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Twisted differential generalized cohomology theories
and their Atiyah–Hirzebruch spectral sequence

DANIEL GRADY

HISHAM SATI

We construct the Atiyah–Hirzebruch spectral sequence (AHSS) for twisted differential
generalized cohomology theories. This generalizes to the twisted setting the authors’
corresponding earlier construction for differential cohomology theories, as well as to
the differential setting the AHSS for twisted generalized cohomology theories, includ-
ing that of twisted K–theory by Rosenberg and by Atiyah and Segal. In describing
twisted differential spectra we build on the work of Bunke and Nikolaus, but we find
it useful for our purposes to take an approach that highlights direct analogies with
classical bundles and that is at the same time amenable for calculations. We will, in
particular, establish that twisted differential spectra are bundles of spectra equipped
with a flat connection. Our prominent case will be twisted differential K–theory, for
which we work out the differentials in detail. This involves differential refinements
of primary and secondary cohomology operations the authors developed in earlier
papers. We illustrate our constructions and computational tools with examples.

19L50, 53C05, 55R20, 55T25, 57R19; 14A20, 55S05, 55S20

1 Introduction

There has been a lot of research activity constructing and using twisted cohomology
theories. The main example has been twisted K–theory K�.X I h/ of a space X, where
the twist H is a cohomology class h 2 H 3.X;Z/ (see Donovan and Karoubi [20],
Rosenberg [59], Bouwknegt, Carey, Mathai, Murray and Stevenson [12], Tu, Xu and
Laurent-Gengoux [70], Atiyah and Segal [8; 9], Freed, Hopkins and Teleman [26],
Kupers [41], Ando, Blumberg and Gepner [2], Antieau, Gepner and Gómez [4],
Karoubi [39] and Gomi [27]). Periodic de Rham cohomology may be twisted by any
odd-degree cohomology class; see Teleman [68], Bunke, Schick and Spitzweck [18]
and Mathai and Wu [52]. Twisted de Rham cohomology has roots that go back to Rohm
and Witten [57], and has attracted attention more recently — see eg Mathai and Wu [52]
and Sati [60; 61]. TMF can be twisted by a degree-four class (see Ando, Blumberg and
Gepner [2]), and Morava K–theory and E–theory admit twists by cohomology classes
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for every prime p and any chromatic level n (see Sati and Westerland [63]). More exotic
spectra can be twisted in an even more unexpected way, including iterated algebraic
K–theory of the connective K–theory spectrum; see Lind, Sati and Westerland [43].

Twisted generalized cohomology theories will admit an isomorphism with twisted
periodic de Rham cohomology under the generalized twisted Chern character (or
Chern–Dold character). For degree-three twisted K–theory, the twisted Chern character
appears from various points of view in Atiyah and Segal [9], Karoubi [38], Mathai and
Stevenson [50; 51], Tu and Xu [69], Bressler, Gorokhovsky, Nest and Tsygan [14],
Karoubi [39], Gomi and Terashima [28] and Han and Mathai [34]. Chern characters
can be considered for higher twisted theories, such as Morava K–theory and E–theory
(see Sati and Westerland [63]) and iterated algebraic K–theory (see Lind, Sati and
Westerland [43]). Differential refinements for a twisted generalized cohomology theory
are considered by Bunke and Nikolaus [16].

On the other hand, differential cohomology has become an active area of research
(eg Freed [25], Hopkins and Singer [36], Simons and Sullivan [67] and Schreiber [65];
for a more complete list of references for the untwisted case, see Grady and Sati [32]).
Here there is also a Chern character map, as part of the data for a differential cohomology
theory, that lands in a periodic form of de Rham cohomology, where the periodicity
arises from the coefficients of the underlying generalized cohomology theory (see
Bunke, Nikolaus and Völkl [17] and Upmeier [71]). These differential generalized
cohomology theories can in turn be twisted, the foundations of which are given by Bunke
and Nikolaus [16], building on Bunke, Nikolaus and Völkl [17] and Schreiber [65].

Carey, Mickelsson and Wang [19] gave a construction of twisted differential K–theory
that satisfies the square diagram and short exact sequences. Kahle and Valentino [37]
gave a corresponding list of properties which can be generalized to any twisted differen-
tial cohomology theory. Indeed, a characterization of twisted differential cohomology
including twisted differential K–theory is given in [16] (except the push-forward
axiom). The model combines twisted cohomology groups and twisted differential
forms in a homotopy theoretic way, analogous to (and as abstract as) the construction
of Hopkins and Singer [36] in the untwisted case. Having a more concrete geometric
description in mind, Park [56] provided a model for twisted differential K–theory
in the case that the underlying topological twists represent torsion classes in degree-
three integral cohomology. Recently, Gorokhovsky and Lott [29] provided a model of
twisted differential K–theory using Hilbert bundles. In this paper, we seek an approach
which builds on certain aspects of the above works and highlights both homotopic and
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geometric aspects, and which we hope would be theoretically elegant and conceptually
appealing, yet at the same time being amenable to computations and applications.

Among the various spectral sequences one could potentially construct, the Atiyah–
Hirzebruch spectral sequence (AHSS) would perhaps be the most central for twisted
theories, because of the way the theory is built by gluing data on the underlying space.
As we will explicitly see, this continues to hold for differential twisted theories with
extra data again assembled from patches on the manifold. Hence the Čech filtration
of the manifold by good open covers is the most natural in this setting, as it captures
the data of differential forms, as highlighted classically by Bott and Tu [11]. In
the topological (and untwisted case) there is an equivalence between filtrations on
the underlying topological space and filtrations on the spectrum of the generalized
cohomology theory; see Maunder [53]. While we expect this to hold at the differential
level (see Grady and Sati [32]) and also perhaps here at the twisted differential level, it
will become clear that filtrations on the manifold are central to the construction and
hence are a priori preferred.

The AHSS for the simplest nontrivial twisted cohomology theory, namely twisted
de Rham cohomology, is studied in Atiyah and Segal [9], and more generally for
any odd-degree twist in Mathai and Wu [52] and Li, Liu and Wang [42]. The AHSS
for more involved theories has also been studied. The AHSS in the parametrized
setting is described generally but briefly in May and Sigurdsson [54, Remark 20.4.2
and Proposition 22.1.5]. The twisted K–theory via the AHSS was first discussed
in Rosenberg [58; 59] from the operator algebra point of view, and then briefly in
Bouwknegt, Carey, Mathai, Murray and Stevenson [12] and in Atiyah and Segal [8]
and more extensively in Atiyah and Segal [9] from the topological point of view. For
h 2H 3.X IZ/, the twisted complex K–theory spectral sequence has initial terms with

E
p;q
3
DE

p;q
2
D

�
H p.X IZ/ for q even;

0 for q odd;

and the first nontrivial differential is the deformation of the cup product with twisting
class, ie1

d3 D Sq3
ZC.�/[ hW H p.X IZ/DE

p;q
3
!E

pC3;q�2
3

DH pC3.X IZ/:

1Throughout the paper we will use � and y� to denote the integral cohomology class and its differential
refinement, respectively, for general cohomology theories. For K–theory, we will use h , yh , and H to
denote, respectively, the integral cohomology class, its differential refinement, and the corresponding
differential form representative.
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In the case of twisted cohomology and twisted K–theory the higher differentials turn
out to be modified by Massey products involving the rationalization of the twisting
class h; see Atiyah and Segal [9]. For twisted Morava K–theory and twisted Morava
E–theory the differentials are discussed by Sati and Westerland [63]. All the above
theories admit differential refinements and the AHSS for the corresponding untwisted
forms of the theories is described in detail by the authors in [32]. In this paper we
construct the AHSS for twisted differential generalized cohomology theories. Then
we focus on twisted differential K–theory, whose untwisted version we considered,
among other untwisted theories, in [32].

What we are constructing here is the AHSS for twisted differential cohomology theories,
which we will denote by 1AHSSy� , where y� is a representative of a differential cohomol-
ogy class, ie a higher bundle with connection. The E2 –page of the spectral sequence
looks considerably different than its topological counterpart and we feel a word of
warning is in order. The spectral sequence is a half-plane spectral sequence, but the
cohomology groups which appear in the first and fourth quadrants take different forms.
On the x–axis, the entries are not homotopy-invariant cohomology groups, but are
rather geometrically refined cohomology groups of some kind — often twisted closed
differential forms. For a twisted differential theory �R.�I y�/ refining an underlying
topological twisted theory R.�I �/, the E2 –page takes the form

E
p;q
2
D

8̂<̂
:

H p.M IR
�q�1

U.1/
.�// for q < 0;

H p.M IR�q.�// for q > 0;

H p.M IL.�R.�I y�/// for q D 0;

and (provided M is a compact smooth manifold) we have the convergence

E
p;q
2
) �R0.M I y�/:

Here L.�R.�I y�// is the sheafification of the presheaf given by evaluating the twisted
differential theory �R.�I y�/ (which is not homotopy invariant!) on open sets of M.
In the case when �R.�I y�/ D �K.�I y�/ is twisted differential K–theory, we show in
Section 3.3 that L.�K.�I y�//Š�even

dH –cl.�/, where on the right we have the sheaf of
twisted-closed differential forms of even degree.

When the twist y� is zero in differential cohomology, then we recover the AHSS
for differential cohomology constructed in [32], which we denote by 1AHSS . On
the other hand, if we forget the differential refinement and strip the theory to its
underlying topological theory, then we recover the AHSS for twisted spectra, which
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we denote by AHSS� , a prominent example of which is that of twisted K–theory;
see Rosenberg [58; 59] and Atiyah and Segal [9]. Of course when we take both a
trivial twist and no differential refinement, then we restrict to the original case of
Atiyah and Hirzebruch [7]. Summarizing, we will have a correspondence diagram of
transformations of the corresponding spectral sequences,

1AHSSy�

y�D0
��

II
// AHSS�

�D0

��1AHSS I
// AHSS

The picture that we have had in mind for the structure of the corresponding differentials,
as cohomology operations, is schematically the following:

ydy� D 2primaryC 3secondaryC � � �

y�D0
��

II
// d� D primaryC secondaryC � � �

�D0
��

yd D 2primary I
// d D primary

The upper-left corner generalizes the corresponding forms in previous works. In [31],
we identified yd with a differential refinement of a primary cohomology operation.
The differential secondary refinement that will appear in ydy� essentially consists of
the differential Massey products we constructed in [30]. The differential d� is that
of a twisted cohomology theory, as for instance for twisted K–theory, where these
secondary operations are shown to be Massey products (rationally); see Atiyah and
Segal [9]. The bare differential d is the Atiyah–Hirzebruch differential which, for
the case of K–theory, is given by the integral Steenrod square Sq3

Z . The long-term
goal that we had in previous projects was to arrive at the overall picture that we have
assembled in this paper. In this sense, the current paper can be viewed a culmination
of the series [30; 31; 32].

Twistings of a suitably multiplicative (that is, A1 ) cohomology theory R� are governed
by a space BGL1.R/; see May and Sigurdsson [54] and Ando, Blumberg, Gepner,
Hopkins and Rezk [3; 2]. Since twists usually considered arise from cohomology classes,
there are maps from a source Eilenberg–Mac Lane space K.G;mC 1/ for appropriate
abelian group G and degree m, depending on the theory under consideration. We have
the inclusions

K.G;mC 1/! BGL1.R/ ,! Pic.R/;
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where Pic.R/ is the 1–groupoid of invertible R–module spectra, whose connected
component containing the identity is equivalent to BGL1.R/. For integral twists, ie
for G D Z, the natural replacement of the Eilenberg–Mac Lane spaces are going to be
classifying stacks BmU.1/r . We also use the refinement by Bunke and Nikolaus [16] of
the space Pic.R/. We do so by highlighting the analogies between classical line bundles
and �K.X I yh/–theory. We have the following table (see remark (i) on page 2929): There

line bundles twisted spectra

BZ=2 Pictop
R

BR� PicdR
R

�1
cl Picform

R

BZ=2r Tw�R
Table 1

are classically two viewpoints on real line bundles: as bundles with fiber R (which is
one-dimensional as an R–module) and also as locally free invertible OM –modules, ie
sheaves which are invertible over the ring of smooth functions. Similarly, there are two
viewpoints on twisted spectra: as bundles of spectra R (which is rank one as an R–
module), and also as invertible R–module spectra. The point we highlight is that there
is a direct analogy between each one of the two descriptions of the pair. Even more, we
can show (see remark (ii) on page 2929) that the sheaf cohomology with coefficients
in a line bundle L over M is isomorphic to the twisted HR cohomology with twist
�W M ! BZ=2 classifying L. We will be using stacks, in our context in the sense
described by Fiorenza, Sati, Schreiber and Stasheff [24; 65; 62; 22]. In general, twisted
topological spectra will satisfy descent over the base space, hence are stacks [16]. For
the case of twisted topological K–theory this is also shown by Antieau and Williams [5].
Differential theories similarly satisfy descent over the base manifold M [16].

The paper is organized as follows. In Section 2 we provide our slightly modified take
on twisted differential spectra for the purpose of constructing their AHSS. In particular,
in Section 2.1 we start recalling the construction of [16] with slight modifications to
suit our purposes. This leads us in Section 2.2 to describe a canonical bundle of spectra
over the Picard 1–groupoid which comes from the 1–Grothendieck construction. In
Theorem 8 we present several different, but equivalent, ways to think about twisted
differential cohomology theories. We use this in Section 2.3 to provide analogies
between these objects and the notion of a line bundle equipped with flat connection,
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leading to the identification of a twisted differential theory as a bundle of spectra
equipped with flat connection, whose meaning we explain. This is captured in Table 2,
continuing the analogies in Table 1.

line bundle bundle of spectra

R //

��

E

�

��

�
� � // M

H.RŒu;u�1�/Šch K ^HR

��

// E

�

��

�
� � // M

set of global sections �.M;E/ space of global sections �.M;E/

lim
˚Q

C1.U˛ ;R/
g˛ˇ
////
Q

C1.U˛ˇ ;R/
	

holim
˚Q

��.U˛/
e

dA˛ˇ
// //
Q
��.U˛ˇ/

CS ////// � � �
	

local ring of smooth real functions local DGA of smooth functions
��˝RŒ0�' C1.�;R/ ��˝RŒu;u�1�' f�even!�odd! � � � g

flat connection flat connection

rW �.M;E/! �.M;E˝T �M /; dH W �.M;E/! �
�
M;E ^

V3
.T �M /

�
;

r.� � s/D d�sC �rs with r2 D 0 dH .! ^˛/D dH .!/^˛C! ^ d˛ with d2
H
D 0

parallel section parallel section
sW M !E; rs D 0 dH–parallel: dH .!/D 0

discrete transition functions topological twist
g˛ˇ 2 LH

1.M IR�/ �˛ˇı 2 LH
3.M IZ/

written in local trivializations: written in local trivializations:
s˛ W U˛!E; r.s˛/D 0 eB˛ ^!˛ ; dH .e

B˛ ^!˛/D 0

representation representation
action of R� on R as multiplication by units action of BU.1/ on K via line bundles

Table 2: Analogies between twisted differential spectra and line bundles with connections.

