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Quasi-right-veering braids and nonloose links

TETSUYA ITO

KEIKO KAWAMURO

We introduce a notion of quasi-right-veering for closed braids, which plays an
analogous role to right-veering for open books. We show that a transverse link K

in a contact 3–manifold .M; �/ is nonloose if and only if every braid representative
of K with respect to every open book decomposition that supports .M; �/ is quasi-
right-veering. We also show that several definitions of right-veering closed braids
are equivalent.

57M50; 57M27

1 Introduction

The dichotomy between tight and overtwisted is fundamental to 3–dimensional contact
topology. Eliashberg in [8] shows that two homotopic overtwisted contact structures as
2–plane fields are isotopic through contact structures. Therefore, the classification of
overtwisted contact structures is reduced to homotopy classification of 2–plane fields.
However, this is not the case for tight contact structures, and detecting tightness of a
given contact structure often arises as an important problem.

A Legendrian or transverse link in a contact 3–manifold is called loose if the com-
plement is overtwisted, and otherwise it is called nonloose. In the classification of
Legendrian and transverse links in contact 3–manifolds, the nonloose vs loose di-
chotomy plays a similar role to the tight vs overtwisted dichotomy in the classification
of contact structures. Eliashberg and Fraser [9] (resp. Etnyre [12]) show that loose
null-homologous Legendrian (resp. transverse) links are coarsely classified by classical
invariants called the Thurston–Bennequin number and the rotation number (resp. the
self-linking number). Here, coarse classification means up to contactomorphism that is
smoothly isotopic to the identity.

One useful method to study contact 3–manifolds and transverse links uses open
books .S; �/. Here, S is an oriented compact surface with nonempty boundary @S
and � D Œ'� 2MCG.S/ is a mapping class represented by a diffeomorphism ' 2
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DiffC.S; @S/. This method is depending on Giroux’s one-to-one correspondence [17]
between contact structures up to isotopy and open books up positive stabilization. See
Etnyre’s paper [11] for detail. If a contact structure .M; �/ corresponds with an open
book .S; �/ under the Giroux correspondence, we say that the contact structure .M; �/

is supported by the open book .S; �/.

With the Giroux correspondence, Bennequin [4], Mitsumatsu and Mori [28] and Pave-
lescu [29; 30] independently show that every transverse link in .M; �/ can be identified
with a closed braid with respect to .S; �/. In this paper, we study transverse links
via braids.

See the research monograph [27] by LaFountain and Menasco for a gentle introduction
to the techniques of open book foliations that is central to the new work in this paper.
These foliations were first used by the authors in [20] and played an important role
in [21; 22; 23; 24; 25; 26]. Open book foliations had their origins in the work of
Birman and Menasco in a series of papers about braid foliations. See Birman and
Finkelstein’s article [5] for a useful guide to the work of Birman and Menasco on braid
foliations, and [6] for their key paper that is relevant for us. It is the first place where
braid foliations were used to solve a major then-open problem in contact topology.

We call � the monodromy of the open book .S; �/ and we say that the monodromy �
is right-veering if it turns every properly embedded curve to the right near the boundary
(see Definition 3.9). The following result of Honda, Kazez and Matić [18] gives a
characterization of tightness in terms of right-veering monodromies.

Theorem 1.1 [18, Theorem 1.1] A contact 3–manifold .M; �/ is tight if and only if
for every open book .S; �/ supporting .M; �/, the monodromy � is right-veering.

The table below will be helpful for the following discussion:

contact manifold .M; �/ transverse link T in .M; �/

tight/overtwisted nonloose/loose

open book .S; �/ closed braid L with respect to .S; �/

right-veering monodromy quasi-right-veering braid

monodromy � 2MCG.S/ distinguished monodromy Œ'L� 2MCG.S;P /

FDCT of � with respect to C FDTC of braid L with respect to C

c.�;C / c.�;L;C / WD c.Œ'L�;C /
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As a natural counterpart of right-veering mapping classes, right-veering closed braids
(with respect to general open books) have been defined and studied in the literature,
for example by Baldwin, Vela-Vick and Vértesi [3], Baldwin and Grigsby [2] and
Plamenevskaya [31].

