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Coproducts in brane topology

SHUN WAKATSUKI

We extend the loop product and the loop coproduct to the mapping space from the
k –dimensional sphere, or more generally from any k –manifold, to a k –connected
space with finite-dimensional rational homotopy group for k � 1 . The key to
extending the loop coproduct is the fact that the embedding M ! M Sk�1

is of
“finite codimension” in the sense of Gorenstein spaces. Moreover, we prove the
associativity, commutativity and Frobenius compatibility of them.

55P35, 55P50, 55P62

1 Introduction

Chas and Sullivan [1] introduced the loop product on the homology H�.LM / of the
free loop space LM DMap.S1;M / of a manifold. Cohen and Godin [2] extended
this product to other string operations, including the loop coproduct.

Generalizing these constructions, Félix and Thomas [6] defined the loop product and
coproduct in the case M is a Gorenstein space. A Gorenstein space is a generalization
of a manifold in the point of view of Poincaré duality, including the classifying space of a
connected Lie group and the Borel construction of a connected oriented closed manifold
and a connected Lie group. But these operations tend to be trivial in many cases. Let K

be a field of characteristic zero. For example, Tamanoi showed that the loop coproduct
is trivial for a manifold with the Euler characteristic zero in [10, Corollary 3.2], and
that the composition of the loop coproduct followed by the loop product is trivial for
any manifold in [10, Theorem A]. Similarly, Félix and Thomas [6, Theorem 14] proved
that the loop product over K is trivial for the classifying space of a connected Lie
group. A space with the nontrivial composition of loop coproduct and product is not
found.

On the other hand, Sullivan and Voronov generalized the loop product to the sphere
space LkM DMap.Sk ;M / for k � 1. This product is called the brane product. See
Cohen, Hess and Voronov [3, Part I, Chapter 5].
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In this article, we will generalize the loop coproduct to sphere spaces, to construct
nontrivial and interesting operations. We call this coproduct the brane coproduct.

Here, we review briefly the construction of the loop product and the brane product. For
simplicity, we assume M is a connected oriented closed manifold of dimension m. The
loop product is constructed as a mixture of the Pontrjagin product H�.�M ��M /!

H�.�M / defined by the composition of based loops and the intersection product
H�.M �M /!H��m.M /. More precisely, we use the diagram

(1:1)
LM �LM

ev1�ev1

��

LM �M LM
incl
oo

��

comp
// LM

M �M M
�

oo

Here, the square is a pullback diagram by the diagonal map � and the evaluation map
ev1 at 1, identifying S1 with the unit circle fz 2C j jzj D 1g, and comp is the map
defined by the composition of loops. Since the diagonal map �W M !M �M is
an embedding of finite codimension, we have the shriek map �!W H�.M �M /!

H��m.M /, which is called the intersection product. Using the pullback diagram, we
can “lift” �! to incl!W H�.LM �LM /!H��m.LM �M LM /. Then, we define the
loop product to be the composition comp� ı incl!W H�.LM �LM /!H��m.LM /.

The brane product can be defined by a similar way. Let k be a positive integer. We use
the diagram

LkM �LkM

��

LkM �M LkM
incl
oo

��

comp
// LkM

M �M M
�

oo

Since the base map of the pullback diagram is the diagonal map �, which is the same
as that for the loop product, we can use the same method to define the shriek map
incl!W H�.LkM �LkM /! H��m.L

kM �M LkM /. Hence we define the brane
product to be the composition comp� ı incl!W H�.LkM �LkM /!H��m.L

kM /.

Next, we review the loop coproduct. Using the diagram

(1:2)
LM

ev1�ev�1

��

LM �M LM
comp
oo

��

incl
// LM �LM

M �M M
�

oo
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we define the loop coproduct to be the composition incl� ı comp!W H�.LM / !

H��m.LM �LM /.

But the brane coproduct cannot be defined in this way. To construct the brane coproduct,
we have to use the diagram

LkM

res
��

LkM �M LkM
comp
oo

��

incl
// LkM �LkM

Lk�1M M
c

oo

Here, cW M !Lk�1M is the embedding by constant maps and resW LkM !Lk�1M

is the restriction map to Sk�1 , which is embedded to Sk as the equator. In the usual
sense, the base map c is not an embedding of finite codimension. But, using the
algebraic method of Félix and Thomas [6], we can consider this map as an embedding
of codimension SmD dim�k�1M, which is defined as a finite integer when the iterated
loop space �k�1M is a K–Gorenstein space. Hence, under this assumption, we have
the shriek map c!W H�.L

k�1M / ! H��Sm.M / and the lift comp!W H�.L
kM / !

H��Sm.L
kM �M LkM /. This enables us to define the brane coproduct to be the

composition incl� ı comp!W H�.L
kM /!H��Sm.L

kM �LkM /.

Note that, if
L

n �n.M /˝K is of finite dimension, then �k�1M is a K–Gorenstein
space by a result of Félix, Halperin and Thomas [4, Proposition 3.4]; see also our
Proposition 2.2. The converse also holds when k � 2 by [4, Proposition 1.7].

More generally, using connected sums, we define the product and coproduct for mapping
spaces from manifolds. Let S and T be manifolds of dimension k . Let M be a
k –connected K–Gorenstein space of finite type. Denote mD dim M. Then we define
the .S;T /–brane product

�ST W H�.M
S
�M T /!H��m.M

S#T /

using the diagram

(1:3)
M S �M T

��

M S �M M Tincl
oo

��

comp
// M S#T

M �M M
�

oo

Assume that M is k –connected and �k�1M is a Gorenstein space (or, equivalently,L
n �n.M /˝K is of finite dimension). Denote SmD dim�k�1M. Then we define
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the .S;T /–brane coproduct

ıST W H�.M
S#T /!H��Sm.M

S
�M T /

using the diagram

(1:4)

M S#T

��

M S �M M T
comp
oo

��

incl
// M S �M T

Lk�1M M
c

oo

Note that, if we take S D T D Sk , then �ST and ıST are the brane product and
coproduct, respectively.

Next, we study some fundamental properties of the brane product and coproduct. For the
loop product and coproduct on Gorenstein spaces, Naito [9] showed their associativity
and the Frobenius compatibility. In this article, we generalize them to the case of
the brane product and coproduct. Moreover, we show the commutativity of the brane
product and coproduct, which was not known even for the case of the loop product and
coproduct on Gorenstein spaces.

Theorem 1.5 Let M be a k –connected space such that �k�1M is a Gorenstein
space. Then the above product and coproduct satisfy the following properties:

(1) The product is associative and commutative.