The general construction of 1AHSSy� , the AHSS for any twisted differential cohomology
theory, is given in Section 2.4. The differentials are then identified on general grounds
and the corresponding properties are discussed in Section 2.5. Having provided a general
discussion, we start focusing on twisted differential K–theory in Section 3. Indeed, in
Section 3.1 we give a detailed description of the twists in differential K–theory from
various perspectives. In order to arrive at explicit formulas, we describe the Chern
character in twisted differential K–theory in Section 3.2. Then in the following two
sections we characterize the differentials more explicitly. Unlike the classical AHSS, in
the differential setting, as we also noticed for the untwisted case [32], we find two kinds
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of differentials: the low-degree differentials are characterized in Section 3.3, while
the higher flat ones are described in Section 3.4. We end with explicit and detailed
examples, illustrating the machinery, in Section 3.5. We calculate twisted differential
K–theory of the 3–sphere (or the group SU.2/), �K�.S3I yh/, in two ways: using the
Mayer–Vietoris sequence of Proposition 5(iii) and using the 1AHSSy� of Theorem 18,
as adapted to K–theory with differential twist yh in previous sections. While we present
both approaches as being useful, the highlight is that the latter approach is much more
powerful, at least in this case.

2 Twisted differential spectra and their AHSS

2.1 Review of the general construction of differential twisted spectra

In this section we start by recounting some of the main constructions in [16] and
then provide a description of local triviality as well as general properties of twisted
differential spectra. The point of view taken in [16] uses primarily Picard 1–groupoids
to define the differential twists of a differential function spectrum. Topologically,
given an E1 (or even an A1 ) ring spectrum R, one can obtain this 1–groupoid
as a nonconnected delooping of its E1 space of units. More precisely, if PicR

denotes the infinity groupoid of invertible R–module spectra (with respect to the smash
product ^R ), then we have an equivalence2

BGL1.R/��0.PicR/' PicR;

where �0.PicR/ is the group of isomorphism classes of invertible R–module spectra
(see [3; 2; 63]).

In order to discuss the differential refinement of twisted cohomology, we need to retain
some geometric data which cannot be encoded in spaces. Indeed, twisted differential
cohomology theories crucially use a sort of twisted de Rham theorem to connect
information about differential forms on a smooth manifold with some cohomology
theory evaluated on the manifold. This mixture of geometry and topology is effectively
captured by smooth stacks, with the homotopy theory being captured by the simplicial
direction of the stack and the geometry being captured by the local information encoded
in the site. In general, we would like to consider not only 1–groupoid-valued smooth

2Note that this equivalence is not an equivalence of E1–spaces.
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stacks, but also stacks valued in the stable 1–category of spectra; see [47; 46] for
more comprehensive accounts of these constructions.3

Purely topological theories can be regarded as constant smooth theories. For example,
let R be an “ordinary” ring spectrum. Then we can consider the assignment which
associates to each manifold M the spectrum R. This assignment defines a prestack,
ie a functor

const.R/W Mf! Sp

on the category of smooth manifolds with values in spectra. We can equip the cate-
gory Mf with the Grothendieck topology of good open covers, turning it into a site.
The stackification of const.R/ with respect to this topology will be denoted by R. It is
obviously locally constant, ie constant on some open neighborhood of each point of M.

For a fixed manifold M, we can restrict the above functor const.R/ to the overcategory
Mf=M (ie the1–category on arrows N !M ), equipped with the restricted coverage.
After stackification, this gives a locally constant sheaf of spectra R on M. More
generally, we can do this for any locally constant sheaf of spectra on Mf. Then we can
consider the monoidal 1–category of locally constant sheaves of R–module spectra
over M and consider the space of invertible objects.4 In [16], this 1–groupoid is
denoted by PicR.M /. In order to simplify notation and to highlight the fact that this
object is related to the twists of the underling theory R, we will denote this1–groupoid
by Pictop

R .M /. This is further motivated by the following properties [16, Section 3]:

(1) Descent The assignment M 7! Pictop
R .M / defines a smooth stack on the site

of all manifolds, topologized with good open covers.

(2) Correspondence with topological twist For a manifold M, we have equiva-
lences Pictop

R .M /'Map.M;PicR/'PicR.M / with PicR the usual Picard space
of invertible R–module spectra, the second mapping 1–groupoid the nerve of
the mapping space in CGWH–spaces and PicR the constant stack associated to
the nerve of PicR . All three of the resulting spaces model the 1–groupoid of
invertible R–modules parametrized over M.

3The reader who is not interested in the technical details can regard this rigorous development as a
sort of black box, bearing in mind that in the language of 1–categories no commutative diagram is strict:
commutativity is only up to higher homotopy coherence. The familiar concepts at the 1–categorical level
generally hold in the 1–context, but only up to homotopy coherence.

4Here the monoidal structure is given by the R–module smash product ^R . Clearly we are omitting
the details of monoidal 1–categories and the symmetric monoidal smash product. It would be far too
lengthy to include these details here and we encourage the reader to consult [46] for more information.
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(3) Twisted cohomology theory Suppose that M be a manifold with R–twist
R� 2 …1Pictop

R .M /, where …1 denotes the fundamental groupoid. Then the
classical �–twisted cohomology of M is computed via5

R.M I �/ WD �0.�.M;R� //;

where � is the global sections functor �W Sh1.M I Sp/! Sp.

Remark (determinantal twist versus dimension shift) The third property does not
include a degree of the theory. This is because shifts of the spectrum � are also
R–twists. Thus the various degrees of R.�I �/ can be obtained by considering the
shifted R–twists. However, because we are dealing with differential cohomology and
are interested in geometry and applications, we find it more practical to separate the
two notions. Thus, if we have a combination of twists of the form � and n, where n is
the twist given by the dimension shift †nR we will write

Rn.M I �/ WD �0.�.M IR�Cn//

for the cohomology of the product R� ^R†nR'†nR� .

The discussion has not yet taken into account differential data. It is merely the mani-
festation of the underlying topological theory, embedded as a geometrically discrete
object in smooth stacks. To describe the differential theory, we first need to discuss
the differential refinement of an E1–ring spectrum R. This is discussed extensively
in [16] and we review only the essential pieces discussed there, adapted to our purposes.

Definition 1 Let RingSp denote the .1; 1/–category of E1–ring spectra, R–AlgSp
denote the .1; 1/–category of commutative HR–algebra spectra, and R–CDGA be
the ordinary 1–category of commutative differential graded algebras. We define the
category of differential ring spectra as the .1; 1/–pullback

diff.RingSp/

��

// R–CDGA

H �
��

RingSp ^H R
// R–AlgSp

where the functor �W R–CDGA! .R–CDGA/1 localizes at weak equivalences to
obtain an .1; 1/–category, H W .R–CDGA/1!R–AlgSp is the Eilenberg–Mac Lane

5Generally, we will denote a spectrum in a script font (eg R), while the underlying theory it represents
will be denoted in the standard math and talic font (eg R).
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equivalence and ^HR takes the smash product with the real Eilenberg–Mac Lane
spectrum (see eg [66] for details).

Remark (i) The objects of the .1; 1/–category diff.RingSp/ can be identified with
triples .R; c;A/, where R is an E1–ring spectrum, A is a CDGA and c is an
equivalence of ring spectra

cW R^HR '
�!HA:

(ii) It was shown in [66] that the Eilenberg–Mac Lane functor is essentially surjective
onto HZ–module spectra, from which we can deduce that every ring spectrum admits
a differential refinement since HR–module spectra can be regarded as HZ–module
spectra.

Definition 2 Let A be a CDGA. We define the de Rham complex with values in A to
be the sheaf of chain complexes

��.�IA/ WD��˝R A;

where A is the locally constant sheaf of CDGAs associated to A.

To define the smooth stack of twists, Bunke and Nikolaus [16] define a certain stack
which contains all the twisted de Rham complexes corresponding to the theory. We now
recall this stack. Let L be a sheaf of ��.�IA/–modules on M (ie on the restricted
site Mf=M ). Then:

(1) L is called invertible if there is a K such that L˝��.�IA/K is isomorphic to
��.�IA/.

(2) L is called K–flat if the functor

L˝��.�IA/�W ��.�IA/–Mod!��.�IA/–Mod

preserves objectwise quasi-isomorphisms.

(3) L is called weakly locally constant if it is quasi-isomorphic to a locally constant
sheaf of modules.

Denote by Picform the stack which assigns, to each smooth manifold M, the Picard
groupoid Picform.M / of all invertible, K–flat, weakly locally constant sheaves of
��.�IA/–modules. The passage from the topological twists to differential twists is
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then obtained via the .1; 1/–pullback in smooth stacks

(2-1)

Tw�R //

��

Picform

H
��

Pictop ^H R
// PicdR

where Pictop , Picform , and PicdR have the more detailed respective notations Picloc
R ,

Picwloc;fl
��.�IA/

, and Picloc
H .��.�IA//

in [16].

A bit of explanation is in order. First, the condition of weakly locally constant for the
sheaf of ��.�IA/–modules L gives rise to a twisted de Rham theorem. Indeed, for each
fixed point x 2M, there is an open set x 2U �M such that L.U / is quasi-isomorphic
to a constant complex on U. This locally constant complex represents a cohomology
theory with local coefficients on M and these local quasi-isomorphisms induce a
quasi-isomorphism of sheaves of complexes on M. At the level of cohomology, the
induced map can be regarded as a twisted de Rham isomorphism. Next, the condition of
K–flatness ensures that the tensor product is equivalent to the derived tensor product and
therefore preserves invertible objects. This way, we have a well-defined Picard groupoid.

Remark An object in the .1; 1/–category Tw�R is given by a triple .R� ; t;L/, with R�

a topological R–twist, L an invertible, K–flat, weakly locally constant module over
��.�IA/ and t a zigzag of weak equivalences (or a single equivalence in the localiza-
tion at quasi-isomorphisms)

t W H.L/ '�!R� ^HR:

The equivalence t exhibits a twisted de Rham theorem for the rationalization of the
topological twist R� .

Definition 3 Such a triple .R� ; t;L/ is called a differential refinement of a topological
twist R� .

One of the hallmark features of twisted cohomology is that of local triviality. Indeed,
if we are to think of twisted cohomology theories as a bundle of theories, parametrized
over some base space (in the sense of [54]), then one expects that if we restrict to a
contractible open set on the parametrizing space, the theories should all be isomorphic
to the “typical fiber”, given by the underlying theory which is being twisted. This
happens for differential cohomology theories, just as it does for topological theories.
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Proposition 4 (local triviality of the twist) Let �Ry� WD .R� ; t;L/ be a sheaf of spectra
refining the twisted theory R� on a smooth manifold M. Suppose the underlying
topological twist comes from a map � W M ! BGL1.R/ ,! Pictop

R . Then, around each
point x 2M, there is an open set U such that, when restricted via the change-of-base
functor

i�W Tw�R.M /! Tw�R.U /
induced by the inclusion i W U !M, we have an equivalence in Tw�R.U /�Ry� '�R;
where �RD .R; c;A/ is a differential refinement of the untwisted theory R.

Proof Let xW � ! U �M be a point in M. Since M is a manifold, without loss of
generality, it suffices to prove the claim with U contractible. In this case, the restriction
of R� to U trivializes and we have an equivalence R� 'R in Sh1.U I Sp/. As part of
the data for the differential refinement of R, we have an equivalence in Sh1.Mf; Sp/

H.��.�IA//' R^HR;

and hence an equivalence on the restricted site Sh1.U I Sp/. Combining, we have
equivalences in Sh1.U I Sp/,

R
'

//

^H R
��

R�

^H R
��

R ^HR

' c
��

'
// R� ^HR

't
��

H.��.�IA//
'

// H.L/

where the bottom map in the diagram is defined by composing the evident three
equivalences. By the definition of localization and the properties of H, this implies
that ��.�IA/ and L are quasi-isomorphic. Putting this data together, we see that we
have defined an equivalence �Ry� '�!�R in the 1–groupoid Tw�R.U /.
We now summarize some of the above properties of twisted differential cohomology.

Proposition 5 (properties of twisted differential cohomology) Let �R�.�I y�/ be a
twisted counterpart of a differential cohomology theory �R� on a smooth manifold M.
Then �R�.�I y�/ satisfies the following:
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(i) Additivity For a disjoint union f W N D
`
˛ N˛!M of maps f˛W N˛!M,

we have a decomposition�R�.N I y�/ŠM
˛

�R�.N˛I y�/:
(ii) Local triviality If y� has underlying topological twist � coming from a map

� W M ! BGL1.R/, then for every point x 2M, there is an open neighborhood
x 2 U i,!M such that the restriction of �R�.�I y�/ to U trivializes. That is, we
have a natural isomorphism of functors

i��R�.�I y�/Š �R.�/;
on the overcategory Mf=U.

(iii) Mayer–Vietoris Let fU;V g be an open cover of M. Then we have a long exact
sequence,

� � � // R�2
R=Z.U I y�/˚R�2

R=Z.V I y�/
// R�2

R=Z.U \V I y�/

// �R0.M I y�/ // �R0.U I y�/˚�R0.V I y�/ // �R0.U \V I y�/

// R1.M I �/ // R1.U I �/˚R1.V I �/ // � � �

Proof The first follows from the fact that the global sections on a coproduct is
isomorphic to the product of global sections and that taking connected components
commutes with products. The second property arises from Proposition 4. The third
property is stated in [16, Proposition 5.2], but we give a detailed proof here. With
respect to the coverage on Mf=M via good open covers, the sheaf of spectra �Ry�
satisfies descent. Consider the pushout diagram

U \V
//
// U qV // U [V DM:

Since �Ry� satisfies descent on M, the pullbacks to U q V and U \ V also satisfy
descent and (by restriction) yield an exact sequence�Ry� jU\V !

�Ry� jU ��Ry� jV !�Ry� jU\V

of sheaves of spectra. After taking global sections, we get the iterated fiber/cofiber
sequence

� � � !†�1�Ry� .M /!�Ry� .U \V /!�Ry� .U /��Ry� .V /!�Ry� .M /! � � � :

Passing to connected components, one identifies the long exact sequence as stated.
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The local triviality property will be useful throughout and the Mayer–Vietoris property
will be explicitly utilized in the examples in Section 3.5.

Now we have seen that a map y� W M ! Tw OR specifies a twist �Ry� for the differential
ring spectrum �R and we know how to define the twisted cohomology abstractly via
global sections of this sheaf of spectra. In practice, however, it is useful to understand
how the sheaf �R� is built out of local data, just as it is useful to understand the transition
functions of a vector bundle. Happily, descent allows us to understand how a map to
the stack of twists specifies local gluing data via pullback by a universal bundle over
the twists, although we next need to develop a bit of machinery to make this precise.