In [18], Honda, Kazez and Matić define the fractional Dehn twist coefficient (FDTC).
The FDTC is an invariant of a monodromy and it detects right-veeringness of the
monodromy. Hence the FDTC can be used to determine tight or overtwisted for the
supported contact structure; see Colin and Honda [7], Honda, Kazez and Matić [19]
and our [23].

In Section 2 we define a closed braid L in open book .S; �/ and discuss how to assign
an element Œ'L� of the mapping class group for L. We call Œ'L� the distinguished
monodromy. Then, as a counterpart of the FDTC c.�;C /, we define c.�;L;C /,
the FDTC for a closed braid L with respect to an open book .S; �/ and a boundary
component C of S. The definitions given in this paper are more rigorous than those in
our previous paper [25].

In [25], various results on open books and the FDTC are translated to results on closed
braids and the FDTC for closed braids. This gives us some hope that open books and
closed braids with respect to open books can be treated in a unified manner.

However, this is too optimistic: Note that Theorem 1.1 of Honda, Kazez and Matić
implies that any non-right-veering open book supports an overtwisted contact structure,
but not every non-right-veering closed braid is loose. A simple example of this fact is a
non-right-veering closed braid with respect to an open book supporting a tight contact
3–manifold. In this paper, we find a condition on closed braids to be loose.

In Definition 3.11 we introduce quasi-right-veering closed braids. A closed braid L

is called quasi-right-veering if for every properly embedded oriented arc ˛ � S there
does not exist a finite sequence of arcs ˛0 D 'L.˛/; ˛1; ˛2; : : : ; ˛n D ˛ such that

� they all start from the same point, say �,

� ˛iC1 is on the right of ˛i near �, and

� the interiors of ˛i and ˛iC1 are disjoint.

After studying basic properties of quasi-right-veering braids we show that it is the quasi-
right-veering condition on closed braids that plays the same role as the right-veering
condition on open books in Theorem 1.1. Our first main result is the following:

Algebraic & Geometric Topology, Volume 19 (2019)



2992 Tetsuya Ito and Keiko Kawamuro

Theorem 4.1 A transverse link T in a contact 3–manifold .M; �/ is nonloose if and
only if every braid representative of T with respect to every open book decomposition
of .M; �/ is quasi-right-veering.

In Theorem 4.1 we allow the transverse link T to be empty. Our definition of quasi-
right-veering implies that the empty braid with respect to an open book .S; �/ is quasi-
right-veering if and only if � is right-veering. A loose empty link can be interpreted as
having an overtwisted underlying contact structure. Therefore, Theorem 1.1 follows as
a corollary of Theorem 4.1.

Sections 5 and 6 are devoted to more results on nonloose links.

The depth of a Legendrian or transverse link T � .M; �/ is defined by Baker and Onaran
in [1]. It is the minimal number of times T intersects an overtwisted disk in .M; �/. If
L is a braid with respect to .S; �/ (ie L is a transverse link), then its associated axis-
augmented transverse link (Definition 5.3) is the union of L and the binding of .S; �/.
In Theorem 5.5 we relate depth-one links and non-quasi-right-veering braids.

Theorem 5.5 Let .S; �/ be an open book decomposition of .M; �/ and let L be a
closed braid in the open book .S; �/. The depth of the axis-augmented transverse link
for L is one if and only if the braid L is not quasi-right-veering.

Theorem 6.1 below is a result on braids and it can be seen as a generalization of
[23, Corollary 1.2] as a result on open books.

Theorem 6.1 Let .S; �/ be a planar (the genus of S is zero) open book of a contact
3–manifold .M; �/. If a transverse link T � .M; �/ is represented by a closed braid L

such that c.�;L;C / > 1 for every boundary component C of S, then T is nonloose.

Finally, in Section 7 we address one subtle but important issue on right-veering closed
braids. As mentioned above, three different definitions of right-veering closed braids
have existed in the literature (see [2; 3; 31]), which we call @–.@CP /, @–@ and @–P

right-veering (see Definition 7.2). They are not equivalent when focusing on an
individual boundary component as stated in Theorem 7.5. However, when all the
boundary components are simultaneously considered, they are equivalent:

Corollary 7.6 For  2MCG.S;P / the following are equivalent :

(1)  is @–.@CP / right-veering with respect to all the boundary components of S.
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(2)  is @–@ right-veering with respect to all the boundary components of S.