(2) The coproduct is associative and commutative.

(3) The product and coproduct satisfy the Frobenius compatibility.

In particular , if we take SDT DSk, the shifted homology H�.LkM /DH�Cm.L
kM /

is a nonunital and noncounital Frobenius algebra , where m is the dimension of M as a
Gorenstein space.

Note that M is a Gorenstein space by the assumption dim��.M /˝K <1 (see
Proposition 2.2). The associativity of the product holds even if we assume that M

is a Gorenstein space instead of assuming dim��.M /˝K <1. But we need the
assumption to prove the commutativity of the product.

A nonunital and noncounital Frobenius algebra corresponds to a “positive boundary”
TQFT, in the sense that TQFT operations are defined only when each component of
the cobordism surfaces has a positive number of incoming and outgoing boundary
components. See a paper of Cohen and Godin [2] for details.
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See Section 7 for the precise statement and the proof of the associativity, the commutativ-
ity and the Frobenius compatibility. It is interesting that the proof of the commutativity
of the loop coproduct (ie k D 1) is easier than that of the brane coproduct with k � 2.
In fact, we prove the commutativity of the loop coproduct using the explicit description
of the loop coproduct constructed in another article of the author [11]. On the other
hand, we prove the commutativity of the brane coproduct with k � 2 directly from the
definition.

Moreover, we compute an example of the brane product and coproduct. Here, we
consider the shifted homology H�.LkM /DH�Cm.L

kM /. We also have the shifts
of the brane product and coproduct on H�.LkM / with the sign determined by the
Koszul sign convention.

Theorem 1.6 The shifted homology H�.L2S2nC1/ for n � 1 equipped with the
brane product � is isomorphic to the exterior algebra ^.y; z/ with jyj D �2n� 1 and
jzj D 2n� 1. The brane coproduct ı is described as follows:

ı.1/D 1˝yz�y˝ zC z˝yCyz˝ 1;

ı.y/D y˝yzCyz˝y;

ı.z/D z˝yzCyz˝ z;

ı.yz/D�yz˝yz:

Note that both the brane product and coproduct are nontrivial. Moreover, .ı˝1/ıı¤ 0,
in contrast with the case of the loop coproduct, in which the similar composition is
always trivial [10, Theorem A].

On the other hand, the brane coproduct is trivial in some cases.

Theorem 1.7 If the minimal Sullivan model .^V; d/ of M is pure and satisfies
dim V even > 0, then the brane coproduct on H�.L

2M / is trivial.

See Definition 6.4 for the definition of a pure Sullivan algebra.

Remark 1.8 If we fix embeddings of disks Dk ,! S and Dk ,! T instead of
assuming S and T are manifolds, we can define the product and coproduct using
“connected sums” defined by these embedded disks. Moreover, if we have two disjoint
embeddings i; j W Dk ,! S to the same space S, we can define the “connected sum”
along i and j , and hence we can define the product and coproduct using this. We call
these the .S; i; j /–brane product and coproduct, and give definitions in Section 4.
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Section 2 contains brief background material on string topology on Gorenstein spaces.
We define the .S;T /–brane product and coproduct in Section 3 and the .S; i; j /–
brane product and coproduct in Section 4. Here, we defer the proof of Corollary 3.2
to Section 5. In Section 6, we compute examples and prove Theorems 1.6 and 1.7.
Section 7 is devoted to the proof of Theorem 1.5, where we defer the determination of
some signs to Sections 8 and 9.

2 Construction by Félix and Thomas

In this section, we recall the construction of the loop product and coproduct by Félix
and Thomas [6]. Since the cochain models are good for fibrations, the duals of the loop
product and coproduct are defined at first, and then we define the loop product and
coproduct as the duals of them. Moreover we focus on the case when the characteristic
of the coefficient K is zero. So we make full use of rational homotopy theory. For the
basic definitions and theorems on homological algebra and rational homotopy theory,
we refer the reader to [5].

Definition 2.1 [4] Let m 2 Z be an integer.

(1) An augmented dga (differential graded algebra) .A; d/ is called a (K-)Gorenstein
algebra of dimension m if

dim ExtlA.K;A/D
�

1 if l Dm,
0 otherwise,

where the field K and the dga .A; d/ are .A; d/–modules via the augmentation
map and the identity map, respectively.

(2) A path-connected topological space M is called a (K–)Gorenstein space of
dimension m if the singular cochain algebra C �.M / of M is a Gorenstein
algebra of dimension m.

Here, ExtA.M;N / is defined using a semifree resolution of .M; d/ over .A; d/ for a
dga .A; d/ and .A; d/–modules .M; d/ and .N; d/. TorA.M;N / is defined similarly.
See [6, Section 1] for details of semifree resolutions.

An important example of a Gorenstein space is given by the following proposition:

Proposition 2.2 [4, Proposition 3.4] A 1–connected topological space M is a K–
Gorenstein space if ��.M /˝K is finite-dimensional. Similarly, a Sullivan algebra
.^V; d/ is a Gorenstein algebra if V is finite-dimensional.
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Note that this proposition is stated only for Q–Gorenstein spaces in [4], but the proof
can be applied for any K and Sullivan algebras.

Let M be a 1–connected K–Gorenstein space of dimension m whose cohomology
H�.M / is of finite type. As a preparation to define the loop product and coproduct,
Félix and Thomas proved the following theorem:

Theorem 2.3 [6, Theorem 12] The diagonal map �W M !M 2 makes C �.M / into
a C �.M 2/–module. We have an isomorphism

Ext�
C�.M 2/

.C �.M /;C �.M 2//ŠH��m.M /:

By Theorem 2.3, we have Extm
C�.M 2/

.C �.M /;C �.M 2//ŠH 0.M /ŠK, hence the
generator

�! 2 Extm
C�.M 2/

.C �.M /;C �.M 2//

is well defined up to multiplication by a nonzero scalar. We call this element the shriek
map for �.