2.2 The canonical bundle associated to the Picard 1–groupoid

In this subsection, we describe a canonical bundle of spectra over the Picard 1–
groupoid which comes from the1–Grothendieck construction. While rather abstract at
first glance, we will see that this perspective has many conceptual and computational ad-
vantages. The general framework for this construction was set up by Jacob Lurie in [46].
Here we are simply unpackaging and adapting the general construction to our context.

In [46, Theorem 3.2.0.1], a general Grothendieck construction for 1–categories is
described for each simplicial set S, whose associated simplicial category is equivalent
to a fixed simplicial category Cop . The construction gives a Quillen equivalence
(depending on a choice of equivalence �W S ! Cop )

StC
�
W .sSetC/=S

//
.sSetC/C WUnC

�
;oo

whose right-hand side is a presentation of the 1–category of functors Fun.S;Cat1/.6

The fibrant objects on the left-hand side are precisely Cartesian fibrations X ! S.
Thus the construction associates to each functor xpW C! Cat17 a Cartesian fibration
pW X ! S whose fiber at ��1.c/ can be identified with the 1–category xp.c/.8 Now,
in all 1–categories, ie in Cat1 , there are the stable ones

i W Stab1 ,! Cat1;

6The functors StC� and UnC� are called the straightening and unstraightening functors, respectively.
However, we will not need anything explicit about such an interpretation here.

7Cat1 is the 1–category of all 1–categories.
8The analogy to keep in mind here is the tautological line bundle over CPn , each point of which is

represented by a line in CnC1 , and the associated bundle is then defined by assigning to each one of these
points a copy of that line as the fiber.
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and this inclusion functor admits a right adjoint, Stab, which stabilizes an 1–category.
In particular, we can apply this functor to the codomain fibration C�Œ1�! C, which
gives the tangent 1–category pW T C! C. This map is a Cartesian fibration, and
the associated functor under the Grothendieck construction sends each c 2 Cop to the
stabilization of the slice Stab.C=c/ (see [45, Section 1.1]). In particular, if we take
C D 1Grpd and fix an 1–groupoid X 2 1Grpd, again by the 1–Grothendieck
construction, we get an equivalence

Stab.1Grpd=X /' Stab.Fun.X;1Grpd//:

By the discussion above, the stabilization on the left is precisely the fiber of the
tangent 1–category T .1Grpd/!1Grpd at X. From the stable Giraud theorem (see
[47, Remark 1.2]), one sees that the right-hand side is equivalent to Fun.X; Sp/.

Now bringing all this down to earth, what we have is that a functor xpW X ! Sp is
equivalently an object in the tangent1–category at X. Such an object can be expressed
as a “map”9 pW E ! X, which is to be thought of as a bundle of spectra over X.
Notice also that one can do usual bundle constructions in the tangent 1–category. In
particular, given a map f W X!Y of1–groupoids, the change-of-base functor assigns
to each object E! Y in T .1Grpd/Y an object f �.E/!X in T .1Grpd/X . This
construction gives a pullback diagram in the global tangent 1–category T .1Grpd/
given by

f �.E/

��

// E

��

X
f

// Y

where the 1–groupoids X and Y are embedded via the “global sections functor”
sW 1Grpd ! T .1Grpd/, which assigns each infinity groupoid X to the constant
functor X W �Œ1�!1Grpd and then to the corresponding object in the stabilization.

In our case, we take X to be the Picard 1–groupoid Pictop
R (see the description just

before the remark on page 2908) and define the functor

xpW Pictop
R ! Sp

as the functor which assigns to each module spectrum R� over R the spectrum R� . For
tautological reasons this assignment defines an1–functor and we denote the associated

9The main point here is that E and X live in different categories. However, we can get an actual map
if were to embed X into its tangent 1–category as the terminal object. For ordinary 1–groupoids, this
sends X to the corresponding spectrum †1XC .
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bundle of spectra by � W �top
R ! Pictop

R . Since a map � W � ! Pictop
R is nothing but a

choice of object of Pictop
R , the construction immediately identifies the fiber with R� .

That is, we have the following diagram in the tangent 1–category:

R�

��

// �
top
R

��

�
�
// Pictop

R

We can promote the previous discussion to the context of smooth stacks in various
ways, but perhaps the most transparent way is to consider the “parametrized” version
of the above construction. More precisely, for each smooth manifold M, consider the
functor

(2-2) xpM W Tw�R.M /! Sp

which assigns to each twist �Ry� the spectra of global sections �.M;�Ry� / on M. To this
functor, the above construction gives an associated bundle of spectra pM W ��R.M /!

Tw�R.M / and the fiber at a point � W � ! Tw�R.M / consists of the global sections of
the twist �Ry� on M.

Definition 6 (canonical bundle of sheaves of spectra) We define the canonical bundle
of sheaves of spectra over the stack of twists Tw�R as the presheaf with values in
T .1Grpd/ which associates to each smooth manifold M the object

pM W ��R.M /! Tw�R.M /

associated to the tautological functor xpM given in (2-2) which assigns to each object �Ry�
the sheaf of spectra �Ry� on M. We denote this object by ��R! Tw�R .

Because the stabilization of an 1–category is built as a limit of 1–categories, we
have a canonical equivalence

PSh1.Mf;T .1Grpd//' T .PSh1.Mf//:

By manipulating adjoints and using the fact that the stabilization functor preserves
limits, we see that this equivalence holds even at the level of sheaves. Since the stack of
twists Tw satisfies descent, this implies that (under the Grothendieck construction) the
bundle pM associated to the functor xpM W Tw.M /! Sp must satisfy descent on M.
Thus, we have the following.

Proposition 7 The presheaf M 7! .pM W ��R.M /! Tw�R.M // satisfies descent.
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We now would like to use the canonical bundle over the stack of twists to understand
how twisted differential cohomology theories are pieced together from local data. With
the powerful machinery developed by Lurie, this is now fairly systematic to construct.

Theorem 8 (local-to-global construction of twisted differential cohomology) Let M

be a smooth manifold and let y� W M ! Tw�R be a twist for a differential refinement �R
of a ring spectrum R such that the underlying topological twist � lands in the identity
component of Pictop

R . Then the following sets are in bijective correspondence:

(i) Equivalence classes of differential twists �Ry� for a refinement �R.

(ii) Equivalence classes of pullback bundles E!M by classifying maps y� WM!Tw�R ,

E //

��

��R
��

M
y�
// Tw�R

(iii) Equivalence classes of colimits of the form8̂̂<̂
:̂

E

��

M

9>>=>>;' colim

8̂̂̂<̂
ˆ̂:
� � �

//
//
//

`
˛ˇ
�R�U˛ˇ

��

//
//
`
˛
�R�U˛

��

� � �
//
//
//

`
˛ˇ U˛ˇ

//
//
`
˛ U˛

9>>>=>>>; ;
where the simplicial maps in the top row are completely determined by a commu-
tative diagram

(2-3)

:::
:::

�Œ1�

OO OO OO

//
Q
˛ˇ Tw�R.U˛ˇ/

OO OO OO

�Œ0�

OO OO

//
Q
˛ Tw�R.U˛/
OO OO

with �Œ0�!
Q
˛ Tw�R.U˛/ picking out the trivial twist �R on each U˛ .

Proof The bijection between (i) and (ii) is a simple consequence of the Yoneda lemma,
Map.M;Tw�R/ ' Tw�R.M /, along with the fact that the objects of Tw�R.M / are by
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definition precisely the twists �Ry� of �R. By definition, the global sections of E fit into
a diagram10

�.M IE/ WDMapM .M;E/ //

��

��R.M /

��

�
y�

// Tw�R.M /

and by the1–Grothendieck construction, the fiber of ��R.M /!Tw�R.M / is �Ry� .M /'

�.M IE/.

For the bijection between (ii) and (iii) recall that, by Proposition 4, for each x 2M,
there is a neighborhood x 2 U �M such that each differential twist �Ry� on U is
equivalent to the trivial twist �R. Thus for each such U we can choose a representative
of the class of y� so that the corresponding element in Tw�R.U / is �R. Now let fU˛g be
a good open covering of such open sets. Consider the augmented colimiting diagram
in Sh1.Mf/

� � �
//
//
//

`
˛ˇ U˛ˇ

//
//
`
˛ U˛ // M

y�
// Tw�R:

By the preceding discussion this gives rise to a colimiting diagram in the tangent topos
T .Sh1.Mf// via the global sections functor. Taking iterated pullbacks by the universal
bundle ��R! Tw�R , we get a commutative diagram,

(2-4)

� � �
//
//
//

`
˛ˇ
�R�U˛ˇ

��

//
//
`
˛
�R�U˛

��

// E

��

// ��R
��

� � �
//
//
//

`
˛ˇ U˛ˇ

//
//
`
˛ U˛ // M

y�
// Tw�R

The tangent topos itself is always an 1–topos (see [47, Section 6.1.1]). By the pasting
lemma for pullbacks, all the square diagrams are Cartesian. By the descent axiom for
a topos, the top diagram must be colimiting, since the bottom diagram is colimiting.
Finally, using descent for the stack Tw�R , we have an equivalence of 1–groupoids

lim
n
� � �

Q
˛ Tw�R.U˛ˇ/oo

oo
oo `

˛ Tw�R.U˛/oo
oo

o
' Tw�R.M /:

The limit on the left can be calculated by the local formula for the homotopy limit.
This gives a bijective correspondence between the classes of y� and the commutative
diagrams of the form (2-3), taken up to equivalence.

10In the diagram, MapM .M;E/ denotes the mapping spectrum in the 1–slice over M .
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2.3 Twisted differential theories as flat bundles of spectra

Theorem 8 gives us several different, but equivalent, ways to think about twisted
differential cohomology theories. When taken altogether, one can find a long list of
analogies between these objects and the notion of a line bundle equipped with flat
connection. Ultimately, we would like to say that a twisted differential theory is a
bundle of spectra equipped with flat connection. However, the notion of connection on
a bundle of spectra has not yet been defined, nor is it completely clear how natural such
a definition would be. For this reason, we will first motivate the notion via a list of
analogies. We will then define the connections rigorously and show that indeed twisted
differential theories come equipped with a canonical connection as part of the data.

(I) Local triviality of line bundles Consider a locally trivial, real line bundle over
a smooth manifold pW � ! M. The local triviality means that if we fix a good
open cover fU˛g on M and we are given the choice of transition functions g˛ˇ on
intersections U˛ \Uˇ , then we can piece together the total space of the bundle via the
local trivializations. Moreover, a choice of Čech cocycle g˛ˇ on intersections can be
described in the language of smooth stacks as a commutative diagram

:::
:::

�Œ1�

OO OO OO

g˛ˇ
//
Q
˛ˇ BR�.U˛ˇ/

OO OO OO

�Œ0�

OO OO

//
Q
˛ BR�.U˛/

OO OO

with the vertical maps on the right given by restriction and the maps on the left by the face
inclusions. By descent, this data is equivalently the data of a map (see [24] for similar
constructions) gW M !BR� . We can construct a universal line bundle over BR�

via an action of R� on R. The quotient by this action leads to a stack R==R� and we
have a canonical map R==R�!BR� which projects out R. The statement of local
triviality is then translated into a statement about descent by considering the diagram

(2-5)

`
˛ˇ R�U˛ˇ

��

//
//
`
˛ R�U˛

��

// E

��

// R==R�

��`
˛ˇ U˛ˇ

//
//
`
˛ U˛ // M

g
// BR�
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If E!M is the pullback of the universal bundle map by g , and if all the other squares
are Cartesian, then descent says that the top diagram is colimiting. Conversely, if all
squares but possibly the first are Cartesian and the top diagram is colimiting, then the
first square is Cartesian. This means that the map g gives precisely the data necessary
to construct the total space of the bundle E over M.

(I 0 ) Local triviality of bundles of spectra Comparing the diagram (2-5) with the
diagram (2-4), we see a close analogy between the concept of a locally trivial line
bundle and that of bundle of spectra E ! M classified by a twist y� . In the case
of a twisted differential theory, the cocycles representing the transition functions are
replaced by maps to the stack of twists. These maps encode how to piece together
the total space of the bundle via automorphisms of the underlying theory. Given that
we have local triviality available, almost all the constructions one can do for vector
bundles go through the same way for bundles of spectra, where the basic operations
are now operations on spectra, rather than on vector spaces.

Definition 9 (smash product of bundles of spectra) Let E!M and F !M be
two bundles of spectra over a smooth manifold M with fibers R and K, respectively.
We define the smash product of E and F as the bundle E^F!M with fiber R^K,
given by the colimit

� � �
//
//
//

`
˛ˇ R^K�U˛ˇ

��

//
//
`
˛ R^K�U˛

��

// E ^F

��

� � �
//
//
//

`
˛ˇ U˛ˇ

//
//
`
˛ U˛ // M

where the maps are induced by the corresponding maps for R and K via the smash
product operation

^W Sh1.MfI Sp/� Sh1.MfI Sp/! Sh1.MfI Sp/:

(II) Flat connections on a line bundle Now we would like to add flat connections
to the picture. Let r be a flat connection on the line bundle L!M. A connection is
an operator on the sheaf of local sections

rW �.�IL/! �.�IL˝T �M /

which satisfies the Leibniz rule with respect to the module action of C1.�IR/

on �.�IL/. If the connection is flat, then r gives rise to a complex

LL WD
�
0! �.�IL/ r�!�.�IL˝T �M / r�!�

�
�IL˝

V2
.TM /

�
! � � �

�
:
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With the discussion right after Definition 2 in mind, we have the following.

Lemma 10 The complex LL is an invertible module over the de Rham complex.

Proof To see this, we consider the de Rham complex as an unbounded sheaf of chain
complexes concentrated in nonpositive degrees. Then the tensor product LL˝�

� is
computed as the complex with degree �n given byM

pCqD�n

�
�
�IL˝

Vp
.TM /

�
˝�

�
�I
Vq
.TM /

�
:

The wedge product of forms then gives a map

�W
M

pCqDn

�
�
�IL˝

Vp
.TM /

�
˝�

�
�I
Vq
.TM /

�
! �

�
�IL˝

Vn
.TM /

�
:

To get a map at the level of complexes, we need to check the commutativity with the
differentials. But this follows immediately from the Leibniz rule:

�..r ˝ id˙ id˝ d/.s˝!˝ �//Dr.s˝!/^ �˙ .s˝!/^ d�

Dr.s˝! ^ �/

Dr.�.s˝!˝ �//:

Thus we have a module action of �� on the complex LL . This complex is invertible
with inverse given by the complex L�1

L
, defined to be degreewise identical to LL but

equipped with the differential �r .