(3)  is @–P right-veering with respect to all the boundary components of S.

In particular , when S has connected boundary, the three notions of right-veering are
equivalent.

2 Closed braids as mapping classes and their FDTC

In this section we review the distinguished monodromy for a closed braid. The dis-
tinguished monodromy is an element of the mapping class group of a surface with
marked points. We also review the definition of FDTC for closed braids and prove its
well-definedness.

Let S'Sg;d be an oriented compact surface with genus g and d boundary components.
Throughout the paper we assume d > 0. Let P D fp1; : : : ;png be a (possibly empty)
set of n distinct interior points of S. Let MCG.S;P / (denoted by MCG.S/ if P is
empty) be the mapping class group of the punctured surface S nP, which is the group of
isotopy classes of orientation-preserving homeomorphisms of the surface S fixing @S
pointwise and fixing P setwise. Let DiffC.S; @S/ denote the group of orientation-
preserving diffeomorphisms of S that fix @S pointwise. Let DiffC.S;P; @S/ be the
group of orientation-preserving diffeomorphisms of S that fix P setwise and @S

pointwise.

2.1 Three notions of the word open book

Let � 2MCG.S/ be a mapping class and ' 2 DiffC.S; @S/ be a diffeomorphism
representing � . In the literature, the term “open book” has been used for closely related
several meanings. In general this does not cause much trouble. However, when we
discuss the mapping class group of a punctured surface we need a little more care.

In this paper, we call the pair .S; '/ an abstract open book, whereas we call the pair
.S; �/ an open book. (In Etnyre’s note [11], .S; '/ is called an abstract open book
but .S; �/ is not assigned any name.) For a 3–manifold M, by an embedded open
book (or open book decomposition in [11]) of M we mean a pair .B; �/ of a fibered
link B �M and fibration � W M nB! S1 . The link B is called the binding and the
closure of fiber ��1.t/ is called a page and denoted by St .

Given an abstract open book .S; '/ let

…W S � Œ0; 1�!M.S;'/ WD S � Œ0; 1�=�
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be the quotient map, where � denotes the equivalence relation

.x; 1/� .'.x/; 0/ for all x 2 S;

.x; t/� .x; s/ for all x 2 @S and t; s 2 Œ0; 1�:

The manifold M.S;'/ is naturally equipped with an embedded open book .B; �/D
.B.S;'/; �.S;'// as follows: The binding is defined by

B D B.S;'/ WD….@S � ftg/;

which does not depend on the choice of t 2 Œ0; 1�. Identify S1 with the quotient space
Œ0; 1�=0� 1. The fibration is defined by

� D �.S;'/W M.S;'/ nB! S1; ….x; t/ 7! t:

Then ��1.t/ is the interior of the page St D….S � ftg/, which is a compact surface.

2.2 Generalized Birman exact sequence

Definition 2.1 Let P D fp1; : : : ;png and P 0D fp0
1
; : : : ;p0ng be finite sets of interior

points of S. (We do not require P D P 0.) Let fx1; : : : ;xng be an abstract set of n

points. A geometric n–braid of S joining P � f0g and P 0 � f1g is embedding of n

copies of the interval Œ0; 1� into S � Œ0; 1�,

ˇW

n‚ …„ ƒ
Œ0; 1�t � � � t Œ0; 1�Š fx1; : : : ;xng � Œ0; 1�! S � Œ0; 1�; .xi ; t/ 7! .ˇi.t/; t/;

such that fˇ1.0/; : : : ; ˇn.0/g D P and fˇ1.1/; : : : ; ˇn.1/g D P 0 as (unordered) sets.

We view the geometric braid ˇ as an isotopy fˇt W P ! S j t 2 Œ0; 1�g of the set of
points P such that ˇ0 D idP and ˇ1.P / D P 0. We extend the isotopy fˇtg to an
ambient smooth isotopy f y̌t W S ! S j t 2 Œ0; 1�g of S that satisfies the following:

� y̌
0 D idS .

� y̌
t jP D ˇt for all t 2 Œ0; 1�.

� y̌
t j@S D id@S for all t 2 Œ0; 1�.