Using the map �! , we can define the duals of the loop product and coproduct. Then,
using the diagram (1.1), we define the dual of the loop product to be the composition

incl! ı comp�W H�.LM /
comp�
���!H�.LM �M LM /

incl!
��!H�Cm.LM �LM /:

Here, the map incl! is defined by the composition

H�.LM �M LM /
Š

EM
 � Tor�

C�.M 2/
.C �.M /;C �.LM �LM //

Torid.�!;id/
�������! Tor�Cm

C�.M 2/
.C �.M 2/;C �.LM �LM //

Š
�!H�Cm.LM �LM /;

where the map EM is the Eilenberg–Moore map, which is an isomorphism (see
[5, Theorem 7.5] for details). Similarly, using the diagram (1.2), we define the dual of
the loop coproduct to be the composition

comp! ı incl�W H�.LM �LM /
incl�
��!H�.LM �M LM /

comp!���!H�.LM /:

Here, the map comp! is defined by the composition

H�.LM �M LM /
Š

EM
 � Tor�

C�.M 2/
.C �.M /;C �.LM //

Torid.�!;id/
�������! Tor�Cm

C�.M 2/
.C �.M 2/;C �.LM //

Š
�!H�Cm.LM /:
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3 Definition of the .S; T /–brane coproduct

Let K be a field of characteristic zero, S and T manifolds of dimension k , and M

a k –connected Gorenstein space of finite type. As in the construction by Félix and
Thomas, which we reviewed in Section 2, we construct the duals

�_ST W H
�.M S#T /!H�Cdim M .M S

�M T /;

ı_ST W H
�.M S

�M T /!H�Cdim�k�1M .M S#T /

of the .S;T /–brane product and the .S;T /–brane coproduct.

The .S;T /–brane product is defined by a similar way to that of Félix and Thomas.
Using the diagram (1.3), we define �_

ST
to be the composition

incl! ı comp�W H�.M S#T /
comp�
���!H�.M S

�M M T /
incl!
��!H�Cm.M S

�M T /:

Here, the map incl! is defined by the composition

H�.M S
�M M T /

Š

EM
 � Tor�

C�.M 2/
.C �.M /;C �.M S

�M T //

Torid.�!;id/
�������! Tor�Cm

C�.M 2/
.C �.M 2/;C �.M S

�M T //
Š
�!H�Cm.M S

�M T /:

Next, we begin the definition of the .S;T /–brane coproduct. But Theorem 2.3 cannot
be applied to this case since the base map of the pullback is cW M !Lk�1M.

Instead of Theorem 2.3, we use the following theorem to define the .S;T /–brane
coproduct. A graded algebra A is connected if A0 DK and Ai D 0 for any i < 0. A
dga .A; d/ is connected if A is connected.

Theorem 3.1 Let .A˝B; d/ be a dga such that A and B are connected commutative
graded algebras, .A; d/ is a sub-dga of finite type and .A˝B; d/ is semifree over
.A; d/. Let �W .A ˝ B; d/ ! .A; d/ be a dga homomorphism. Assume that the
following conditions hold :

(a) The restriction of � to A is the identity map of A.

(b) The dga .B; xd/DK˝A .A˝B; d/ is a Gorenstein algebra of dimension Sm.

(c) For any b 2 B, the element db� xdb lies in A�2˝B.

Then we have an isomorphism

Ext�A˝B.A;A˝B/ŠH��Sm.A/:
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This can be proved by a similar method to Theorem 2.3 [6, Theorem 12]. The proof is
given in Section 9.

Applying to sphere spaces, we have the following corollary:

Corollary 3.2 Let M be a .k�1/–connected (and 1–connected ) space of finite
type such that �k�1M is a Gorenstein space of dimension Sm. Then we have an
isomorphism

Ext�
C�.Lk�1M /

.C �.M /;C �.Lk�1M //ŠH��Sm.M /:

To prove the corollary, we need to construct models of sphere spaces satisfying the
conditions of Theorem 3.1. This will be done in Section 5.

Note that, since L0M DM �M, this is a generalization of Theorem 2.3 (in the case
that the characteristic of K is zero).

Assume that M is a k –connected space such that �k�1M is a Gorenstein space.

Then we have ExtSm
C�.Lk�1M /

.C �.M /;C �.Lk�1M // Š H 0.M / Š K, hence the
shriek map for cW M !Lk�1M is defined to be the generator

c! 2 ExtSm
C�.Lk�1M /

.C �.M /;C �.Lk�1M //;

which is well defined up to multiplication by a nonzero scalar. Using c! with the
diagram (1.4), we define the dual ı_

ST
of the .S;T /–brane coproduct to be the

composition

comp! ı incl�W H�.M S
�M T /

incl�
��!H�.M S

�M M T /
comp!���!H�.M S#T /:

Here, the map comp! is defined by the composition

H�.M S
�M M T /

Š

EM
 � Tor�

C�.Lk�1M /
.C �.M /;C �.M S#T //

Torid.c!;id/
�������! Tor�CSm

C�.Lk�1M /
.C �.Lk�1M /;C �.M S#T //

Š
�!H�CSm.M S#T /:

Note that the Eilenberg–Moore isomorphism can be applied since Lk�1M is 1–
connected.

4 Definition of the .S; i; j /–brane product and coproduct

In this section, we give a definition of the .S; i; j /–brane product and coproduct. Let S

be a topological space, and i and j embeddings Dk!S. Fix a small k –disk D�Dk
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and denote its interior by Dı and its boundary by @D . Then we define three spaces
#.S; i; j /, Q.S; i; j / and

W
.S; i; j / as follows. The space #.S; i; j / is obtained

from S n .i.Dı/[ j .Dı// by gluing i.@D/ and j .@D/ by an orientation-reversing
homeomorphism. We obtain Q.S; i; j / by collapsing two disks i.D/ and j .D/ to two
points, respectively. The space

W
.S; i; j / is defined as the quotient space of Q.S; i; j /

identifying the two points. Then, since the quotient space Dk=D is homeomorphic to
the disk Dk , we identify Q.S; i; j / with S itself. By the above definitions, we have the
maps #.S; i; j /!

W
.S; i; j / and S DQ.S; i; j /!

W
.S; i; j /. For a space M, these

maps induce the maps compW M
W
.S;i;j/ !M #.S;i;j/ and inclW M

W
.S;i;j/ !M S.

Moreover, we have diagrams

M S

��

M
W
.S;i;j/incl

oo

��

comp
// M #.S;i;j/

M �M M
�

oo

and
M #.S;i;j/

��

M
W
.S;i;j/

comp
oo

��

incl
// M S

Lk�1M M
c

oo

in which the squares are pullback diagrams. If M is a k –connected space such that
�k�1M is a Gorenstein space, we define the .S; i; j /–brane product and coproduct
by a similar method to Section 3, using these diagrams instead of the diagrams (1.3)
and (1.4). Note that this generalizes the .S;T /–brane product and coproduct defined
in Section 3.

5 Construction of models and proof of Corollary 3.2

In this section, we give a proof of Corollary 3.2, constructing a Sullivan model of the
map cW M !Lk�1M satisfying the assumptions of Theorem 3.1.

