]wn�q/�D Œ�

]y�H .n�q/pk]Œw1 � � �wn�q �:

Using the natural isomorphism H�APL.X /ŠH�.X IQ/ we get that rk H p.k]/<n�q .
Hence we can apply Lemma 3.33 to conclude H�.n�q/p.k]/ D 0, proving that
H pn�a�]Œx�D 0.

Let �V
W; 0

�
WD
�V
ŒH p�1K˚ im H p.k]/�; 0

�
:

After spatial realisation of diagrams (3-25) and (3-26) and introducing the unit maps
from Theorem 3.32, we get the diagram

K
k

//

hK

��

.Sp/nQ

h.Sp/nQ
'

��

jAPLKj //

j�]j

��

jAPL.S
p/nQj

'

��ˇ̌V
W; 0

ˇ̌
jg]j

//
ˇ̌V
Œx1; : : : ;xn�; 0

ˇ̌
In this diagram the lower square commutes strictly but the upper one only up to
homotopy. The map hK is a rational cohomology equivalence; in particular, we still
have that H p�1.j�]j ı hK / is surjective and H p.j�]j ı hK / is injective. The same
theorem states that the right-hand side vertical arrows are homotopy equivalences.
After choosing homotopy inverses we get the triangle

K
k
//

j�]jıhK

��

.Sp/nQ

ˇ̌V
W; 0

ˇ̌ yg

::

which commutes up to homotopy. Choose such a homotopy H W yg ı .j�]j ı hK /' k

and consider the mapping cylinder of j�] ı hK j.
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k
.Sp/nQK

xg

ˇ̌V
W; 0

ˇ̌

M.j�]j ı hK /

Figure 5: Illustration for the proof of Lemma 3.35.

Using the homotopy H we get a map xg such that the diagram

M.j�]j ı hK /

xg

%%

K
?�

OO

k

// .Sp/nQ

commutes strictly. Choose a relative CW approximation

.Fill.k/;K/! .M.j�]j ı hK /;K/;

ie a relative CW complex .Fill.k/;K/ together with a map Fill.k/!M.j�]j ı hK /

which is a homotopy equivalence and restricts to the identity on K . Define � and fill.k/
as in the diagram

Fill.k/

fill.k/

%%
'
// M.j�]j ı hK / // .Sp/nQ

KS3

�

ff OO

k

88

The induced map H p�1.�IQ/ is surjective and H p.�IQ/ is injective since j�]j ı hK

has these properties. From this we get that H p.Fill.k/;KIQ/ D 0, and hence
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Hp.Fill.k/;KIQ/D 0. As usual we successively conclude that Hp.�IQ/ is surjective
and rk H p.fill.k/IQ/D rk H p.kIQ/.

Remarks 3.36 (i) In the case p D 1 the factorisation (3-26) reminds us of our
original filling lemma, Lemma 3.13.

(ii) The condition n� p� 2 seems a little inorganic. But in the case nD p� 1 the
element x could be of degree np and therefore the product of p generators of
degree p�1 and we would not have any control over the image H np�]Œx�. We
do not know how to weaken this condition. This may be possible by altering the
construction of the rational filling lemma.

(iii) If p is even, a minimal model of .Sp/n is given by
�V
Œx1; : : : ;xn;y1; : : : ;yn�;d

�
with dyi D x2

i . However it is not clear what the image of yi under the map g]

should be such that diagram (3-26) commutes or how to alter the construction.

(iv) It is remarkable that the rational filling lemma can be proven while almost
exclusively manipulating algebraic objects.

Proof of Theorem 1.5 We will only indicate how to change the existing proof
scheme. Again we proceed by contradiction, ie we assume there exists a smooth
map f W M np!N q and a triangulation T of N (which again we can assume to be
connected and closed) such that the following two properties hold:

(i) The smooth simplices of T intersect f stratum transversally.

(ii) For every � 2 Tk the inclusion f� W F� WD f �1�.�k/ ,!M satisfies

rk H p.f� IQ/ < n� q:

Again, for every � 2 Tk we consider the simplices z� 2 .clnp�qC�.F� IQ//k and
the canonical cycle Z.f I T / 2 Cq clnp�q C�.M IQ/ from Construction 3.20. Let
rM W M ! .Sp/nQ be the rationalisation map of M. The diagram

Z.f I T / � .rM /�
//

_

evq

��

.rM /�Z.f I T /_

evq

��

C�clnp�qC�.M IQ/ //

��

C�clnp�qC�..S
p/nQIQ/

��

C.np�q/C�.M IQ/ // C.np�q/C�..S
p/nQIQ/

3Z.f I T / �
.rM /�

// .rM /�3Z.f I T /
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commutes. The bottom left cycle represents the fundamental class ŒM �Q2H np.M IQ/

and by definition rM is a rational homology equivalence; in particular, the bottom
right cycle defines a nonzero element in Hnp..S

p/nQIQ/. Therefore the top right cycle
defines a nonzero element in Hq clnp�q C�..S

p/nQIQ/.

Now we can use the rational filling lemma, Lemma 3.35, proceed as earlier and deduce
a contradiction by constructing a cone of .rM /�Z.f I T / in clnp�q C�..S

p/nQIQ/ via
simplices w� 2 .clnp�q C�..S

p/nQIQ//qC1 satisfying

@iw� D

�
w@i� if 0� i � k;

z� if i D kC 1:

For � 2 T0 and i D 0 the equation above shall be interpreted as @0w� Dw@0� D 0.
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