Given fˇtg, this extension f y̌tg is unique up to isotopy of S fixing @S. We call

(2-1) y̌
1W .S;P /! .S;P 0/

a diffeomorphism associated to the geometric braid ˇ .
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When P DP 0, the set of isotopy classes of geometric n–braids forms a group. Regard-
less of the choice of P, the group is isomorphic to �1.C.S; n// the fundamental group
of the configuration space of n distinct, unordered points in S. In this paper we denote
�1.C.S; n// by Bn.S/ and call it the n–stranded surface braid group of S. We denote
by Œˇ� the element of Bn.S/ represented by the geometric braid ˇ in S � Œ0; 1� joining
P � f0g and P � f1g.

Suppose that ˇ and ˇ0 are geometric n–braids joining P�f0g and P�f1g and they are
ambient isotopic; namely, Œˇ�D Œˇ0� 2 Bn.S/. Then their associated diffeomorphisms
y̌

1 and y̌01 2 DiffC.S;P; @S/ are isotopic. Therefore, we obtain a well-defined
homomorphism i , which we call the push map,

i W Bn.S/!MCG.S;P /; Œˇ� 7! Œ y̌1�:

Suppose that ' 2 DiffC.S;P; @S/. Forgetting the points P, the diffeomorphism
'W .S;P /! .S;P / can be regarded as a diffeomorphism 'W S ! S. This defines a
surjective homomorphism f WMCG.S;P /!MCG.S/, called the forgetful map.

The push map i and the forgetful map f give the generalized Birman exact sequence
[15, Theorem 9.1],

(2-2) 1! Bn.S/
i
�!MCG.S;P / f

�!MCG.S/! 1:

2.3 The distinguished monodromy

Definition 2.2 A closed n–braid L with respect to an abstract open book .S; '/ is
an oriented link in the 3–manifold M.S;'/ with the embedded open book .B; �/D
.B.S;'/; �.S;'// such that L�M.S;'/ nB and L intersects every page St positively
and transversely at n points.

Definition 2.3 We say that two closed braids L and L0 with respect to the same
abstract open book .S; '/ are braid isotopic if they are isotopic through closed braids.

In the following, we discuss how to assign an element of the mapping class group,
which we call the distinguished monodromy, to a closed braid (Definition 2.5), and
study how braid isotopy affects the distinguished monodromy (Proposition 2.7).

The quotient map …W S� Œ0; 1�!M.S;'/ restricted on S�ftg gives a diffeomorphism
…jS�ftgW S�ftg!St . Composing .…jS�ftg/�1 and the projection prW S�Œ0; 1�!S,
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.x; t/ 7! x , every page St of the embedded open book .B; �/ of M.S;'/ is diffeo-
morphic to S :

St
.…jS�ftg/

�1

������! S � ftg
pr
�! S; ….x; t/ 7! .x; t/ 7! x:

Denote the diffeomorphism by pt WD pr ı .…jS�ftg/�1W St ! S. We view M.S;'/ as
the union of the pages St for t 2 Œ0; 1/ and extend pt to

(2-3) pW M.S;'/! S

by setting pjSt
D pt for t 2 Œ0; 1/. Thus, p.….x; t//D x for t 2 Œ0; 1/. We call p

a projection. The projection p is clearly not continuous near the page S0 since, in
general,

lim
t!0�

p.….x; t//D '.x/¤ x D lim
t!0C

p.….x; t//:

Take a collar neighborhood �.@S/ of the boundary @S. In the following we impose
the following conditions to braids, which can always be achieved by braid isotopy:

Definition 2.4 We say that a closed braid L with respect to an abstract open book
.S; '/ is admissible if the following conditions are satisfied:

'j�.@S/ D id�.@S/;(2-4)

P WD p.L\S0/� �.@S/:(2-5)

Recall that under the quotient map …W S � Œ0; 1�!M.S;'/ , a point .x; 1/ is identified
with the point .'.x/; 0/. Cutting the manifold M.S;'/ along the page S0 , the admis-
sible closed braid L gives rise to a geometric n–braid, denoted by ˇL � S � Œ0; 1�,
joining P � f0g and P � f1g such that ….ˇL/DL.

By (2-4) and (2-5) we have 'jP D id, hence we may view ' as an element of
DiffC.S;P; @S/. In order to distinguish ' in DiffC.S; @S/ and ' in DiffC.S;P; @S/,
we denote the latter by j .'/. The map j can be regarded as the right inverse of the
forgetful map f in the generalized Birman exact sequence (2-2) since f .Œj .'/�D Œ'�.