First, we construct models algebraically. Let .^V; d/ be a Sullivan algebra. For an
integer l 2Z, let slV be a graded module defined by .slV /nDV nCl, and slv denotes
the element in slV corresponding to the element v 2 V .

Define two derivations s.k�1/ and xd .k�1/ on the graded algebra ^V ˝^sk�1V by

s.k�1/.v/D sk�1v; s.k�1/.sk�1v/D 0;

xd .k�1/.v/D dv; xd .k�1/.sk�1v/D .�1/k�1s.k�1/dv:
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Then it is easy to see that xd .k�1/ ı xd .k�1/ D 0 and hence .^V ˝^sk�1V; xd .k�1// is
a dga.

Similarly, define derivations s.k/ and d .k/ on the graded algebra ^V˝^sk�1V˝^skV

by

s.k/.v/D skv; s.k/.sk�1v/D s.k/.skv/D 0;

d .k/.v/Ddv; d .k/.sk�1v/D xd .k�1/.sk�1v/; d .k/.skv/D sk�1vC.�1/ks.k/dv:

Then it is easy to see that d .k/ ı d .k/ D 0 and hence .^V ˝^sk�1V ˝^skV; d .k//

is a dga.

The tensor product .^V; d/˝^V˝^sk�1V .^V ˝^sk�1V ˝^skV; d .k// is canoni-
cally isomorphic to .^V ˝^skV; xd .k//, where .^V; d/ is a .^V˝^sk�1V; xd .k�1//–
module via the dga homomorphism �W .^V ˝^sk�1V; xd .k�1//! .^V; d/ defined
by �.v/D v and �.sk�1v/D 0.

It is clear that, if V �k�1 D 0, the dga .^V ˝^sk�1V; xd .k�1// is a Sullivan algebra
and, if V �k D 0, the dga .^V ˝^sk�1V ˝^skV; d .k// is a relative Sullivan algebra
over .^V ˝^sk�1V; xd .k�1//.

Define a dga homomorphism

z"W .^V ˝^sk�1V ˝^skV; d .k//! .^V; d/

by z".v/D v and z".sk�1v/D z".skv/D 0. Then the linear part

Q.z"/W .V ˚ sk�1V ˚ skV; d
.k/
0
/! .V; d0/

is a quasi-isomorphism, and hence z" is a quasi-isomorphism [5, Proposition 14.13].

Define a relative Sullivan algebra MP D .^V ˝2˝^sV; d/ over .^V; d/˝2 by the
formula

d.sv/D 1˝ v� v˝ 1�

1X
iD1

.sd/i

i !
.v˝ 1/

inductively (see [5, Section 15(c)] or [11, Appendix A] for details).

For simplicity, we write MSk D .^V ˝^skV; xd .k// for k�1 and MS0D .^V; d/˝2 ,
and MDk D .^V ˝^sk�1V ˝^skV; d .k// for k � 2 and MD1 DMP .

Let A�.�/ be the functor of the algebra of polynomial differential forms. Note that,
for a space X, A�.X / is a commutative dga which is naturally quasi-isomorphic to the
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singular cochain algebra C �.X / as differential graded algebras. See [5, Section 10]
for details.

Using these algebras, we have the following proposition:

Proposition 5.1 Let k � 2 be an integer, M a .k�1/–connected space of finite
type and fW .^V; d/! A�.M / its Sullivan model such that V �k�1 D 0 and V is
of finite type. Then, for any l with 0 � l � k � 1, there are quasi-isomorphisms
fl WMS l

'
�!A�.LlM / and gl WMDl !A�.DlM / such that the diagrams

MS l .^V; d/ MS l

A�.LlM / A�.M / A�.LlM /

�

'fl 'f fl '

c� ev�

MS l�1 MDl

A�.Ll�1M / A�.DlM /

fl�1 ' gl '

res�

commute strictly, where DlM DMap.Dl ;M /. In particular, the dga homomorphism
�WMSk�1 ! .^V; d/ is a Sullivan representative of the map cW M !Lk�1M with
strict commutativity c� ıfl D f ı�

Proof We prove the proposition by induction on l . The case l D 0 is well known,
since c is the diagonal map and � is the multiplication map.

Let l be an integer with 1 � l � k � 1 and assume that we already have fl�1

satisfying c� ı fl D f ı � . Let zcW M !DlM be the embedding by constant maps,
and resW DlM !Ll�1M the restriction map to the boundary. Since res ı zc D c , the
outer square in the diagram

MS l�1 A�.Ll�1M / A�.DlM /

MDl ^V A�.M /

fl�1

'

res�

zc�'

z"

'

gl

f

'

is commutative by the induction hypothesis. Here, zc� is a surjective quasi-isomorphism,
since the map zc is a homotopy equivalence and has a retraction, namely the evaluation
map at the basepoint. Hence, by the lifting property of a relative Sullivan algebra with
respect to a surjective quasi-isomorphism, there is a dga homomorphism gl WMDl !

A�.DlM / which makes both of the triangles in the above diagram commute strictly.
Note that, when l D 1, this diagram is constructed in [8, Section 4.5], without the strict
commutativity of the lower right triangle.
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Here the map cW M !LlM is given by the pullback diagram

M

LlM DlM

M Ll�1M

zc

id

c

res

c

Applying the functor A�.�/ to the diagram and considering its model, we have the
diagram

A�.M /

^V A�.LlM / A�.DlM /

MS l MDl

A�.M / A�.Ll�1M /

^V MS l�1

id

f

c�

ev�

zc�

�

flz"
gl

c�

res�

id

f

�

fl�1

where the faces are strictly commutative and the square in the front face is a pushout dia-
gram. By the universality of the pushout, we have the dga homomorphism fl WMS l !

A�.LlM /, which makes the diagram commutative. In particular, it satisfies f ı� D
c� ı fl . Note that fl is a quasi-isomorphism by the Eilenberg–Moore theorem
[5, Section 15(c)]. This completes the induction.

Proof of Corollary 3.2 In the case k D 1, apply Theorem 3.1 to the multiplication
map .^V; d/˝2! .^V; d/. (Note that this case is a result of Félix and Thomas [6].)

In the case k � 2, using Proposition 5.1, apply Theorem 3.1 to the map � .