(II 0 ) Flat connections on a bundle of spectra Continuing with the analogy for
twisted differential theories, we see that we can think of the K–flat, invertible module L
(see the description right after Definition 2) as the sheaf of local sections of the bundle
of spectra pW E^H.��/!M, where E!M is the underlying bundle of spectra cor-
responding to the topological twist. Being a complex, L comes equipped with a differ-
ential, which we denote by r . We will continue to make a distinction between a bundle
of spectra E� and the corresponding sheaf of spectra R� given by its local sections.

Before defining connections on bundles of spectra, we will need some set up. LetV
�
.T �M / denote the exterior power bundle, viewed as a graded vector bundle over M.

The sheaf of sections of this graded bundle gives the graded algebra of differential
forms on M. Equipping this graded algebra with the exterior derivative gives a DGA,
and an application of the Eilenberg–Mac Lane functor gives a corresponding sheaf of
spectra on M. To simplify notation and highlight our analogy with bundles, we will
denote the corresponding bundle of spectra by the same symbol

V
�
.T �M /.
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Now given a bundle of spectra E!M, the sheaf of sections of the smash product
E ^

V
�
.T �M / admits the structure of a sheaf of HR–module spectrum, inherited

from
V
�
.T �M /. By Shipley’s theorem [66], there is corresponding sheaf of DGAs L,

which is unique up to equivalence such that

H.L/' �
�
�IE ^

V
�
.T �M /

�
;

so that the sections of �.�IE ^
V
�
.T �M // admit the structure of a sheaf of DGAs.

This structure is not unique, but is unique up to a contractible choice. From the definition
of

V
�
.T �M /, we also see that L can be chosen so that it admits the structure of a

module over the de Rham DGA �� . This now allows us to use the familiar structure
of DGAs to construct connections.

Definition 11 (connection on a bundle of spectra) Fix a sheaf of DGAs modeling
the sections of the bundle E ^

V
�
.T �M /. A connection r on a bundle of spectra

E!M is a morphism of sheaves of DGAs

rW �
�
�IE ^

V
�
.T �M /

�
! �.�IE ^

V
�
.T �M /Œ1�/;

satisfying the Leibniz rule

r.! � s/D d.!/ � sC .�1/deg ! ! � r.s/;

where � denotes the module action by differential forms. Here
V
�
.T �M /Œ1� denotes

the shift of the corresponding bundle of spectra.

The following proposition shows that every differential twist gives a flat connection on
the bundle of spectra corresponding to its underlying topological twist.

Proposition 12 Every differential twist �Ry� D .R� ; t;L/ defines a flat connection on
the bundle of spectra E� !M, classified by the topological twist � .

Proof By definition of the differential twist, we have an equivalence

t W H.L/' R� ^HR:

By the Poincaré lemma, we have an equivalence of sheaves of spectra HR'H.��/

so that R� ^HR'R� ^H.��/. Composing equivalences, we see that L indeed gives
the structure of a sheaf of DGAs to the sections of the bundle E ^

V
�
.T �M /!M.

Denote the differential on L by r . Then the shift LŒ1� represents the sections of
the shift E ^

V
�
.T �M /Œ1�, and since r2 D 0, we see that indeed r defines a flat

connection on the bundle.
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(III) Reducing the structure group of a flat line bundle Finally, to complete the
analogy, we need to discuss how the Riemann–Hilbert correspondence enters the picture.
For the line bundle pW L!M, if we take local parallel sections, we get a preferred
choice of local trivialization of the bundle. To show this, fix a good open cover fU˛g
of M and let s˛ be local nonvanishing sections of E satisfying r.s˛/ D 0. Let
�˛.x; v/D .x; s˛.x// be the corresponding trivialization on each U˛ . The transition
functions g˛ˇ written in these local trivializations are then constant, since r.s˛/D 0.
At the level of smooth stacks, this means that the map gW M !BR� can be chosen
to factorize through the stack BR� , where R� denotes the constant sheaf on R� ,
viewed as a set via the discrete topology. In these local coordinates, the flat connection
trivializes. This story can be summarized succinctly in the category of smooth stacks
as follows.

Lemma 13 We have a homotopy commutative diagram

M

��

// [Liner

RHzz

BR�

where the stack [Liner is the stack of flat line bundles, given locally by the Dold–Kan
image of the sheaf of complexes

. � � � ! 0! C1.�IR�/ d
�!�1

cl! 0! � � � /:

The diagonal map RH is an equivalence, given by the Riemann–Hilbert correspondence,
which associates every flat bundle to its corresponding local system.

More generally, we can use the affine structure for flat connections to add globally
defined closed 1–forms to the flat connection and the resulting connection is trivially
compatible with the discrete structure. We can also ask for further compatibility on M

as follows. Consider the inclusion Z=2 ,!R� as the units of Z. If we ask for the flat
connections to have monodromy representation factoring through Z=2, then we are
led to a homotopy commutative diagram,

M

��

// [Liner

RH
��

BZ=2 // BR�
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If we further ask that the chosen connection is globally defined and compatible with
the Z=2–structure, then we are asking for a homotopy commutative diagram,

M

��

// �1
cl

��

BZ=2 // BR� ' [Liner

Then, by the universal property of the homotopy pullback, we have an induced map11

M !B.Z=2/r WDBZ=2�h
BR� �

1
cl:

Remark The stack B.Z=2/r is thus the moduli stack of line bundles equipped with
globally defined flat connection, with monodromy factoring through Z=2. Equivalently,
it is the moduli stack of those (globally) flat bundles whose transition functions (when
written in the trivializations provided by parallel sections) take values in Z=2.

(III 0 ) Reducing the structure group of a flat bundle of spectra The analogue of
the Riemann–Hilbert correspondence for twisted differential theories is essentially the
twisted de Rham theorem, which gives an equivalence of stacks,

PicdR
R ' Pictop

R^H R:

Geometrically, we begin by solving the equation r.s/D 0 locally on M, where r is
the differential on the K–flat invertible module L. In general, we need to know that
such solutions exist locally, and for this, we need to better understand the structure of L.

Proposition 14 (structure of invertible modules over R) If L is an invertible module
over R, then L is locally isomorphic to a product of (possibly shifted) finitely many
copies of R.

Proof Let K invert L, ie be such that L˝R KŠR is an isomorphism of sheaves of
DG R–modules. Then there is a point x 2 U �M such that, in that neighborhood,
L.U /˝R.U /K.U /ŠR.U /. Degreewise this reduces to a collection of isomorphisms

�nW

M
pCqDn

L.U /p˝R.U /0 K.U /q=�
Š
�!Rn.U /;

where � denotes the submodule generated by the relation .r l; k/ D .l; rk/, with
jl jCjr jCjkj D n. Let 12R.U /0 denote the identity. Then, for nD 0, there is a finite

11The superscript h is for “homotopy”, and this should not be confused with the class of twists h .
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sum
P

i;p lp;i˝k�p;i (with the kp;i and lp;i independent in Lp and Kp , respectively)
that is mapped as �0

�P
i;p lp;i ˝ k�p;i

�
D 1. Since d.1/D 0 and � is a chain map,

we must have

0D d.1/D d�0

�X
i;p

lp;i ˝ k�p;i

�
D ��1

�
d

�X
i;p

lp;i ˝ k�p;i

��
:

Since � is an isomorphism, this implies that

0D d

�X
i;p

lp;i ˝ k�p;i

�
D

X
p;i

dlp;i ˝ kp;i ˙ lp;i ˝ dk�p;i :

Since the k�p;i and lp;i were chosen to be independent, this forces dlp;i D 0 and
dk�p;i D 0 for each p and i . Define the complex L0.U / as the subcomplex of L.U /
which is freely generated by lp;i as a graded module over R.U /. Its underlying chain
complex can be identified with the complexM

p;i

R.U /Œp�Š
M

p

hlp;ii;

where hlp;ii is the freely generated R.U /–module on generators lp;i (as i varies)
shifted up by p . The differential d on this complex is inherited from L.U / and,
therefore, satisfies d2D 0. Now the tensor product of the inclusion i W L0.U / ,! L.U /
(which is a degreewise monomorphism) with K.U / is also a degreewise epimorphism.
Indeed, the element

P
i;p lp;i˝k�p;i generates the tensor product as an R.U /–module.

By invertibility, we must have a commutative diagram

L0.U /

Š

��

i
// L.U /

Š

��

L0.U /˝R.U /K.U /˝R.U / L.U / // L.U /˝R.U /K.U /˝R.U / L.U /

with the bottom map a degreewise epimorphism via right exactness of the tensor product.
Thus i is an isomorphism.

Now focusing on the special case where R.U /D��.U IA/, we have the following.

Proposition 15 Every invertible module L over ��.�IA/ is locally isomorphic to a
shift ��.�IA/Œp�.

Proof We need to show that, in this case, we can choose the lp;i in the proof of
Proposition 14 to have a single generator in each degree (ie the indexing set for i
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contains one element). To this end, recall that (locally) the ring C1.�IR/ is freely
generated by a single nonvanishing section. By Proposition 14, L and K locally look
like a finite product of shifts of ��.�IA/. After a careful consideration of the grading
for L, K and ��.�IA/, we find that there is a neighborhood x 2 U �M and free
C1.U IR/–submodules L0.U /p Š

L
i C1.U IR/ and K0.U /�p Š

L
j C1.U IR/

of L.U /p and K.U /�p , respectively, such thatM
p

L0.U /p˝C1.U IR/K0.U /�p Š C1.U IR/I

ie the only elements which can get mapped to smooth functions in ��.�IA/ must
come from the given submodules. Using basic properties of the tensor product, along
with the fact that the isomorphism is that of C1.U IR/–modules, implies that the
indexing sets for i , j and p must contain a single element.

Remark Proposition 15 also implies that the condition of “weakly locally constant”
can be dropped from the definition of the stack Picform

R in Section 2.1, as ��.�IA/
and its shifts are weakly locally constant by de Rham’s theorem.

As a consequence of Proposition 15, we can immediately solve our differential equation.

Corollary 16 The equation r.sp
˛ / D 0 admits a solution which is provided by the

isomorphism in Proposition 15. Moreover, s˛ gives rise to a local isomorphism via the
module action

s˛ ^ .�/W �
�
U˛
.�IA/Œp� Š�!LU˛

:

Proof In the proof of Proposition 15, take s
p
˛ D lp .

It is natural to ask about the resulting structure globally. For that, if we compare the
isomorphisms s˛ on intersections, we get an automorphism

��
U˛ˇ

.�IA/
g˛ˇ

//

s˛^
%%

��
U˛ˇ

.�IA/

LU˛ˇ

s�1
ˇ
^

99

The inverse map s�1
ˇ
^ .�/ takes a section of the form sˇ ^ ! to its coefficient ! .

Thus, the automorphism g˛ˇ is represented as a wedge product with a form. Moreover,
since both s˛ and s�1

ˇ
are chain maps, this form is closed:

dg˛ˇ D d.s�1
ˇ s˛/D s�1

ˇ .r.s˛//D 0:
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By the Poincaré lemma, it is also exact. This results in a degree-one automorphism s˛ˇ ,
represented by a wedge product with a form

d.s˛ˇ ^!/˙ s˛ˇ ^ d! D g˛ˇ ^!:

Continuing to higher intersections, we get a whole hierarchy of automorphisms on
various intersections which are compatible in a prescribed way with the automorphisms
one step down. The compatibility is precisely that of an element in the total complex
of the Čech–de Rham double complex with values in L. More explicitly, on the n–fold
intersecting patch U˛0���˛n

, the sections s˛0���˛n
is closed under the total differential of

the double complex, ie
r.s˛0���˛n

/D˙ıs˛0���˛n�1
:

We now use these sections to consider lifting through the diagram (2-1).

Theorem 17 (twisted differential spectra from local data) Let �RD .R; ch;A/ be a
differential cohomology theory and let L be a K–flat, invertible module over ��.�IA/
with sD .s˛; s˛ˇ; : : : / the corresponding cocycle with values in the Čech total complex
of L. Assume that the isomorphism s˛ identifies L with the unshifted complex
��.�IA/ locally. Then s determines a commutative diagram,

:::
:::

�Œ1�

OO OO OO

�˛ˇ
//
Q
˛ˇ BGL1.R^HR/

OO OO OO

�Œ0�

OO OO

//
Q
˛ BGL1.R^HR/

OO OO

Moreover, if the �’s further lift through the canonical map BGL1.R/!BGL1.R^HR/,
then s determines a commutative diagram,

(2-6)

:::
:::

�Œ1�

OO OO OO

h˛ˇ
//
Q
˛ˇ Tw�R.U˛ˇ/

OO OO OO

�Œ0�

OO OO

h˛
//
Q
˛ Tw�R.U˛/
OO OO

and hence a twisted differential cohomology theory �R.�I y�/, by Theorem 8.
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Proof For each ˛ , the map s˛ is an isomorphism of ��.�IA/–modules

s˛W �
�
U˛
.�IA/ Š�!LU˛

over the patch U˛ . Precomposing this map with the canonical inclusion

A ,!��.�IA/

yields a morphism a˛ of ��.�IA/ modules and therefore determines an edge inQ
˛ PicdR�R .U˛/. Consider the diagram determined by the transition forms g˛ˇ

R^HR
ch

//

�˛ˇ

��

H.��
U˛ˇ

.�IA//
s˛

//

g˛ˇ

��

H.LU˛ˇ
/

R^HR
ch

// H.��
U˛ˇ

.�IA//
sˇ

//
kk

H.LU˛ˇ
/

with the bottom curved arrow giving a homotopy inverse for the Chern character map
and the composition determining the map �˛ˇ . A choice of differential form s˛ˇ

in ��.U˛ˇIA/ satisfying ds˛ˇ D g˛ˇ determines a homotopy that fills this diagram.
Indeed, such a form gives a degree-one automorphism

(2-7) s˛ˇ ^ .�/ 2Z
�
homCh.�

�
U˛
.�IA/; ��U˛

.�IA//
�
1
;

via the module action, where Z is the functor Ch!ChC which truncates an unbounded
complex and puts cycles in degree zero. Since ds˛ˇ D g˛ˇ , one easily checks that the
image of the automorphism s˛ˇ ^ .�/ under the differential on the complex (2-7) is
indeed the automorphism of degree zero given by g˛ˇ ^ .�/. Applying the Dold–Kan
functor to the above positively graded chain complex gives an edge in the automorphism
space Aut.��

U˛
.�IA/;��

U˛
.�IA//. Then pre- and postcomposing with ch and ch�1

give rise to an edge in Aut.R^HR;R^HR/ with boundary .id; �˛ˇ/.