Choose a diffeomorphism y̌L12DiffC.S;P; @S/ associated to the geometric braid ˇL .
Let

(2-6) 'L WD
y̌
L1 ı j .'/ 2 DiffC.S;P; @S/:

Then we have

(2-7) .M.S;'/;L/' ..S;P /� Œ0; 1�/=�'L
;
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where the equivalence relation �'L
satisfies .x; 1/ � .'L.x/; 0/ for all x 2 S and

.x; 1/ � .x; t/ for all x 2 @S and t 2 Œ0; 1�. Since y̌L1 is unique up to isotopy, so
is 'L .

Definition 2.5 Let L be an admissible closed braid with respect to an abstract open
book .S; '/. The distinguished monodromy of L is the mapping class

Œ'L� 2MCG.S;P /:

In [25] the above Œ'L� is denoted by �L . In this paper, we do not use the notation �L

because we want to distinguish closed braids with respect to .S; '/ (Definition 2.2)
and closed braids with respect to .S; �/ (Definition 2.8), and L is only defined with
respect to .S; '/.

Definition 2.6 When jP j D jP 0j, the groups MCG.S;P / and MCG.S;P 0/ are
isomorphic. We say that an isomorphism ‚WMCG.S;P /!MCG.S;P 0/ is point-
changing if ‚ is defined by ‚.Œ �/D Œ��1 ı ı �� for some orientation-preserving
diffeomorphism � W .S;P 0/! .S;P / such that � j@S D id@S and � is isotopic to idS if
we forget the marked points of P and P 0. If P DP 0, every point-changing isomorphism
is an inner automorphism of MCG.S;P /.

Proposition 2.7 Let L and L0 be admissible closed n–braids with respect to an
abstract open book .S; '/. Write P WD p.L\S0/ and P 0 WD p.L0\S0/� �.@S/. If
L and L0 are braid isotopic then there exists a point-changing isomorphism


 �WMCG.S;P /!MCG.S;P 0/

such that Œ'L0 �D 

�.Œ'L�/.

Proof Cutting the manifold M.S;'/ along the page S0 , the closed braids L and L0

give rise to geometric n–braids ˇ WDˇL and ˇ0 WDˇL0 �S� Œ0; 1�, respectively. Since
L and L0 are braid isotopic we have

(2-8) Œˇ0�D Œ
�1
�ˇ � 
 ' � (read from the right to left)

for some geometric n–braid 
 � S � Œ0; 1� connecting P 0 � f0g and P � f1g and
specified by an isotopy f
t W P

0! S j t 2 Œ0; 1�g such that 
0 D idP 0 and 
1.P
0/D P.

Here

� the bullet “ � ” is concatenation of geometric braids;
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� 
�1 is the geometric n–braid joining P � f0g and P 0 � f1g defined by

.
�1/t WD 
1�t I

� 
 ' is the geometric n–braid joining P 0 � f0g and P � f1g defined by

.
 '/t WD ' ı 
t :

As done in (2-1), we extend f
tg to a smooth isotopy fy
t W S ! S j t 2 Œ0; 1�g. The
diffeomorphism y
1W .S;P

0/! .S;P / associated to 
 gives rise to a point-changing
isomorphism

(2-9) 
 �WMCG.S;P /!MCG.S;P 0/; Œ � 7! Œy
�1
1 ı ı y
1�:

Similarly, we extend f
 ' t W P
0!S j t 2 Œ0; 1�g to an isotopy f y
 ' t W S!S j t 2 Œ0; 1�g.