6 Computation of examples

In this section, we will compute the brane product and coproduct for some examples,
which proves Theorems 1.6 and 1.7.
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In [9], the duals of the loop product and coproduct are described in terms of Sullivan
models using the torsion functor description of [7]. By a similar method, we can
describe the brane product and coproduct as follows:

Theorem 6.1 Let M be a k –connected K–Gorenstein space of finite type and
.^V; d/ its Sullivan model such that V �k D 0 and V is of finite type. Then the
dual of the brane product on H�.LkM / is induced by the composition

MSk
Š
�!^V ˝M

Sk�1
MDk

'

z"˝id
 ��MDk ˝M

Sk�1
MDk

.�˝id/˝�.�˝id/
�����������!MSk ˝^V MSk

Š
�!^V ˝^V˝2 MSk

˝2

'

x"˝id
 ��MP˝^V˝2 MSk

˝2 ı!˝id
���!^V ˝2

˝^V˝2 MSk
˝2 Š
�!MSk

˝2;

where ı! is a representative of �! . (See Section 5 for the definitions of the other maps.)

Assume that �k�1M is a Gorenstein space. Then the dual of the brane coproduct is
induced by the composition

MSk
˝2 Š
�!^V ˝2

˝M
Sk�1

˝2MDk
˝2 �˝�0�
���!^V˝M

Sk�1
.MDk˝M

Sk�1
MDk /

'

z"˝id
 ��MDk˝M

Sk�1
.MDk˝M

Sk�1
MDk /


!˝id
���!MSk�1˝M

Sk�1
.MDk˝M

Sk�1
MDk /

Š
�!MDk˝M

Sk�1
MDk

'

z"˝id
��!^V˝M

Sk�1
MDk

Š
�!MSk ;

where 
! is a representative of c! , the maps � and �0 are the multiplication maps, and
� is the quotient map.

Proof We omit the detail of the proof for the brane product, since it is the same as
that for the usual loop product. Here we give a detailed proof of the construction of the
model for the brane coproduct.

Here we use two pullback diagrams

LkM �M LkM LkM

LkM M

ev

ev

M �Lk�1M LkM LkM

M Lk�1M

res

c

The spaces LkM �M LkM and M �Lk�1M LkM are obviously homeomorphic
and hence we identify them outside of this proof, but we distinguish them in this
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proof in order to specify the pullback diagrams. By a similar method to the proof of
Proposition 5.1, we have dga homomorphisms hk WMDk˝M

Sk�1
MDk!A�.LkM /

and ik W ^V ˝M
Sk�1

.MDk ˝M
Sk�1

MDk /!A�.M �Lk�1M LkM / such that the
diagrams

MSk�1 MDk ˝M
Sk�1

MDk

A�.Lk�1M / A�.LkM /

fk�1' hk'

res�

(6:2)

MSk ˝^V MSk ^V ˝M
Sk�1

.MDk ˝M
Sk�1

MDk /

A�.LkM /˝A�.M /A�.LkM /

A�.LkM �M LkM / A�.M �Lk�1M LkM /

Š

fk˝fk

ik'

Š

(6:3)

commute strictly, where the horizontal maps in the second diagram are the canonical
isomorphisms.

Using the above maps, we obtain the diagram

H�.LkM�LkM / TorK.A
�.LkM /;A�.LkM // H�.MSk˝MSk /

H�.LkM�M LkM / TorA�.M /.A
�.LkM /;A�.LkM // H�.MSk˝^V MSk /

H�.M�Lk-1M LkM / TorA�.Lk-1M /.A
�.M /;A�.LkM // H�.^V˝M

Sk-1MSk /

H�.MDk˝M
Sk-1MSk /

H�.LkM / TorA�.Lk-1M /.A
�.Lk-1M /;A�.LkM // H�.MSk-1˝M

Sk-1MSk /

H�.MSk /

incl�

EM
Š Š

Torid.fk ;fk /

Š

EM
Š Š

Torf .fk ;fk /

Š

comp!

EM
Š

Torid.c!;id/

Š

Torfk-1
.f;hk /

Š

H�.
!˝id/

Š Š

Torfk-1
.fk-1;hk /

Š

where MSk DMDk ˝M
Sk�1

MDk . The composition of the vertical maps in the left
column is the definition of the brane coproduct and the one in the right column is the
description in the statement of the theorem. The horizontal maps in the right squares are
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defined by the strict commutativity of the diagrams in Proposition 5.1 and (6.2). The
commutativity of the central square follows from (6.3) and that of the other squares are
obvious from the definitions. The commutativity of this diagram proves the theorem.

As a preparation of computation, recall the definition of a pure Sullivan algebra.

Definition 6.4 (see [5, Section 32]) A Sullivan algebra .^V; d/ with dim V <1 is
called pure if d.V even/D 0 and d.V odd/�^V even .

For a pure Sullivan algebra, we have an explicit construction of the shriek map ı!
and 
! . For ı! , see [9]. For 
! , we have the following proposition:

Proposition 6.5 Let .^V; d/ be a pure minimal Sullivan algebra. Take bases V evenD

Kfx1; : : :xpg and V odd DKfy1; : : :yqg. Define a .^V ˝^sV; d/–linear map


!W .^V ˝^sV ˝^s2V; d/! .^V ˝^sV; d/

by 
!.s
2y1 � � � s

2yq/ D sx1 � � � sxp and 
!.s
2yj1
� � � s2yjl

/ D 0 for l < q . Then 
!

defines a nontrivial element in Ext^V˝^sV .^V;^V ˝^sV /

Proof By a straightforward calculation, 
! is a cocycle in

Hom^V˝^sV .^V ˝^sV ˝^s2V;^V ˝^sV /:

In order to prove the nontriviality, we define an ideal

I D .x1; : : : ;xp;y1; : : : ;yq; sy1; : : : ; syq/�^V ˝^sV:

By purity and minimality, we have d.I/� I. Using this ideal, we have the evaluation
map of the form

Ext^V˝^sV .^V;^V ˝^sV /˝Tor^V˝^sV .^V;^V ˝^sV =I/

ev
�! Tor^V˝^sV .^V ˝^sV;^V ˝^sV =I/ Š�!^sV even:

By this map, the element Œ
!�˝Œs
2y1 � � � s

2yq˝1� is mapped to the element sx1 � � � sxp ,
which is obviously nontrivial. Hence Œ
!� is also nontrivial.

Now, we give proofs of Theorems 1.6 and 1.7.

Proof of Theorem 1.6 Using the descriptions in Theorem 6.1, we compute the
brane product and coproduct for M D S2nC1 and k D 2. In this case, we can
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take .^V; d/ D .^x; 0/ with jxj D 2n C 1, and have MS1 D .^.x; sx/; 0/ and
MD2 D .^.x; sx; s2x/; d/, where dx D dsx D 0 and ds2x D sx . The computation
is straightforward except for the shriek maps ı! and 
! . The map ı! is the linear map
MP! .^x; 0/˝2 over .^x; 0/˝2 determined by ı!.1/D1˝x�x˝1 and ı!..sx/l/D0

for l � 1. By Proposition 6.5, the map 
! is the linear map MDk !MSk�1 over
MSk�1 determined by 
!.s

2x/D 1 and 
!.1/D 0.