The data described above is manifestly that of a map

s˛ˇW �Œ1���Œ1� !
Y
˛ˇ

PicdR�R .U˛ˇ/
which connects the restrictions of the maps a˛ and aˇ on intersections. Continuing
the process, one identifies the higher forms s˛ˇ , etc, with higher-degree automor-
phisms and gets compatibility with the lower-degree automorphisms analogously. Now,
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recalling the diagram (2-1), the resulting structure is precisely a commutative diagram

(2-8)

:::
:::

�Œ1���Œ1�

OO OO OO

a˛ˇ
//
Q
˛ˇ PicdR�R .U˛ˇ/

OO OO OO

�Œ1���Œ0�

OO OO

a˛
//
Q
˛ PicdR�R .U˛/

OO OO

such that

� the evaluation at one of the two endpoints of the 1–simplex �Œ1� factors through the
composite map BGL1.R^HR/ ,! Pictop

R^H R! PicdR�R , hence lifting to a commutative
diagram,

(2-9)

:::
:::

�Œ1�

OO OO OO

�˛ˇ
//
Q
˛ˇ BGL1.R^HR/

OO OO OO

�Œ0�

OO OO

//
Q
˛ BGL1.R^HR/

OO OO

� and the evaluation at the other endpoint factors through the map Picform�R ! PicdR�R ,
lifting to a commutative diagram,

(2-10)

:::
:::

�Œ1�

OO OO OO

s˛ˇ
//
Q
˛ˇ Picform�R .U˛ˇ/

OO OO OO

�Œ0�

OO OO

s˛
//
Q
˛ Picform�R .U˛/

OO OO

If the �’s factor further through the rationalization map BGL1.R/! BGL1.R^HR/,
then by definition of the twisting stack Tw�R (ie since it is a pullback), the diagrams
(2-9) and (2-10) indeed furnish the commutative diagram (2-6).
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Remark (i) Now completing the analogy, we see the stacks Pictop
R , PicdR

R 'Pictop
R^H R

and Picform
R (see the diagram (2-1)) can be thought of as the analogues of the stacks

BZ=2, BR�' [Liner and �1
cl , respectively (see also Table 1). The stack of differen-

tial twists Tw�R is then analogous to BZ=2r . This comparison indicates that we should
think of the twisting stack Tw�R as the moduli stack of bundles of spectra E !M,
equipped with a globally defined flat connection encoded by the differential on the
invertible, K–flat, locally constant module L, whose corresponding local coefficient
system is given by the underlying topological twisted theory R.�I �/.

(ii) The theory of bundles of spectra can be viewed as a generalization of the theory
of ordinary line bundles, so that Table 2 is not just an analogy. Indeed, the sheaf of
sections of a line bundle can be viewed as a sheaf of DGAs, concentrated in degree
zero. Application of the Eilenberg–Mac Lane functor gives a sheaf of ring spectra,
which in turn gives rise to a trivial bundle over any fixed manifold M. The fiber of this
bundle is then easily computed as the Eilenberg–Mac Lane spectrum HR.

(iii) In [33], we found that the stack B.Z=2/r gives the twists for smooth Deligne
cohomology, so that the constructions here indeed represent a generalization to other
generalized cohomology theories.

2.4 The general construction of the spectral sequence 2AHSS y�

The general machinery established in [32] works in the twisted case as well with some
modifications. More precisely, let �RD .R; c;A/ be a differential ring spectrum. If we
are given a smooth manifold M, equipped with a map

y� W M ! Tw�R
to the stack of twists, then �Ry� D .R� ; ch� ;L/ is a twisted differential spectrum which
lives over the manifold M ; ie it is an object in Sh1.M I Sp/. Fix a good open
cover fU˛g of the smooth manifold M. By the second property in Proposition 5, the
restrictions of �R� to the various contractible intersections can be identified with the
untwisted differential theory �R.

This locally trivializing phenomenon is really the key observation in constructing the
differential twisted AHSS and is similar to the familiar analogue in spaces. Indeed, the
topological twisted AHSS has E2 –page which looks like cohomology with coefficients
in the underlying untwisted theory, and again this amounts to the fact that the twisted
R–theory of a contractible space reduces to untwisted R–theory.
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We now sketch the filtration in the twisted context. Essentially, this is the same filtration
as considered in [32], but where each level of the filtration is equipped with a map to
the stack of twists Tw�R .

Remark (the filtration for differential twisted spectra) Let us consider a smooth
manifold M and the Čech nerve of a cover fU˛g of M. The restriction of a twist
y� W M ! Tw�R to various intersections of the cover gives a simplicial diagram in the
slice Sh1.Mf/=Tw�R . That is, we have the simplicial diagram

� � �
//

//

////

// `
˛ˇ U˛ˇ

// //

&&

//
`
˛ˇ U˛ˇ

////

��

`
˛ U˛

yy

Tw�R
where the maps to Tw�R are given by the restriction of the twisted spectrum �Ry� to
various intersections. Let Fp denote the skeletal filtration on this simplicial object. In
this case, the successive quotients Fp=Fp�1 take the form

Fp=Fp�1 '
�
y� jU˛0���˛p

W †
p
Tw�R

�W
˛0���˛p

.U˛0���˛p
/C
�
! Tw�R�:

Using the properties of �Ry� D .R� ; t;L/, we see that the connected components of the
global sections of �Ry� are given by�R0

�
†

p
Tw�R

�W
˛0���˛p

.U˛0���˛p
/C
�
I y�
�
Š

M
˛0���˛p

�R�p.U˛0���˛p
I y�/Š

M
˛0���˛p

�R�p.U˛0���˛p
/:

Here the last isomorphism uses local triviality (Proposition 4) since U˛0���˛p
is con-

tractible as a space.

The same arguments used in the ordinary AHSS hold for this filtration and we have the
following.

Theorem 18 (AHSS for twisted differential spectra) Let M be a compact manifold
and let �Ry� W M ! Tw�R be a twist for a differential ring spectrum �R. Then:

(i) There is a half-plane spectral sequence 1AHSSy� with E2 –page given by

E
p;q
2
D

8̂<̂
:

H p.M IR
�q�1

U.1/
.�// for q < 0;

H p.M IR�q.�// for q > 0;

H p
�
M IL.�R0.�I y�//

�
for q D 0;

where the group H p
�
M IL.�R0.�I y�//

�
is the degree-zero Čech cohomology

with coefficients in the sheafification of the presheaf �R0.�I y�/.
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(ii) For p D 0, the group H 0.M IL.�R0.�I y�/// is just the evaluation of the sheaf
L.�R0.�I y�// on M and can be computed as the kernel of the map

(2-11)
Y
˛

�R0.U˛I y�/
r˛ˇ�rˇ˛
�����!

Y
˛ˇ

�R0.U˛ˇI y�/;

where fU˛g is a good open cover of M, the map r˛ˇ is the restriction induced
by the inclusion U˛ˇ ,! U˛ , and rˇ˛ is induced by U˛ˇ ,! Uˇ .

(iii) This spectral sequence converges to the graded group E
p;q
1 associated to the

filtration Fp described in the remark on page 2930.

Convergence of spectral sequences is studied in general in [10; 55]. In our case, conver-
gence is understood in the same sense as in the untwisted differential case [32], similarly
to how in the classical topological case convergence in twisted K–theory [58; 59; 9]
has been understood in the same way as for untwisted K–theory [7]. In the differential
case, convergence is guaranteed by virtue of the fact that M is compact and, therefore,
admits a finite good open cover. This is analogous to the classical topological case,
where the underlying space is assumed to be a CW complex of finite dimension. Note,
however, that in both the topological and the differential case this can be extended to
certain infinite dimensional spaces and manifolds, respectively, by taking appropriate
direct limits. However, we will not consider this extension explicitly here.

Remark The E0;0–entry involves the twisted theory as coefficients. This might seem
to disagree with the local triviality condition for the twisted theory (ie one might expect
coefficients in the untwisted theory to appear). However, note that moving from the
E1 –page to the E2 –page, we have to find the kernel of the map (2-11) as explained
in [32]. The isomorphisms which identify the theory locally with the untwisted theory
do not commute with the usual restriction maps and so we cannot identify the result
with its analogue in the untwisted case. However, we can compute E

0;0
2

alternatively
as the kernel

E
0;0
2
Š ker

�Y
˛

�R0.U˛/
r˛ˇ��˛ˇ
�����!

Y
˛ˇ

�R0.U˛ˇ/

�
;

where the maps �˛ˇ are the transition maps induced from the local trivializationsQ
˛ˇ
�R0.U˛ˇ/

�˛ˇ
//

s˛ Š

��

Q
˛ˇ
�R0.U˛ˇ/

Q
˛ˇ
�R0.U˛ˇ; y�/

Q
˛ˇ
�R0.U˛ˇ; y�/

s�1
ˇ

Š

OO
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2.5 Properties of the differentials

In this section, we would like to describe some of the properties which the differentials in
the 1AHSSy� for twisted differential cohomology theories enjoy. Some of these properties
involve the module structure of a twisted differential theory over the untwisted theory.
We have not yet described the module structure. To this end, we note that for a twisted
differential theory �R� D .R� ; t;L/, both R� and L are modules over R and ��.�IA/,
respectively. The map t is an equivalence in Picform�R and so is, in particular, a map
of module spectra. In the same way one defines a differential refinement of a ring
spectrum (see [15; 71]), one sees that the twisted theory �R� admits module structure
over �R. At the level of the underlying theory, we have maps

(2-12) �W �Rn.M /� �Rn.M I y�/! �RnCm.M I y�/;

and so at least it makes sense to talk about the behavior of the differentials with respect
to the module structure.

Some of the classical properties of the differentials in the spectral sequence for twisted
K–theory are discussed in [8; 9; 40]. Many of the analogous properties also hold for
twisted Morava K–theory [63]. We will first review these properties and then discuss the
differential refinement. Let R� be a twist for a ring spectrum R. In general, we have:

(i) Linearity Each differential di is an R�.�/–module map.

(ii) Normalization The twisted differential with a zero twist reduces to the un-
twisted differential (which may be zero).

(iii) Naturality Let R� be a twist of R on X. If f W Y ! X is continuous then
f �R� is a twist of R on Y and f induces a map of spectral sequences from
the twisted AHSS for R� to the twisted AHSS for f �R� . On E2–terms it is
induced by f � in cohomology, and on E1–terms it is the associated graded
map induced by f � in the twisted R–theory R� .

(iv) Module The AHSS� for R� is a spectral sequence of modules for the untwisted
AHSS. Specifically, di.ab/D du

i .a/bC .�1/jajadi.b/ where a comes from the
untwisted spectral sequence (with untwisted differentials du

i ).

All of these properties lift to the twisted differential case with the natural modifications
needed in order to make the statement sensible. We will spell this out in detail.

Proposition 19 (properties of the differentials in 1AHSSy� ) Let �R be a differential
ring spectrum refining a ring spectrum R. Let �Ry� be a differential twist. Then we have
the following properties:

Algebraic & Geometric Topology, Volume 19 (2019)



Twisted differential generalized cohomology theories 2933

(i) Linearity Each differential di is an �R�.�/'R.�/–module map.

(ii) Normalization The twisted differential with a zero twist reduces to the un-
twisted differential (which may be zero).

(iii) Naturality If f W M !N is smooth map between compact manifolds, f � in-
duces a map of spectral sequences from the 1AHSSy� for .N;�Ry� / to the 1AHSSf �y�
for .M; f ��Ry� /. On E2–terms it is induced by f � in Čech cohomology, and on
E1–terms it is the associated graded map induced by f � in the twisted theory �Ry� .

(iv) Module The 1AHSSy� for .N;�Ry� / is a spectral sequence of modules for the
untwisted 1AHSS . Specifically, di.ab/ D du

i .a/b C .�1/jajadi.b/ where a

comes from the untwisted spectral sequence (with differentials du
i ).

Proof To prove (i), note that the map � in (2-12) gives �R.M I y�/ the structure of
a module over �R�.�/ for each M by precomposing with the map induced by the
terminal map M !�. Clearly this structure is natural with respect to maps of pairs
f W .M; f �y�/! .N; y�/, with � a twist on M. Therefore, the maps in the exact couple
defining the 1AHSSy� commute with the module action. Since the differentials are
defined via these maps, the claim follows.

Property (ii) follows immediately by noting that the zero twist y� W M ! � ! Tw�R
picks out the triple .R; c;A/, where the ring spectrum R and the algebra A are thought
of as modules over themselves.

Property (iii) also follows directly, as a smooth map f W M!N induces a morphism of
stacks f �W Tw�R.N /!Tw�R.M /. This map sends the sheaf of spectra �R� D .R� ; t;L/
on N to the sheaf of spectra f ��R� D .f �R� ; f �.t/; f �.L// on M via the change-
of-base functor

f �W Sh1.M I Sp/! Sh1.N I Sp/:

Moreover, the filtration Fp leads to a pullback filtration f �Fp which is the simplicial
diagram formed from the nerve of the cover ff �1.U˛/g. This induces the desired
morphism of spectral sequences. Considering the relevant diagram that gives the Čech
differential on the E1 –page [32] and comparing with the corresponding diagram for
the cover ff �1.U˛/g one immediately sees that f gives rise to the induced map in
Čech cohomology on the E2 –page.

The proof for property (iv) follows verbatim as in the proof for ring spectrum presented
in the differential untwisted case [32], by simply replacing the product map with the
module map.

Algebraic & Geometric Topology, Volume 19 (2019)



2934 Daniel Grady and Hisham Sati

3 The AHSS in twisted differential K–theory

By the discussion in the introduction, and via the general construction in [54], given a
cohomology theory E (represented by an E1–ring spectrum), the action by automor-
phisms GL1.E/ on E gives rise to a bundle of spectra over the quotient, which is classi-
fied by a map into the delooping BGL1.E/. This space classifies the twists of the theory.
For K–theory, by [4] (see also [40]), there is essentially a unique equivalence class of
maps of Picard 1–groupoids K.Z; 2/! GL1.K/, which gives the most interesting
part of the twists. Delooping the embedding gives a map B2U.1/ ,!BGL1.K/ and we
consider only the twists arising as maps to B2U.1/, ie degree-three cohomology classes.

3.1 Twisting differential K–theory by gerbes

In this section, we give a comprehensive account of the twists in differential K–theory
and discuss the situation from various angles, unifying certain perspectives taken up in
[16; 19; 37; 56]. Our end goal in this section will be to show that differential K–theory
can indeed be twisted by gerbes, equipped with connection. This is implicit in [16],
but here we rephrase this result in a way that makes contact with the moduli stack of
gerbes B2U.1/r (see [65; 24; 62]).12

We begin by recounting the topological case. Let K denote the complex K–theory
spectrum. The delooping of the units BGL1.K/ split into three factors. The factor
which has attracted the most attention is the Eilenberg–Mac Lane space K.Z; 3/ ,!