Let i 0W Bn.S/ ! MCG.S;P 0/ be the push map in the generalized Birman exact
sequence (2-2) where P is replaced with P 0. Then by the definition of push map we
have

(2-10) i 0.Œ
�1
�ˇ � 
 ' �/D Œy
�1

1 ı y̌1 ı y
 '1�:

Let j 0.'/ denote the diffeomorphism ' , viewed as an element of DiffC.S;P 0; @S/.
By the definition of the braid 
 ' we have

(2-11) y
 '1 D ' ı y
1 ı'
�1
D j .'/ ı y
1 ı j 0.'/�1:

The following calculation concludes the proposition:

Œ'L0 �D Œ y̌01 ı j 0.'/�D i 0.Œˇ0�/Œj 0.'/� .by Definition 2.5/

D i 0.Œ
�1
�ˇ � 
 ' �/Œj 0.'/� .by (2-8)/

D Œy
�1
1 ı y̌1 ı �
 '1 ı j 0.'/� .by (2-10)/

D Œy
�1
1 ı y̌1 ı j .'/ ı y
1 ı j 0.'/�1

ı j 0.'/� .by (2-11)/

D Œy
�1
1 ı . y̌1 ı j .'// ı y
1�

D 
 �.Œ'L�/ .by Definition 2.5 and (2-9)/:

In our previous papers, such as [25], by a closed braid with respect to the open book
.S; �/ we mean a closed braid with respect to some abstract open book .S; '/ with
Œ'� D � . As long as we have geometric argument (eg open book foliations), this
causes no trouble since we implicitly fix an abstract open book .S; '/ throughout the
discussion. However, when we discuss connection to mapping class groups (eg the
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distinguished monodromy), we need to understand what happens if we take another
diffeomorphism '0 with Œ'0�D � .

Assume that ' and '0 are isotopic. Let f�t 2 DiffC.S; @S/ j t 2 Œ0; 1�g be a smooth
isotopy between �0 D idS and �1 D '

0 ı'�1 , and define

x�W S � Œ0; 1�! S � Œ0; 1� by x�.x; t/D .�1�t .x/; t/:

Since x�.x; 1/D .x; 1/ and x�.'.x/; 0/D .'0.x/; 0/, the map x� induces a diffeomor-
phism

(2-12) �W M.S;'/!M.S;'0/

preserving the embedded open books associated to .S; '/ and .S; '0/. That is, the
binding is mapped to the binding �.B.S;'// D B.S;'0/ and for each t 2 Œ0; 1� the
page St of M.S;'/ is mapped to the page St of M.S;'0/ . In particular, if L is a closed
braid with respect to .S; '/ then �.L/ is a closed braid with respect to .S; '0/.

Definition 2.8 Let L�M.S;'/ (resp. L0 �M.S;'0/ ) be a closed braid with respect
to .S; '/ (resp. .S; '0/).

(1) We say that triples ..S; '/;L/ and ..S; '0/;L0/ are equivalent if Œ'�D Œ'0� and
the closed braid �.L/�M.S;'0/ is braid isotopic to L0.

(2) The equivalence class of ..S; '/;L/ with Œ'�D � is called a closed braid with
respect to the open book .S; �/ and denoted by Œ.S; '/;L� or simply L.

We remark that L and L0 are braid isotopic if and only if ' D '0 and ..S; '/;L/ and
..S; '/;L0/ are equivalent

The next theorem states that the distinguished monodromy Œ'L� is an invariant of the
equivalence class of ..S; '/;L/ up to point-changing isomorphism:

Theorem 2.9 Let L (resp. L0 ) be an admissible closed braid with respect to an abstract
open book .S; '/ (resp. .S; '0/). Let P WD p.L \ S0/ and P 0 WD p.L0 \ S0/. If
..S; '/;L/ and ..S; '0/;L0/ are equivalent then there is a point-changing isomorphism

 �WMCG.S;P /!MCG.S;P 0/ such that Œ'0

L0
�D 
 �.Œ'L�/.

Proof Since 'j�.@S/ D '
0j�.@S/ D id�.@S/ , we may assume that the above isotopy

f�t W S ! S j t 2 Œ0; 1�g between idS and '0 ı '�1 satisfies �t j�.@S/ D id�.@S/ for
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all t 2 Œ0; 1�. Define x� and � as above. Then p.L\S0/Dp.�.L/\S0/DWP � �.@S/.
This together with Œ'�D Œ'0� implies that

(2-13) Œj .'/�D Œj .'0/� 2MCG.S;P /:

Let ˇL (resp. ˇ�.L/ ) denote the geometric braid obtained from L (resp. �.L/) by cut-
ting the manifold M.S;'/ (resp. M.S;'0/ ) along the page S0 . Note that ˇ�.L/D x�.ˇL/.