Then the dual of the brane product �_ is a linear map

�_W ^.x; s2x/!^.x; s2x/˝^.x; s2x/

of degree mD 2nC 1 over ^.x/˝^.x/, which is characterized by

�_.1/D 1˝x�x˝ 1; �_.s2x/D .1˝x�x˝ 1/.s2x˝ 1C 1˝ s2x/:

Similarly, the dual of the brane coproduct ı_ is a linear map

ı_W ^.x; s2x/˝^.x; s2x/!^.x; s2x/:

of degree SmD 1� 2n over ^.x/˝^.x/, which is characterized by

ı_.1/D 0; ı_.s2x˝ 1/D�1; ı_.1˝ s2x/D 1; ı_.s2x˝ s2x/D�s2x:

Dualizing these results, we get the brane product and coproduct on the homology,
which proves Theorem 1.6.

Proof of Theorem 1.7 By Proposition 6.5, we have that Im.
!˝ id/ is contained in
the ideal .sx1; : : : sxp/, which is mapped to zero by the map z"˝ id.

7 Proof of the associativity, the commutativity and the
Frobenius compatibility

In this section, we give a precise statement and the proof of Theorem 1.5.

First, we give a precise statement of Theorem 1.5. For simplicity, we omit the statement
for the .S; i; j /–brane product and coproduct, which is almost the same as that for the
.S;T /–brane product and coproduct. Let M be a k –connected K–Gorenstein space
of finite type such that �k�1M is also a Gorenstein space. Denote mD dim M. Then
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the precise statement of (1) is that the diagrams

(7:1)
H�.M S#T #U /

�_
S#T;U

//

�_
S;T #U
��

H�.M S#T �M U /

�_
S;TqU
��

H�.M S �M T #U /
�_

SqT;U
// H�.M S �M T �M U /

and

(7:2)
H�.M T #S /

�_
T;S
//

��#
��

H�.M T �M S /

���
��

H�.M S#T /
�_

S;T
// H�.M S �M T /

commute by the sign .�1/m . Here, �� and �# are defined as the transposition of S

and T . Note that the associativity of the product holds even if the assumption that
�k�1M is a Gorenstein space is dropped.

Denote SmD dim�k�1M. Then (2) states that the diagrams

(7:3)
H�.M S �M T �M U /

ı_
SqT;U

//

ı_
S;TqU
��

H�.M S �M T #U /

ı_
S;T #U
��

H�.M S#T �M U /
ı_

S#T;U
// H�.M S#T #U /

and

(7:4)
H�.M T�S /

ı_
T;S
//

��#
��

H�.M T # M S /

���
��

H�.M S�T /
ı_

S;T
// H�.M S # M T /

commute by the sign .�1/Sm . Similarly, (3) states that the diagram

(7:5)
H�.M S �M T #U /

ı_
S;T #U

//

�_
S#T;U
��

H�.M S#T #U /

�_
SqT;U
��

H�.M S �M T �M U /
ı_

S;TqU
// H�.M S#T �M U /

commutes by the sign .�1/mSm .

Before proving Theorem 1.5, we give a notation g˛ for a shriek map.
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Definition 7.6 Consider a pullback diagram

X
g
//

p

��

Y

q

��

A
f
// B

of spaces, where q is a fibration. Let ˛ be an element of Extm
C�.B/

.C �.A/;C �.B//.
Assume that the Eilenberg–Moore map

EMW Tor�C�.B/.C
�.A/;C �.Y // Š�!H�.X /

is an isomorphism (eg B is 1–connected and the cohomology of the fiber is of finite
type). Then we define g˛ to be the composition

g˛W H
�.X / Š � Tor�C�.B/.C

�.A/;C �.Y //
Tor.˛;id/
�����! Tor�Cm

C�.B/
.C �.B/;C �.Y //

Š
�!H�Cm.Y /:

Using this notation, we can write the shriek map incl! as incl�!
for the diagram (1.3),

and the shriek map comp! as compc!
for the diagram (1.4).

Now we have the following two propositions as preparation of the proof of Theorem 1.5:

Proposition 7.7 Consider a diagram

X Y

X 0 Y 0

A B

A0 B0

g

' q
 

g0

q0

a b

where q and q0 are fibrations and the front and back squares are pullback diagrams. Let
˛ 2 Extm

C�.B/
.C �.A/;C �.B// and ˛0 2 Extm

C�.B0/
.C �.A0/;C �.B0//. Assume that

the elements ˛ and ˛0 are mapped to the same element in Extm
C�.B0/

.C �.A0/;C �.B//

by the morphisms induced by a and b , and that the Eilenberg–Moore maps of two
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pullback diagrams are isomorphisms. Then the following diagram commutes:

H�.X 0/
g0
˛0
//

'�

��

H�Cm.Y 0/

 �

��

H�.X /
g˛
// H�Cm.Y /

Proposition 7.8 Consider a diagram

X
zf
//

p

��

Y
zg
//

q

��

Z

r
��

A
f
// B

g
// C

where the two squares are pullback diagrams. Let ˛ be an element of the module
Extm

C�.B/
.C �.A/;C �.B// and ˇ an element of Extn

C�.C /
.C �.B/;C �.C //. Assume

that the Eilenberg–Moore maps are isomorphisms for two pullback diagrams. Then we
have

.zg ı zf /ˇı.g�˛/ D zgˇ ı
zf˛;

where g�W Extm
C�.B/

.C �.A/;C �.B//! Extm
C�.C /

.C �.A/;C �.B// is the morphism
induced by the map gW B! C.

These propositions can be proved by straightforward arguments.

Proof of Theorem 1.5 First, we give a proof for (3). Note that the associativity in (1)
and (2) can be proved similarly.

Consider the diagram

H�.M S�M T #U /
incl�

//

comp�

��

H�.M S�M M T #U /
compc!

//

comp�

��

H�.M S#T #U /

comp�

��

H�.M S�M T�M M U /
incl�

//

incl�!

��

H�.M S�M M T�M M U /
comp.c�id/!

//

incl.id��/!
��

H�.M S#T�M M U /

incl.id��/!
��

H�.M S�M T�M U /
incl�

//H�.M S�M M T�M U /
comp.c�id/!