BGL1.K/. Now, recalling that PicR Š BGL1.R/ � �0.PicR/, the inclusion at the
identity component of PicR then gives rise to a canonical map,

(3-1) B2U.1/'K.Z; 3/ ,! PicK:

The left-hand side can be identified with the moduli space of bundles with fiber PU.H/,
the projective unitary group acting on an infinite-dimensional, separable Hilbert space H .
Indeed, a map hW M ! B2U.1/ classifies a fibration BU.1/ ,! P � M. The
fiber BU.1/ is a classifying space of complex line bundles and has the homotopy type
of PU.H/. Alternatively, we can think of B2U.1/ as the classifying space of topological
gerbes. Now PU.H/ acts on the space of Fredholm operators Fr, which is well known

12While this might seem like a further undesirable abstraction, it will be more of a computational and
applicable type of abstraction. For example, it will make it relatively easy to write down local cocycle data
for the twist.
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to be a classifying space for K–theory (see [6]). Given a map hW M ! B2U.1/, this
action leads to an associated bundle of spectra Eh!M, which we can regard as a
bundle of spectra with fiber K. Taking the homotopy classes of sections of this bundle
gives the twisted K–theory K.M I h/.

This is the well-known description for twisted topological K–theory established by
Atiyah and Segal in [8]. In order to make contact with the stacky differential spectra
provided by Bunke and Nikolaus, it is useful to take a different perspective. The
transition from the above approach to the approach of [16] is achieved by considering
the bundle Eh ! M as a sheaf of spectra on M via its local sections. For an
object .i W N !M / 2Mf=M, the value of this sheaf at N is given by the function
spectrum Kh.N / WD �.N; i�.Eh//. One can show that the assignment leads to a
functor Mf=M ! Sp and satisfies descent.13 Since every point on a manifold M

admits a geodesically convex neighborhood, this immediately implies that this sheaf
of spectra is locally constant and is equivalent to the untwisted K–theory spectrum
(regarded as a geometrically discrete sheaf of spectra) locally. As we have seen in
Sections 2.1 and 2.2, the actual equivalences which identify the spectrum with untwisted
K–theory locally can be regarded as a local trivialization of the bundle Eh!M. In
this context, descent can be summarized by the diagram in T .1Grpd/

(3-2)

� � �

a
˛ˇ

K�.U˛\Uˇ\U /

��

//////

a
˛ˇ

K�.U˛\Uˇ/
// //

��

a
˛

K�U˛

��

// Eh

��

// K==PU.H/

��

� � �

a
˛ˇ

U˛\Uˇ\U
// ////

a
˛ˇ

U˛\Uˇ
//// U˛ // M

h
// K.Z; 3/

where each square is Cartesian and the top and bottom simplicial diagrams are colimiting.
This gives us all the data needed to construct the twisted theory in terms of local data.
The simplicial maps in the top diagram are determined by the twist hW M !K.Z; 3/

which, more explicitly, is determined by a Čech 3–cocycle on M via descent. What
we have described so far is the relationship between the bundle of spectra Eh!M

associated to a classifying map hW M !K.Z; 3/ and the locally constant sheaf Kh

given by its sheaf of sections.

13Descent follows from the definition of the coverage via good open covers, along with homotopy
invariance for K .
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The next step is to go differential. Crucially, doing so involves a sort of twisted
de Rham theorem which relates twisted K–theory to the complex of periodic forms
.��Œu;u�1�.M /; dH / equipped with the differential dH D d CH, where H is a
closed 3–form and the differential acts by

!2kuk
C!2k�2uk�1

7! .d!2k CH ^!2k�2/u
k :

To understand this interaction, it is important to consider the untwisted case first. K–
theory is an example of a differentiably simple spectrum (see [16]). For such untwisted
spectra, there is a rather canonical differential refinement, which in this case is given
by taking A D ��.K/˝R Š RŒu;u�1�. The usual Chern character map gives an
isomorphism of rings

chW .K^HR/�.M / Š�!H�.��Œu;u�1�.M //;

where �Œu;u�1�.M / is the periodic de Rham complex, equipped with the usual
differential. This map refines to a morphism of sheaves of spectra and gives rise to the
triple �KD .K; ch;RŒu;u�1�/, which is a differential spectrum representing differential
K–theory.

Returning to the twisted case, we begin with a closed 3–form H, defined on a smooth
manifold M and consider the twisted periodic complex .��Œu;u�1�; dH / (as a sheaf
of DGAs on M ). This complex defines a K–flat, invertible module over the untwisted
complex ��Œu;u�1� (see [16]), with inverse given by .��Œu;u�1�; d�H /. From the
discussion in Section 2.3, we see that the differential dH should be thought of as a
connection on the bundle of spectra Eh ^

V
�
.T �M /! M and the local parallel

sections of this connection should give rise to a system of local trivializations of the
bundle. We have the following well-known fact which will be essential for a detailed
description of the trivialization.

Lemma 20 Let H be a closed 3–form on a finite-dimensional smooth manifold M

and let fU˛g be a good open cover of M. Let B˛ be a local potential (ie trivialization)
for H. Then the local sections given by the formal exponentials

e�B˛ D 1�B˛C
1

2!
B2
˛ � � � �

are twisted closed over U˛ . Moreover, they define isomorphisms of modules via the
module action

e�B˛ ^ .�/W .��U˛
Œu;u�1�; d/! .��U˛

Œu;u�1�; dH /:
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fiber R
L

M
U˛

Uˇ

�˛
�ˇ

R R

�˛.U˛/ �ˇ.Uˇ/

�ˇ�
�1
˛ .x; v/D .x;g˛ˇ.x/v/

fiber K^HR
Eh ^

V
�
.T �M /

M
U˛

Uˇ

U

�˛.!/D eB˛ ^!

�

�ˇ

fiber RŒu;u�1�

eA˛ eAˇ

eA˛ˇ

�˛.U˛/

� .U /

�ˇ.Uˇ/

HRŒu;u�1�^
V
�
.T �U˛/ HRŒu;u�1�^

V
�
.T �Uˇ/

Figure 1: Flat line bundle (top) versus twisted differential cohomology theory (bottom).

Proof Applying the twisted differential to our section gives

.d CH /.e�B˛ /D d.e�B˛ /CH ^ e�B˛ D�dB˛eB˛ CH ^ e�B˛ D 0;
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so that e�B˛ is indeed twisted closed. Now the map e�B˛ ^ .�/ defines a map of
modules since, for each smooth map f W N !U˛ the pullback form f �e�B˛ satisfies

.d Cf �H /.f �e�B˛ ^!/

D df �.e�B˛ /^!Cf �.H ^ e�B˛ /^!

D f �.�dB˛ ^ e�B˛ /^!Cf �.e�B˛ /^ d!Cf �.H ^ e�B˛ /^!

D f �.e�B˛ /^ d!:

Consequently, f �.e�B˛ /^.�/ defines a chain map on N and, as a result, e�B˛ ^.�/

defines a morphism of sheaves of chain complexes. That this map commutes with the
module action is obvious from the definition. Moreover, it is easy to check that this
map admits an inverse given by eB˛ ^ .�/.

Thus, we see that the forms e�B˛ play the role of the s˛ in the general discussion
from Section 2.3. We depict this in Figure 1.

Taking R to be K in Theorem 17, we get an induced diagram,
:::

:::

�Œ1�

OO OO OO

�˛ˇ
//
Q
˛ˇ BGL1.K^HR/

OO OO OO

�Œ0�

OO OO

//
Q
˛ BGL1.K^HR/

OO OO

To see exactly what the maps in this diagram look like, let us choose 1–forms A˛ˇ ,
defined on intersections of the fixed open cover fU˛g, which satisfy

dA˛ˇ D B˛ �Bˇ;

and smooth functions satisfying df˛ˇ D A˛ˇCAˇ �A˛ . A choice of such data
defines a representative for the closed 3–form H in the total complex of the Čech–
de Rham double complex. Then we have an induced commutative diagram,

.��
U˛ˇ

Œu;u�1�; d/
exp.�B˛/

,,

exp.dA˛ˇ/

��

.��
U˛ˇ

Œu;u�1�; dH /

exp.Bˇ/rr

.��
U˛ˇ

Œu;u�1�; d/
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and a similar (3–dimensional) diagram for the triple intersections. Now the equivalence
chW K^HR!RŒu;u�1� has a pleasant geometric interpretation arising from the fact
that K–theory represents isomorphism classes of vector bundles. Indeed, if we take the
model for K–theory whose zero space is that of Fredholm operators (see [6]), then a map

f W M ! Fr

defines a virtual vector bundle .E	F /!M whose fiber at x 2M is given by the
virtual difference ker.f .x//� coker.f .x//. If we fix curvature 2–forms F and G for
the bundles E and F, respectively, then the Chern character form

ch.E	F /D tr
�
exp

�
i

2�
F � i

2�
G
��

constitutes a geometric representative for chW K^HR!H.��Œu;u�1�/, defined at
the level of sheaves of spectra (see [17] for a discussion on the cycle map). In order to
spell out the data guaranteed by Theorem 17 in the case of K–theory, let us consider
the task of finding a homotopy commutative diagram

(3-3)

K

˝L˛ˇ

��

// K^HR
ch
//

˝L˛ˇ^id

��

H.��
U˛ˇ

Œu;u�1�/
e�B˛

//

e
dA˛ˇ

��

H.��
U˛ˇ

Œu;u�1�; dH /

K // K^HR
ch
// H.��

U˛ˇ
Œu;u�1�/

e
�Bˇ

//kk H.��
U˛ˇ

Œu;u�1�; dH /

where L˛ˇW U˛ˇ! PU.H/, giving an action on sections �.U˛ˇIK/ via14

.E˛	F˛/ 7! .L˛ˇ˝Eˇ	L˛ˇ˝Fˇ/;

with E˛	F˛ and L˛ˇ˝Eˇ	L˛ˇ˝Fˇ being virtual difference bundles on double
intersections. After choosing connections on each bundle and, using the fact that the
Chern character defines a ring homomorphism, we get the following transformation at
the level of forms:

ch.L˛ˇ˝Eˇ	L˛ˇ˝Fˇ/D ch.L˛ˇ/^ ch.Eˇ/� ch.L˛ˇ/^ ch.Fˇ/

D ch.L˛ˇ/^ .ch.Eˇ/� ch.Fˇ//:

Here we have ch.L˛ˇ/D exp..i=2�/f˛ˇ/ and dA˛ˇ D .i=2�/f˛ˇ a closed 2–form
on U˛ˇ , with f˛ˇ giving the curvature of L˛ˇ . Thus, if H represents the curvature of

14Note that although one can describe the action this way, twisted K–theory classes cannot generally
be represented by twisted vector bundles, unless the Dixmier–Douady class corresponding to the full gerbe
associated to the L˛ˇ is torsion.
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a gerbe then we can choose cocycle data�H D .g˛ˇ ;A˛ˇ;B˛/
such that A˛ˇ defines the connection of a line bundle on intersections, whose transition
functions g˛ˇ on an intersecting patch U˛ˇ \U satisfy the Čech cocycle condition
on fourfold intersections. In this case, we are able to construct such a homotopy com-
mutative diagram (3-3) and the forms A˛ˇ and g˛ˇ define the homotopies and higher
homotopies, respectively, filling the diagram. We now summarize the above discussion.

Proposition 21 (twisted differential K–theory from gerbe data) Let yhW M !

B2U.1/r be a gerbe on M, with corresponding cocycle data given by the triple
.g˛ˇ ;A˛ˇ;B˛/ satisfying the usual gerbe compatibility. Then yh determines a twisted
differential K–theory spectrum �Kyh , unique up to a contractible choice.

3.2 The differential K–theory twisted Chern character

In this section we will consider the effect of rationalization, making contact with
information encoded in the differential form part of twisted differential K–theory. To
begin with, tensoring with the rationals in the underlying topological K–theory gives
the isomorphisms

.K0
˝Q/.X /ŠQ�

Y
k>0

H 2k.X I�2k.BU/˝Q/

DH even.X IQ/;

.K1
˝Q/.X /ŠH odd.X IQ/:

The rationalized Chern character is chQW K
�.X IQ/!H�.�IQ/, so that the Chern

character can be viewed as the composite map (see [1])

K�.X /!K�.X /˝QŠK�.X IQ/
chQ
���!H�.X IQ/;

where the isomorphism follows from the fact that Q is torsion-free. A key ingredient
in the identification of the differentials in the spectral sequence for twisted K–theory
is the twisted Chern character map

chH W K.�I h/!H even.�IH /;

which is a natural transformation from h–twisted K–theory to the H–twisted de Rham
cohomology of a space, with H a differential form representative for the rationalization
of h. In order to identify the differentials in the AHSS, we will need a differential
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refinement of this map. To this end, let us recall (see [18; 17]) that 2–periodic rational
cohomology admits a differential refinement via the homotopy pullback

(3-4)

bHQŒu;u�1� //

��

H.��0�
�˝RŒu;u�1�/

��

HQŒu;u�1�
i

// HRŒu;u�1�

where ��0 denotes the truncation functor which discards all information in negative
degrees. This leads to a differential cohomology diamond diagram [67] and, in particular,
to an exact sequence

0!H odd.M IR=Q/! �H even.M IQ/!�even
cl .M IR/:

If we apply the AHSS to this differential spectrum, then we get the following.

Lemma 22 ( 1AHSS for refinement of 2–periodic rational cohomology) The E2 –
page for refined 2–periodic rational cohomology bHQ Œu;u�1� looks as follows:

(3-5)

1

0
L

k2N �
2k
cl .M /˚Q

�1 H 1.MIR=Q/ H 2.MIR=Q/

�2 0 0 0

�3 H 4.MIR=Q/

�4

d2

In particular, the form of the spectral sequence is exactly the same as for �K , but
with Q’s appearing as the quotients instead of Z’s. In this case, all the odd differentials
vanish, while the effect of the even ones, which were calculated in [32], was shown
there to extract the class of the singular cocycle15

! 7!

�
c 7!

I
c

!2k mod Q

�
;

15In [32], the calculation was performed for ordinary differential cohomology, but the same calculation
applies to Q–coefficients.
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where ! D !0C!2C � � �!2k C � � � . There is a differential refinement of the ordinary
Chern character map to bchW �K.�/! �H even.�IQ/;

where �H even.�IQ/ is the cohomology theory represented by the differential spec-
trum (3-4) (see [32; 15] for details). The induced map at the level of spectral sequences
for untwisted K–theory does not yield much information since the only nonvanishing
differentials are the even ones, which say something about the values that the Chern
character can take on cycles. With rational coefficients, this simply says that the Chern
character should take rational values, which is already the case.