For .x; t/ 2 S � Œ0; 1� and s 2 Œ0; 1� let

x�s.x; t/ WD .�s.1�t/.x/; t/:

Then fx�s 2 DiffC.S � Œ0; 1�/ j s 2 Œ0; 1�g gives an isotopy between x�0 D idS�Œ0;1� and
x�1D x� . Therefore, the geometric braids ˇL and x�.ˇL/ are isotopic through the family
of geometric braids fx�s.ˇL/ j s 2 Œ0; 1�g having the same endpoints, and in, the surface
braid group,

(2-14) Œˇ�.L/�D Œx�.ˇL/�D ŒˇL� 2 Bn.S/:

By (2-13) and (2-14) we have an identity between the distinguished monodromies of
L and �.L/,

Œ'0�.L/�D i.Œˇ�.L/�/Œj .'
0/�D i.ŒˇL�/Œj .'/�D Œ'L� 2MCG.S;P /:

Since �.L/ and L0 are braid isotopic, by Proposition 2.7 we get Œ'0
L0
�D 
 �.Œ'0

�.L/
�/D


 �.Œ'L�/.

Remark 2.10 One can develop the distinguished monodromy in more a general setting
by weakening the definition of admissible closed braids. In the definition of admissible
closed braids, if we replace the conditions (2-4) and (2-5) with a weaker one like
'.P / D P, we can still define the diffeomorphism j .'/ 2 DiffC.S;P; @S/ which
plays an essential role in the definition of the distinguished monodromy. However,
given ' 2DiffC.S; @S/, finding an n–point set P �S with '.P /DP is difficult since
it amounts to a concrete search of periodic orbits of ' . This is why the assumptions
(2-4) and (2-5) make it easier to define and use the distinguished monodromy of a
closed braid.

2.4 The fractional Dehn twist coefficient for closed braids

We briefly review the definition of the fractional Dehn twist coefficient (FDTC, in
short) with respect to a boundary component C � @S. We follow the original definition
of Honda, Kazez and Matić [18], which uses the Nielsen–Thurston classification of
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� 2MCG.S;P /. For a different but equivalent definition that avoids the Nielsen–
Thurston classification, see [25].

The FDTC is a map
c.�;C /WMCG.S;P /!Q

from the mapping class group to rational numbers.

If � is periodic, then �N DT M
C

T
M1

C1
� � �T

Mn

Cn
for some integers N , M , M1 , : : : ;Mn ,

where C1; : : : ;Cn are connected components of @S other than C and TX denotes
the mapping class represented by the right-handed Dehn twist along a simple closed
curve X. Then we define the FDTC by c.�;C /D M

N
.

If � is pseudo-Anosov, � is represented by a pseudo-Anosov homeomorphism ' with
a stable measured geodesic lamination ƒs of S. The connected component X of
S nƒs that contains C is homeomorphic to an annulus S1 � Œ0; 1� with finitely many
points f.x1; 1/; : : : ; .xN ; 1/g removed, where C is identified with S1�f0g. Let �i D

fxig�Œ0; 1/�X. Then '.�i/ is an arc that starts from .xi ; 0/ and approaches .xiCk ; 1/

for some k > 0, after winding around C clockwise ` 2 Z times. Then we define
c.�;C /D `C k

n
(see Figure 1).

Finally, when � is reducible there is a representative homeomorphism ' and a subsur-
face S 0 � S that contains C such that 'jS 0 W S 0! S 0 is periodic or pseudo-Anosov.
Then we define c.�;C /D c.�jS 0 ;C /.

�3 �4

�2�1

ƒs

C

'.�1/

c.�;C /D 1C 1
4
D

5
4

Figure 1: The FDTC for pseudo-Anosov case: the arc '.�1/ approaches �2

after winding once around C clockwise.

Proposition 2.11 Let L and L0 be admissible closed braids with respect to .S; '/
and .S; '0/, respectively. If ..S; '/;L/ and ..S; '0/;L0/ are equivalent then for every
boundary component C we have

c.Œ'L�;C /D c.Œ'0L0 �;C /:
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Proof Let P WD p.L\S0/ and P 0 WD p.L0\S0/. By Theorem 2.9 there is a point-
changing isomorphism 
 �WMCG.S;P /!MCG.S;P 0/ such that Œ'0

L0
�D 
 �.Œ'L�/.