//H�.M S#T�M U /

Note that the boundary of the whole square is the same as the diagram (7.5). The
upper left square is commutative by the functoriality of the cohomology and so are
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the upper right and lower left squares by Proposition 7.7. Next, we consider the lower
right square. Applying Proposition 7.8 to the diagram

M S �M M T �M M U
comp

//

��

M S#T �M M U incl
//

��

M S#T �M U

��

M �M
c�id

// Lk�1M �M
id��

// Lk�1M �M 2

we have

incl.id��/! ı comp.c�id/! D .incl ı comp/.id��/!ı..id��/�.c�id/!/:

In order to compute the element

.id��/!ı..id��/�.c�id/!/2ExtC�.Lk�1M�M 2/.C
�.M�M /;C �.Lk�1M�M 2//;

we use the models constructed in Section 5. Let ı! 2 Homm
^V˝2.MP;^V ˝2/ and


! 2 HomSmM
Sk�1

.MDk ;MSk�1/ be representatives of the generators:

Œı!� D�! 2 Extm
C�.M 2/

.C �.M /;C �.M 2//;

Œ
!�D c! 2 ExtSm
C�.Lk�1M /

.C �.M /;C �.Lk�1M //:

Then, using the isomorphism

ExtmCSm
C�.M 2�Lk�1M /

.C �.M �M /;C �.M 2
�Lk�1M //

ŠH mCSm.Hom^V˝2˝M
Sk�1

.MP˝MDk ;^V ˝2
˝MSk�1//;

we have a representation

.id��/! ı ..id��/�.c � id/!/D Œid˝ ı!� ı Œ
!˝ id�D Œ.�1/mSm
!˝ ı!�

as a chain map. Similarly, we compute the other composition to be

comp.c�id/! ı incl.id��/! D .comp ı incl/.c�id/!ı..c�id/�/.id��/!

with

.c � id/! ı ..c � id/�/.id��/! D Œ
!˝ ı!�:

This proves the commutativity by the sign .�1/mSm of the lower right square.
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Next, we prove the commutativity of the coproduct in (2). This follows from the
commutativity of the diagram

(7:9)

H�.M T �M S /
incl�
//

���
��

H�.M T �M M S /
comp!

//

���
��

H�.M T #S /

��#
��

H�.M S �M T /
incl�
// H�.M S �M M T /

comp!
// H�.M S#T /

The commutativity of the left square is obvious. If one can apply Proposition 7.7 to the
diagram

(7:10)

M S �M M T M S#T

M T �M M S M T #S

M Lk�1M

M Lk�1M

comp

�� res
�#

comp

resc

id �

c

we obtain the commutativity of the right square of (7.9). In order to apply Proposition 7.7,
it suffices to prove the equation

(7:11) Ext��.id; ��/.c!/D .�1/Smc!

in ExtC�.Lk�1M /.C
�.M /;C �.Lk�1M //. Since

ExtSm
C�.Lk�1M /

.C �.M /;C �.Lk�1M //ŠK

and Ext��.id; ��/ ı Ext��.id; ��/ D id, we have (7.11) up to sign. In Section 9, we
will determine the sign to be .�1/Sm .

Similarly, in order to prove the commutativity of the product in (1), we need to prove
the equation

(7:12) Ext��.id; ��/.�!/D .�1/m�!

in ExtC�.M 2/.C
�.M /;C �.M 2//. As above, we have (7.12) up to sign. The sign is

determined to be .�1/m in Section 8.

The same proofs can be applied for the .S; i; j /–brane product and coproduct.
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8 Proof of (7.12)

In this section, we will prove (7.12), determining the sign. Here, we need the explicit
description of �! in [11].

Let M be a 1–connected space with dim��.M / ˝ K < 1. By [11, Theorem
1.6], we have a Sullivan model .^V; d/ of M which is semipure, ie d.IV / � IV ,
where IV is the ideal generated by V even . Let "W .^V; d/ ! K be the augmenta-
tion map and prW .^V; d/ ! .^V =IV ; d/ the quotient map. Take bases V even D

Kfx1; : : :xpg and V odd DKfy1; : : :yqg. Recall the relative Sullivan algebra MP D

.^V ˝2 ˝^sV; d/ over .^V; d/˝2 from Section 6. Note that the relative Sullivan
algebra .^V ˝2 ˝ ^sV; d/ is a relative Sullivan model of the multiplication map
.^V; d/˝2! .^V; d/, Hence, using this as a semifree resolution, we have

Ext^V˝2.^V;^V ˝2/DH�.Hom^V˝2.^V ˝2
˝^sV;^V ˝2//:

By [11, Corollary 5.5], we have a cocycle f 2 Hom^V˝2.^V ˝2 ˝ ^sV;^V ˝2/

satisfying

f .sx1 � � � sxp/D

jDqY
jD1

.1˝yj �yj ˝ 1/Cu

for some u 2 .y1˝y1; : : : ;yq˝yq/. Consider the evaluation map

evW Ext^V˝2.^V;^V ˝2/˝Tor^V˝2.^V;^V =IV /! Tor^V˝2.^V ˝2;^V =IV /

Š
�!H�.^V =IV /;

where .^V; d/˝2 , .^V; d/ and .^V =IV ; d/ are .^V; d/˝2 –module via id, " � id and
pr ı ." � id/, respectively. Here, we use .^V ˝2˝^sV; d/ as a semifree resolution of
.^V; d/. Then, we have

ev.Œf �˝ Œsx1 � � � sxp �/D Œy1 � � �yq �¤ 0;

and hence Œf �¤ 0 in Ext^V˝2.^V;^V ˝2/. So it suffices to calculate Extt .id; t/.Œf �/
to determine the sign in (7.12), where t W .^V; d/˝2 ! .^V; d/ is the dga homo-
morphism defined by t.v˝ 1/D 1˝ v and t.1˝ v/D v˝ 1.

Proof of (7.12) By definition, Extt .id; t/ is induced by the map

Homt .Qt ; t/W Hom^V˝2.^V ˝2
˝^sV;^V ˝2/! Hom^V˝2.^V ˝2

˝^sV;^V ˝2/;
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where Qt is the dga automorphism defined by Qt j^V˝2 D t and Qt.sv/ D �sv . Since
Qt.sx1 � � � sxp/D .�1/psx1 � � � sxp and

t

� jDqY
jD1

.1˝yj �yj ˝ 1/

�
D .�1/q

jDqY
jD1

.1˝yj �yj ˝ 1/;

we have

ev.ŒHomt .Qt ; t/.f /�˝Œsx1 � � � sxp �/Dev.Œtıf ıQt �˝Œsx1 � � � sxp �/D .�1/pCq Œy1 � � �yq �:

Since the parity of pCq is the same as that of the dimension of .^V; d/ as a Gorenstein
algebra, the sign in (7.12) is proved to be .�1/m .