We now move to the twisted case. Here, we would like to get a differential refinement of
the twisted Chern character and see what new conditions arise from the corresponding
morphism of AHSSs. To this end, notice that if yh is a twist of �K , then under the map

r W B2U.1/r ŠB2.R=Z/r !B2.R=Q/r

induced by the inclusion r W Z ,! Q, we get a twist of �H even.�IQ/. Recall from
Theorem 8 that the Čech cocycle data for yh gave the correct gluing conditions for the
differential spectrum associated with differential K–theory. More precisely, we have a
colimiting diagram in T .Sh1.Mf//

� � �
//////
`
˛ˇ
�K�U˛ˇ

��

////
`
˛
�K�U˛ //

��

�Kyh
��

� � �
//////
`
˛ˇ U˛ˇ

////
`
˛ U˛ // M

where the maps in the diagram are completely determined by the cocycle data for the
twist yhW M ! B2U.1/r . Applying the differential Chern character map locally to
each restriction �K�U˛0���˛n

and using the fact that �H even.�IQ/ is itself twisted by yh,
we get an induced morphism of bundles,

(3-6)

�Kyh bchyh
//

  

�HQŒu;u�1�yh

yy

M

Definition 23 (twisted differential Chern character) We define the twisted differential
Chern character bch yh as the map in the diagram (3-6).
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We would like to get some information about the induced map at the level of spectral
sequences. However, we first need to identify what types of differentials arise for�H even

Q .�I yh/. Since this theory refines H even
Q .�I h/, we expect the differentials to be

related, and indeed they are. The E2 –page for �H even
Q .�I yh/ takes the same form as (3-5),

with the only difference occurring at the level of the form part in bidegree .0; 0/. Here,
we have differentials on the E2k –page of the form

(3-7) d2k W �
even
dH –cl;Z.M /!H 2k.M IR=Q/;

where �even
dH –cl;Z.M / is the group of twisted-closed differential forms of even degree,

whose degree-zero component is a constant integer-valued function, ie an element
! 2�even

dH –cl;Z.M / satisfies

.d CH /.!/D d!0C .d!2CH ^!0/C � � � D 0;

and !0 2 Z is a constant. In the twisted case, the differentials d2k in the spectral
sequence are modified from the untwisted case. We will explore this in the following
sections.

3.3 Identification of the low-degree differentials

The formula for the first differential d3 in the twisted AHSS for K–theory can be
obtained by observing that the differential defines a cohomology operation and that the
only cohomology operations (for spaces equipped with maps to K.Z; 3/) which raise
the degree by 3 are given by elements of

H kC3.K.Z; k/�K.Z; 3/IZ/ŠH pC3.K.Z; k/IZ/˚H pC3.K.Z; 3/IZ/˚Z;

where the third summand of the right-hand side is generated by the product of the
generators for H k.K.Z; k/IZ/ and H 3.K.Z; 3/IZ/. This implies the formula

d3 D Sq3
ZC.�/[�hW H p.X IZ/DE

p;q
3
!E

pC3;q�2
3

DH pC3.X IZ/;

where � is an integer which has yet to be determined. To compute this integer, it is
sufficient to consider the spectral sequence on the sphere S3 , where one computes
�D�1 (see [9]).

We would like to apply similar reasoning in the differential setting. To do this, however,
we should take some care. The AHSS for differential cohomology theory has the addi-
tional datum of the level at which we are computing the theory. For example, in the case
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of K–theory, we have a different spectral sequence for each of the differential spectra

�K.n/ WD .†nK; ch;RŒu;u�1�Œn�/;

where we have shifted both the K–theory spectrum and the complex RŒu;u�1� by n.
The degree-zero cohomology of this differential spectrum computes the degree n

differential K–theory of the underlying manifold. This is not really too surprising
since the spectral sequence is based off the Mayer–Vietoris sequence (as is the AHSS
for ordinary K–theory). In [17], the Mayer–Vietoris sequence is considered and this
sequence depends on the degree of the cohomology theory in question. Therefore, we
will have to differentially refine one degree at a time. For illustration, we will consider
the case nD 0 as this will compute the differential refinement of K0 . Similar effects
hold for K1 , which we will consider in Section 3.5.

Suppose that we are given a twist yhW M ! B2U.1/r for the theory �K0 . Setting�RD �K in Theorem 18, we observe that the E
0;0
2

–entry in the spectral sequence can be
calculated as

H 0.M I �K.�I yh//D ker
�Y
˛

Z��even
>0 .U˛/

e
dA˛ˇ�id
������!

Y
˛ˇ

Z��even
>0 .U˛ˇ/

�
;

where the subscript > 0 indicates that we are taking forms with vanishing degree-zero
term. Note that this group is isomorphic to the subgroup of twisted closed forms, whose
elements are of the type ! D !0 C !2 C � � � , with !0 an integer. If the curvature
of yh is nontrivial in de Rham cohomology, then !0 must vanish (otherwise we could
trivialize H by the form !2=!0 ). In this case, the E

0;0
2

–entry is precisely the twisted
closed forms and the full E2 –page looks like

(3-8)

1

0 �even
dH –cl;Z.M /

�1 H 1.M IU.1// H 2.M IU.1//

�2 0 0 0

�3 H 4.M IU.1//

�4

d2
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while the E3 –page looks like

1

0 ker.d2/

�1 H 2.M IU.1// H 3.M IU.1//

�2 0

�3 H 5.M IU.1//

�4

d3

d3

This pattern continues and we are led to the following.

Lemma 24 (types of differentials in 1AHSS yh for �K0.�I yh/) There are two types of
differentials:

(i) Obstructions associated to curvature forms These are of the form

(3-9) d curv
2k W S ��

even
dH –cl;Z.M /!H 2k.M IU.1//;

where S D
T

ker.d2j / for k < j , emanating from the entry E
0;0
2k

.

(ii) Obstructions associated to flat classes We also have differentials occurring
on the odd pages of another type, namely

(3-10) dfl
2kC1W H

p.M IU.1//!H pC2kC1.M IU.1//;

emanating from the entries E
p;�2qC1

2kC1
with q � 0.

As the notation suggests, the differentials of the first type give obstructions for the
curvature forms to lift to differential K–theory, while the differentials of the second
type give rise to obstructions to lifting to flat classes (see eg [44; 35] for a description
of such classes).

In [31], we classified all differential cohomology operations by computing the connected
components of the mapping space Map.BnU.1/r ;B

mU.1/r/. We showed that all
such operations either arise as an integral multiple of a power of the Dixmier–Douady
class (in the sense of [22; 23])

DD WD idW BnU.1/r !BnU.1/r ;
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or arise from an operation of the form �W H n.�IZ/!H m.�IU.1//, via the natural
map I W �H n.�IZ/!H n.�IZ/, and the inclusion j W H m.�IU.1//! �H mC1.�IZ/

of flat classes. In particular, we can get transformations of the second type by lifting
integral cohomology operations through the Bockstein for the exponential sequence
ˇW H m.�IU.1//!H mC1.�IZ/. In fact, such lifts are exactly the refinements of the
torsion operations in integral cohomology. This allows us to compute the differentials
of the second type (3-10).

Proposition 25 (flat first differential for twisted differential K–theory) Suppose that
yhW M !B2U.1/r is a twist for differential K–theory. Then we have

dfl
3 D

bSq3
C yh[DB .�/;

where bSq3 is the operation �2 Sq2 �2ˇW H
p�1.�IU.1// ! H pC2.�IU.1// and

[DB is the Deligne–Beilinson cup product.16

Proof By the characterization in [31], the only operation which can raise the degree
by 3 comes from integral multiples of powers of the Dixmier–Douady class or torsion
operations in integral cohomology. Moreover, in [32], we showed that the differentials
for 1AHSS must refine the differentials in the underlying AHSS, in the sense that we
have commutative diagrams, one for each p ,

H p�1.M IU.1//
ˇ

//

dfl
3��

H p.M IZ/

d3
��

H pC2.M IU.1//
ˇ

// H pC3.M IZ/

This is because the differentials in the underlying theory are given by the cup product
with the integral class h and ˇ.yh[DB y̨/D h[ˇ.y̨/, for a flat class y̨ . In [32], we
showed that bSq3 refines the differential d3 in untwisted K–theory. Thus, the only
possibility is d3 D

bSq3
C yh[DB .�/.

We now turn our attention to the differentials d curv
p , the first of the two types in

Lemma 24. Consider the sheaf of spectra ��pQŒu;u�1�˝�� , where ��pQŒu;u�1�

is the truncated complex, with degrees � p replaced by zeros. We have natural maps

i W ��pQŒu;u�1� ,! ��pQŒu;u�1�˝�� and j W �� ,! ��pQŒu;u�1�˝��:

16Note that we are considering cohomology with U.1/ coefficients as sitting inside differential
cohomology by the inclusion j .
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We denote the pullback of i by j in sheaves of spectra by Fp
�HQŒu;u�1� and we

have a canonical map

Fp
�HQŒu;u�1�! �HQŒu;u�1�;

which is induced by the inclusion ��pQŒu;u�1� ,!QŒu;u�1�. Since a choice of twist
yhWM!B2.R=Q/r raises the degree, we can consider the complex ��pQŒu;u�1�˝��

with differential dCuH^.�/,17 and the bundle of H.��pQŒu;u�1�/–spectra H!M,
induced by the topological twist hW M!K.Q; 3/. The local exponential map still gives
rise to a twisted Chern character and thus we have an yh–twisted theory Fp

�HQŒu;u�1�yh ,
which comes equipped with a canonical map

Fp
�HQŒu;u�1�yh !

�HQŒu;u�1�yh

induced by the inclusion i . This map gives rise to a morphism of spectral sequences
which on the E2 –page determines a commutative diagram,

(3-11)

Fp.�
even
dH –cl;Q/.M /

� � //

d 0p
��

�even
dH –cl;Q.M /

dp

��

ker.d 0
p�1

/ // ker.dp�1/=im.dp�1/

The spectra Fp
�HQŒu;u�1�yh give rise to a filtration of the spectrum �HQŒu;u�1�yh ,

and we also have an exact sequence of sheaves of spectra

(3-12) FpC1
�HQŒu;u�1�yh!Fp

�HQŒu;u�1�yh!Fp
�HQŒu;u�1�yh=FpC1

�HQŒu;u�1�yh

induced by the inclusion ��pC1QŒu;u�1� ,! ��pQŒu;u�1�. The rightmost map
in (3-12) gives rise to a morphism of spectral sequences and, consequently, to a
commutative diagram,18

Fp.�
even
dH –cl;Q/.M / //

d 0p
��

�
p
cl.M /

d 00p

��

ker.d 0
p�1

/
� � // H p.M IR=Q/

17Note that we have chosen to work with chain complexes rather than in cochain complexes, so that
differential forms are weighted with negative degrees.

18This does require a quick calculation, but essentially the point is that the subcomplexes
Fp.�

even
dH –cl;Q/.M / contain those twisted closed forms of the form ! D 0C 0C � � �!p C!pC2C � � � .

Thus, at the level of forms, Fp.�
even
dH –cl;Q/.M /=FpC1.�

even
dH –cl;Q/.M /Š�

p
cl.M / .
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The differential d 00p was identified in [32] as the map which takes the class of !p in
singular cohomology and mods by Q. Thus we identify the differential d 0p as the map

d 0p.0C 0C � � �C!pC!pC2C � � � /D Œ!p � mod Q:

Returning to the diagram (3-11), we see that when restricted to the forms in the pth level
of the filtration Fp.�

even
dH –cl;Q/.M /, the differential dp must give the class of the leading

term, modulo Q. This gives the following characterization of the differentials d curv
p , at

least when restricted to forms in the pth level of the filtration on .��Œu;u�1�; dH /.

Proposition 26 (characterization of the differentials d curv
p ) Let p be an even integer.

For the refinement of periodic rational cohomology, the differential d curv
p take the form

dpW �
even
dH –cl;Q.M / !H p.M IR=Q/;

where �even
dH –cl;Q.M / is the subgroup of twisted closed forms with degree-zero term !0

given by a constant function taking values in Q. Moreover, the differential dp maps a
twisted closed form of the type ! D 0C0C � � � C!pC!pC2C � � � to the class of the
leading term !p , modulo Q, ie

dp.0C 0C � � � C!pC!pC2C � � � /D Œ!p � mod Q:

Remark Identifying the differentials d curv
p in full generality seems to be complicated.

The structure appears to be related to lifting the terms of the locally defined closed
form e�B˛ ^! to a flat bundle, using the gerbe data for the twist yh, but we are unsure
of how to present the differential in such a way that the lifting condition is useful in
practice (ie a checkable condition on the twisted forms such that they lift to curvatures
of twisted differential K–theory). Moreover, we have only discussed the rational case
here and the situation for twisted differential K–theory seems to be further complicated
by the presence of torsion. Since we believe such a presentation exists and would be
extremely useful in applications, we save this for future investigation.

3.4 The higher flat differentials

In [9], Atiyah and Segal considered the spectral sequence for the twisted de Rham
complex .��Œu;u�1�.M /; dH / on a smooth manifold M. This complex admits a
filtration19 with the pth level Fp.�

�Œu;u�1�.M /; dH / given by the complex which
in degree k has elements of the form

! D 0C 0C � � � C!pC!pC2C � � � :

19Note that this is the same filtration we considered in the previous section.
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The spectral sequence with respect to this filtration has E2 –page given by the ordinary
de Rham cohomology groups

E
p;q
2
DH

pCq
dR .M /:

Atiyah and Segal showed that the differentials d2kC1 in the spectral sequence for the pe-
riodic complex of forms are given by the Massey product operation hH;H; : : : ;H;xi,
where H is repeated k times.

We highlight that the Massey products are related to solving the twisted closed equation
dxDH ^x in the following way. Let x2 be a degree-two de Rham class and consider
the Massey triple product hH;H;x2i. A representative for the product is constructed
by trivializing each of the wedge products H ^H D 0 and H ^x2 . Clearly, we can
choose the zero form as a trivialization of the first product. Assuming that the second
product vanishes in cohomology, then we can find x4 such that dx4 D�H ^x2 . In
this case, we have the representative of the Massey triple product

hH;H;x2i DH ^x4;

which is a class in cohomology of degree seven. In general, there is some ambiguity
in defining the Massey product coming from the choice of x4 . This ambiguity is
measured precisely by classes in ŒH �^H 4

dR.M /. Thus, the product is well defined in
the quotient

d5Œx2�D�hH;H;x2i 2H 7
dR.M /=ŒH �^H 4

dR.M /;

and this is precisely the quotient one finds on the E5 –page of the spectral sequence.
Thus, if d5 vanishes on Œx2�, then there is an x6 such that H ^x4 D dx6 and we can
form the Massey product H ^x6 . Again the ambiguity is measured by the subgroup
ŒH �^H 6

dR.M /. If we iterate the process, we find that we are actually asking for a
solution to the twisted equation dx2kC2 D�H ^x2k .

We now want to find the relationship between the Massey products on the higher differ-
entials in the spectral sequence for twisted differential K–theory. In [30] we established
the basic theory of differential Massey products. Using these, we have the following.

Proposition 27 (the higher differentials in 1AHSS yh of �K0.�I yh/) Suppose that
yhW M !B2U.1/r is a twist for differential K–theory, regarded as a twist for periodic
rational cohomology via the differential Chern character map (see Section 3.2). Then
the differentials d2kC1 can be identified with the differential Massey product operation

d2kC1 D�h
yh; yh; : : : ; yh„ ƒ‚ …

k times

;�i:
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Proof Consider the shifted twisted theory H.RŒu;u�1�/Œ1�h (ie the shift of periodic
real cohomology). By restriction, yh twists the underlying flat theory for �H .QŒu;u�1�/,
which is equivalent to the shifted spectrum H.R=QŒu;u�1�/Œ1�. The equivalence
allows us to twist periodic R=Q–cohomology by yh. The mod Q map thus gives a
well-defined morphism

H.RŒu;u�1�/Œ1�h!H.R=QŒu;u�1�/Œ1�yh;

which induces a morphism of corresponding spectral sequences. At the level of spectral
sequences, the shift of H.RŒu;u�1�/h manifests itself by simply shifting the entries on
each page. By Atiyah and Segal [9, Proposition 6.1], the differentials for this spectral
sequence are the Massey products

d2kC1Œx�D�hh; h; : : :„ ƒ‚ …
k times

; Œx�i:

Since we have a morphism of spectral sequences, it follows that the differentials
d 0

2kC1
on the .2kC1/–page of the spectra sequence for H.R=QŒu;u�1�/Œ1�yh refine

the Massey product operation in that we have a commutative diagram

H p.M IR/
mod Q

//

�hh;h;:::;�i
��

H p.M IR=Q/

d 0
2kC1

��

H pC2kC1.M IR/
mod Q

// H pC2kC1.M IR=Q/

Using the formula for the Deligne–Beilinson cup product on flat classes (see [22]
or expression (3-15)), it is easy to see that the differential Massey product operation
�hyh; yh; : : : ;�i indeed refines the underlying Massey product.

We claim that this is the only possible operation. Indeed, let

(3-13) �W H p.M IR=Q/!H pC2kC1.M IR=Q/

be a natural operation on manifolds equipped with maps M ! B2R=Qr refining
the Massey product operation in cohomology with real coefficients. Then, from the
diagram, the difference �Chyh; yh; : : : ;�i, when restricted to H p.M IR/, must vanish.
But the mod Q map is surjective since the Bockstein

H p.M IR=Q/
ˇQ
�!H pC1.M IQ/ ,!H pC1.M IR/

vanishes. Thus, � D�hyh; yh; : : : ;�i on H p.M IR=Q/.
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We will now show that the corresponding Massey products in the topological and the
differential cases are compatible under the composite map

(3-14) 'W H��1
dR .�IR/

mod Q
���!H��1.�IR=Q/

j
�! �H�.�IQ/:

Lemma 28 (correspondence of Massey products) Let yhW M ! BnU.1/r be a
differential cohomology class with curvature H and let ! be a degree m closed
differential form on M. If the Massey product is defined, then, for each representative

x 2 hH;H; : : : ;H„ ƒ‚ …
k times

; !i �H
mCk.n�1/C1
dR .M /;

the map (3-14) gives a corresponding representative

'.x/ 2 hyh; yh; : : : ; yh„ ƒ‚ …
k times

; '.!/i � �H mCk.n�1/C2.M IQ/:

Proof Recall that we have a formula for the Deligne–Beilinson cup product at the
level of cochains with values in the Deligne complex with Q–coefficients. At the level
of local sections ˛ D .˛0; ˛1; : : : ; ˛n/ and ˇ D .ˇ0; ˇ1; : : : ; ˇm/, this product takes
the form (see [22; 32])

(3-15) ˛[DB ˇ D

8<:
˛0ˇ` if `¤m;

p̨ ^ dˇm if p ¤ 0;

0 otherwise:

If ! is a globally defined closed form, then '.Œ!�/ is the class of the cocycle in Deligne
cohomology '.!/D .0; 0; : : : ; !/. On yh the above formula gives

'.!/[DB yhD '.! ^H /:

Since the DB cup product defines a graded commutative product at the level of coho-
mology, the above cocycle represents the class '.Œ!�/[DB yh. Since ' arose from a
morphism of DGAs, it follows immediately that ' must send a defining system for the
Massey product to a defining system for the differential Massey product.

3.5 Examples

The basic properties listed above are enough to get started with computations. We
illustrate with the example of the 3–sphere S3 , which generalizes to differential twisted
K–theory the corresponding twisted K–theory calculation in [48] (after M J Hopkins)
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and [12; 13; 21; 26; 49]. The twisted differential K–theory of the Lie group SU.2/
(and also SU.3/) was studied in [19] using index and group theoretic methods.

Let hW S3!K.Z; 3/ be a map representing an integer (which we also denote by h) in
H 3.S3IZ/ŠZ. We denote the corresponding twisted K–theory on S3 by K�.S3I h/.
Now the map h can be refined to a gerbe with connection yhW S3 ! B2U.1/r ,
with curvature form H. Let .��Œu;u�1�.S3/; dH / denote the periodic, H–twisted
de Rham complex on S3 with differential d CH ^ .�/. Thus, the triple �Kyh WD
.Kh; ch; .��Œu;u�1�; dH // gives the data of a differential refinement of an h–twisted
K–theory spectrum. We denote the underlying theory by �K�.S3I yh/.

Proposition 29 (twisted differential K0 of the 3–sphere) We have�K0.S3
I yh/Š�2

cl.S
3/D d�1.S3/:

Proof Consider the cover fU;V g, given by removing the north and south poles of S3 ,
respectively. Then the Mayer–Vietoris sequence from Proposition 5(iii) gives an exact
sequence

(3-16) K�2
R=Z.S

2
I yh/! �K0.S3

I yh/! �K0.U I yh/˚ �K0.V I yh/

f
�! �K0.U \V I yh/!K1.S3

I h/:

The twist trivializes on each local patch U and V . Moreover, since the restriction
of h to U \ V ' S2 trivializes by dimension, the twisted differential K–theory
of U \V also reduces to the untwisted differential K–theory. Our job is now reduced
to calculating the untwisted groups and understanding the maps in (3-16). We have�K0.U /Š Z˚�even

cl .U /;(3-17) �K0.V /Š Z˚�even
cl .V /;(3-18) �K0.U \V /Š Z˚Z˚ d�odd.U \V /;(3-19)

where the first factor of Z in (3-19) is generated by 1 and the second factor is generated
by the canonical line bundle L on S2 . Now the maps in the sequence depend on the
twist because the identification of the twisted theory with the untwisted theory depends
on a choice of trivialization, and that trivialization is not canonical (ie it depends on
the U and V ). The transition maps between the trivializations give the correction from
the untwisted case.

Notice that the factor Z˚Z in the last group (3-19) corresponds to the Z–linear span of
each of the basis elements f1;Lg in K.S2/ŠZŒL�=.1�L/2 . The copies of Z in the
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previous two equations (3-17) and (3-18) correspond to the Z–linear span of the trivial
bundle. Topologically, the twist h restricts on the intersection U \V 'S2 to a cocycle
representing L. Geometrically, the group structure on H 3.S3IZ/Š Z corresponds
to the group generated by L under tensor product of line bundles. The action of the
transition functions for the local trivializations corresponds to multiplication by L˝h ,
which, when written in the basis f1;Lg, is .h� 1/1� hL. Thus, if we restrict the
map f in (3-16) to the copies of Z, we get the map�

1 h� 1

0 –h

�
W Z˚Z! Z˚Z:

This map is coming from the topological part of twisted K–theory.

We still need to identify the geometric part. To this end, recall that we also have local
trivializations for the twisted complex of forms, coming from the formal exponentials
eBU and eBV , where BU and BV are local potentials (ie trivialization) for H. Using
the transition data edA on intersections (ie A is a 1–form on U \V such that dAD

BU �BV ), one sees that the map f in the sequence (3-16) can be expressed fully as
the block matrix

f D

0@1 h� 1 0 0

0 –h 0 0

0 0 1 –edA

1AW Z˚Z˚�even
cl .U /˚�even

cl .V / ! Z˚Z˚d�odd.U \V /:

The upper-left block coming from the topological part is easily seen to be injective
when h ¤ 0. Thus, we need only understand the lower-right block .1;�edA/. Let
! D !0C!2 and v D v0C v2 be a pair of closed forms on U and V , respectively.20

Expanding edA D 1C dA on U \V , we see that the map .1;�edA/ is zero precisely
if the equations

!0 D v0 and !2 D v2� dA^ v0

are satisfied. Notice that if H is not exact and v0 ¤ 0, then no such solutions exist.
Indeed, since ! and v are closed, v0 is constant and the second equation implies that
!2=v0�v2=v0D dA. On the other hand, there are local potentials BU and BV for H

on U and V which satisfy BU �BV D dA. Combining these equations, we have
!2=v0�BU D v2=v0�BV on U \V . By the sheaf condition for differential forms,
there is a global form � such that �U D !2=v0�BU and �V D v2=v0�BV . But this
means d�DH. Thus, if H represents a nonzero cohomology class, then v0D !0D 0

20Recall that U and V have dimension 3, so there are no higher-degree forms in ! and v .
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and !2D v2 . By gluing, the pair .!2; v2/ are the restrictions of a global closed 2–form
on S3 . We now have an exact sequence

(3-20) K�2
R=Z.U I h/˚K�2

R=Z.V I h/
g
!K�2

R=Z.S
2
I h/! �K0.S3

I yh/!�2
cl.S

3/! 0:

Turning our attention to the map g , we again observe that since the twist h trivializes
on S2 , the Bockstein sequence for K–theory with coefficients, along with periodicity,
gives an identification K�2

R=Z.S
2I h/Š R=Z˚R=Z. As we have already observed,

the map is induced by restrictions and the twist, which in this case gives the map�
1 h� 1

0 –h

�
W R=Z˚R=Z!R=Z˚R=Z;

where the matrix is to be understood as the map of Z–modules which sends a pair
.�; '/ 2 R=Z to .�.h � 1/';�h'/ 2 R=Z. This map is surjective and hence the
sequence (3-20) reduces to

(3-21) 0! �K0.S3
I yh/!�2

cl.S
3/! 0;

and we have an isomorphism �K0.S3I yh/Š�2
cl.S

3/.

Proposition 30 (twisted differential K1 of the 3–sphere) We have�K1.S3
I yh/Š�odd

dH�cl.S
3/˚Z=h;

where dH –cl indicates closed forms with respect to the twisted de Rham differential dH

and h is the integer multiple of the generator of H 3.S3IZ/Š Z corresponding to the
topological twist.

Proof As in the case for degree zero above, we consider the portion of the Mayer–
Vietoris sequence

(3-22) K�1
R=Z.S

2
I h/! �K1.S3

I yh/! �K1.U I yh/˚ �K1.V I yh/

f
�! �K1.U \V I yh/!K2.S3

I h/:

By periodicity, this immediately reduces to

(3-23) 0! �K1.S3
I yh/! �K1.U I yh/˚ �K1.V I yh/

f
�! �K1.U \V I yh/! 0:

As before, we arrive at the identifications�K1.U /ŠR=Z˚�odd
cl .U /;�K1.V /ŠR=Z˚�odd
cl .V /;�K1.U \V /ŠR=Z˚R=Z˚ d�even.U \V /;
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and we identify the map f with

f D

0@1 h�1 0 0

0 –h 0 0

0 0 1 –edA

1AW R=Z˚R=Z˚�odd
cl .U /˚�

odd
cl .V /

!R=Z˚R=Z˚ d�even.U \V /:

In f , the upper-left block matrix

(3-24)
�

1 h� 1

0 –h

�
W R=Z˚R=Z!R=Z˚R=Z

is again understood as the map of Z–modules which sends a pair .�; '/ 2 R=Z to
.�.h� 1/';�h'/ 2 R=Z. Unlike in the degree-zero case, however, now the kernel
of the map (3-24) is nonzero since we are taking R=Z–coefficients. The requirement
�h' 2Z implies that (identifying R=ZŠU.1/) ' is an h–root of unity. On the other
hand, this combined with the second requirement .1� h/�' 2 Z implies that � 2 Z.
Hence we identify the kernel with the subgroup isomorphic to the image of the map

Z=h
� � �

1
h // R=Z˚R=Z;

sending a 7! .1; a=h/. Turning to the lower-left block matrix .1;�edA/ in f , we
consider a pair of odd forms ! D !1C!3 and vD v1C v3 on U and V , respectively.
Again, writing edA D 1C dA, we identify the elements in the kernel as those forms
satisfying the equations

!1 D v1 and !3 D v3� dA^ v1:

Again we see that globally defined closed 3–forms give solutions (setting v1 D 0).
However we also have other solutions, even when H is nontrivial in cohomology. The
resulting forms are the twisted-closed odd forms on S3 .

Although the Mayer–Vietoris sequence provides a powerful tool for calculating twisted
differential K–theory, the 1AHSS yh can simplify some of these calculations drastically.
We illustrate the power of the spectral sequence in the following.

Example (the 3–sphere, revisited) Let yhW S3 ! B2U.1/r be a twist. Recall
from Proposition 25 that we identified the differential on the E3 –page as d3 DbSq3

ZC
yh[DB .�/. For the 3–sphere, the U.1/–cohomology is calculated from the

exponential sequence as

H 2.S3
IU.1//Š 0 and H 3.S3

IU.1//Š U.1/:
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Then for �K0 , we see that all relevant differentials must vanish and the spectral sequence
collapses at the E2 –page in the diagram (3-8). There is no extension problem in this
case, and we have �K0.S3

I yh/Š�even
dH�cl.S

3/Š�2
cl.S

3/:

For �K1 , we need to calculate the kernel of the map

d3W U.1/! U.1/ŠH 3.S3
IU.1//:

For degree reasons, bSq3
Z vanishes on U.1/ and we are reduced to finding the kernel

of yh. To this end, recall that the formula for the Deligne–Beilinson cup product sends
an element in U.1/, written as e2�i� , to e2�ih� , where h is the integer representing
the underlying topological twist. The kernel is thus easily identified with the h–roots
of unity, which as an abelian group is isomorphic to Z=hZ. For degree reasons, there
are no nontrivial differentials out of the term .��.S3/; dH /cl . In this case, there
is no extension problem and we recover the differential cohomology group, as in
Proposition 30, �K1.S3

I yh/Š Z=hZ˚�odd
dH -cl.S

3/:

Generalizations to higher chromatic levels and higher spheres are studied in [64],
where twisted Morava K–theory of spheres is calculated. We plan to consider explicit
refinements of those twisted theories elsewhere. We also plan to address many appli-
cations in a separate treatment, including the relation to classes in twisted Deligne
cohomology [33], as well as implications for physics.
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