9 Proof of (7.11)

In this section, we give the proof of (7.11), using the spectral sequence constructed
in the proof of Theorem 3.1. Although the key idea of the proof of Theorem 3.1 is
the same as Theorem 2.3 due to Félix and Thomas, we give the proof here for the
convenience of the reader.

Proof of Theorem 3.1 Take a .A˝B; d/–semifree resolution �W .P; d/ '�! .A; d/.
Define .C; d/ D .HomA˝B.P;A˝B/; d/. Then ExtA˝B.A;A˝B/ D H�.C; d/.
We fix a nonnegative integer N , and define a complex

.CN ; d/D
�
HomA˝B.P; .A=A

>n/˝B/; d
�
:

We will compute the cohomology of .CN ; d/. Define a filtration fFpCN gp�0 on
.CN ; d/ by FpCN D HomA˝B.P; .A=A

>n/�p ˝ B/. Then we obtain a spectral
sequence fEp;q

r gr�0 converging to H�.CN ; d/.

Claim 9.1 E
p;q
2
D

�
H p.A=A>N / if q Dm,
0 if q ¤m.

Proof of Claim 9.1 We may assume p � N. Then we have an isomorphism of
complexes

.A�p=A�pC1; 0/˝ .HomB.B˝A˝B P;B/; d/ Š�! .E
p
0
; d0/;

hence
.A�p=A�pC1/˝H�.HomB.B˝A˝B P;B/; d/ Š�!E

p
1
:
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Define
x�W .B; xd/˝A˝B .P; d/

1˝�
��! .B; xd/˝A˝B .A; d/ŠK:

Note that the last isomorphism follows from the assumption (a). Then, since � is a
quasi-isomorphism, so is x�. Hence we have

H q.HomB.B˝A˝B P;B/; d/Š Extq
B
.K;B/Š

�
K if q Dm,
0 if q ¤m,

by the assumption (b).

Hence we have

E
p;q
1
Š .A�p=A�pC1/˝H q.HomB.B˝A˝B P;B/; d/ŠAp

˝Extq
B
.K;B/:

Moreover, using the assumption (c) and the above isomorphisms, we can compute the
differential d1 and have an isomorphism of complexes

(9:2) .E
�;q
1
; d1/Š .A

�; d/˝Extq
B
.K;B/:

This proves Claim 9.1.

Now we return to the proof of Theorem 3.1. We will recover H�.C / from H�.CN /

by taking a limit. Since lim
 ��

1
N

CN D 0, we have an exact sequence

0! lim
 ��
N

1 H�.CN /!H�.lim
 ��
N

CN /!H�.lim
 ��
N

H�.CN //! 0:

By Claim 9.1, the sequence fH�.CN /gN satisfies the (degreewise) Mittag-Leffler
condition, and hence lim

 ��

1
N

H�.CN /D 0. Thus, we have

H l.C /ŠH l.lim
 ��
N

CN /Š lim
 ��
N

H l.CN /ŠH l�m.A/:

This proves Theorem 3.1.

Next, using the above spectral sequence, we determine the sign in (7.11).

Proof of (7.11) If k D 1, (7.11) is the same as (7.12), which was proved in Section 8.
Hence we assume k � 2. As in Section 7, let M be a k –connected K–Gorenstein
space of finite type with dim��.M /˝K<1, and .^V; d/ its minimal Sullivan model.
Using the Sullivan models constructed in Section 5, we have that the automorphism
Ext��.id; ��/ on

ExtC�.Lk�1M /.C
�.M /;C �.Lk�1M //
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is induced by the automorphism Homt .zt ; t/ on

Hom^V˝^sk�1V .^V ˝^sk�1V ˝^skV;^V ˝^sk�1V /;

where t and zt are the dga automorphisms on

.^V ˝^sk�1V; d/ and .^V ˝^sk�1V ˝^skV; d/;

respectively, defined by

t.v/D v; t.sk�1v/D�sk�1v;

zt.v/D v; zt.sk�1v/D�sk�1v; zt.skv/D�skv:

Now, consider the spectral sequence fEp;q
r g in the proof of Theorem 3.1 by taking

.A˝B; d/D .^V ˝^sk�1V; d/ and .P; d/D .^V ˝^sk�1V ˝^skV; d/. Since
k � 2, Homt .zt ; t/ induces automorphisms on the complexes CN and FpCN , and
hence on the spectral sequence fEp;q

r g. By the isomorphism (9.2), we have

E
p;q
2
ŠH p.A/˝Extq

^sk�1V
.K;^sk�1V /;

and that the automorphism induced on E2 is the same as id˝Extxt .id;xt/, where xt is
defined by xt.sk�1v/D�sk�1v for v 2 V . Since the differential is zero on ^sk�1V ,
we have an isomorphism

Ext�
^sk�1V

.K;^sk�1V /Š
O

i

Ext�
^sk�1vi

.K;^sk�1vi/;

where fv1; : : : ; vlg is a basis of V . Using this isomorphism, we can identify

Extxt .id;xt/D
O

i

Extxti
.id;xti/;

where xti is defined by xti.sk�1vi/D�sk�1vi .

Since .�1/dim V D .�1/Sm , it suffices to show Extxti
.id;xti/D�1. Taking a resolution,

we have

Ext�
^sk�1vi

.K;^sk�1vi/DH�.Hom^sk�1vi
.^sk�1vi ˝^skvi ;^sk�1vi//;

Extxti
.id;xti/DH�.Homxti

.yti ;xti//;

where the differential d on ^sk�1vi ˝ ^skvi is defined by d.sk�1vi/ D 0 and
d.skvi/D sk�1vi , and the dga homomorphism yti is defined by yti.sk�1vi/D�sk�1vi

and yti.skvi/ D �skvi . Using this resolution, we have the generator Œf � of the co-
homology H�.Hom^sk�1vi

.^sk�1vi ˝^skvi ;^sk�1vi//ŠK as follows:
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� If jsk�1vi j is odd, define f by f .1/D sk�1vi and f ..skvi/
l/D 0 for l � 1.

� If jsk�1vi j is even, define f by f .1/D 0 and f ..skvi//D 1.

In both cases, we have Homxti
.yti ;xti/.f /Dxtiıf ıytiD�f . This proves Extxti

.id;xti/D�1

and completes the determination of the sign in (7.11).
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