By the properties of the isotopy fy
tg in the proof of Proposition 2.7, the following
diagram commutes:

MCG.S;P /

�

//

c.�;C /
%%

MCG.S;P 0/

c.�;C /
yy

Q

Therefore,
c.Œ'L�;C /D c.
 �.Œ'L�/;C /D c.Œ'0L0 �;C /:

When P 0DP, the isomorphism 
 � is an inner automorphism of MCG.S;P / and the
commutativity implies invariance of the FDTC under conjugation: c. Œ'L� 

�1;C /D

c.Œ'L�;C / for any  2MCG.S;P /.

Now we are ready to define the FDTC for a braid.

Definition 2.12 Let L be a closed braid (not necessarily admissible) with respect to an
abstract open book .S; '/. Suppose that L0 is an admissible closed braid with respect
to .S; '/ such that L and L0 are braid isotopic. The fractional Dehn twist coefficient
(FDTC) of the equivalence class LD Œ.S; '/;L� with respect to C is the FDTC of the
distinguished monodromy Œ'L0 � with respect to C and denote it by c.�;L;C / (in [25]
it is denoted by c.�;L;C /). Namely,

c.�;L;C / WD c.Œ'L0 �;C /:

Thanks to Proposition 2.11, the FDTC c.�;L;C / is well defined.

If a braid L is empty, we set P D∅ and define the distinguished monodromy Œ'L� WD

Œ'� D � . Hence the FDTC of the empty closed braid is equal to the FDTC of the
monodromy of the open book.

3 Quasi-right-veering maps

In this section we introduce a partial ordering �right and quasi-right-veering closed
braids, then we compare right-veering and quasi-right-veering. We use the same
notation as in the previous section.

Algebraic & Geometric Topology, Volume 19 (2019)



Quasi-right-veering braids and nonloose links 3003

3.1 Strongly right-veering partial ordering �right

Definition 3.1 For each boundary component C of S, we choose a basepoint �C 2C.
Let AC .S;P / be the set of isotopy classes of properly embedded arcs 
 W Œ0; 1�!S nP

satisfying 
 .0/D�C and 
 .1/ 2 @S n f�C g. Here, by isotopy we mean isotopy fixing
the endpoints 
 .0/ and 
 .1/.

For simplicity of notation, an actual arc 
 W Œ0; 1�! S representing its isotopy class
Œ
 � 2AC .S;P / may be denoted by the same symbol, 
 . We may call an element of
AC .S;P / simply an arc 
 instead of the isotopy class of 
 .

We say that two arcs ˛ and ˇ intersect efficiently if they attain the geometric intersection
number between their isotopy classes.

Definition 3.2 Let ˛; ˇ 2 AC .S;P /. Suppose that (arcs representing) ˛ and ˇ

intersect efficiently. We write ˛ �right ˇ and say that ˇ lies on the right side of ˛ if
the arc ˇ lies on the right side of ˛ in a small neighborhood of the basepoint �C .

Remark In [18; 25], where the set P is empty, the symbol > is used in place of �right .

The order �right is a total ordering. For any family of arcs f˛ig �AC .S;P / we can
always put them in a position simultaneously so that ˛i and j̨ intersect efficiently
for any pairs .i; j /. This can be done, for example, by choosing a hyperbolic metric
on S nP and realizing the arcs as geodesics.

We introduce another ordering �right which plays a central role in this paper.

Definition 3.3 For arcs ˛; ˇ 2 AC .S;P /, we define ˛ �right ˇ if there exists a
sequence of arcs ˛0; : : : ; ˛k 2AC .S IP / such that

˛ D ˛0 �right ˛1 �right � � � �right ˛k D ˇ;(3-1)

Int.˛i/\ Int.˛iC1/D∅ for all i D 0; : : : ; k � 1:(3-2)

In the rest of the subsection, we study properties of �right .

By the definition it is easy to see that �right is a partial ordering, ie ˛�right ˇ and
ˇ�right 
 imply ˛�right 
 . If the puncture set P is empty, then [18, Lemma 5.2]
shows that the ordering �right coincides with �right . However, when P is nonempty,
�right is not a total ordering and there is a difference between �right and �right , as
shown in Proposition 3.5. To see the difference we first introduce the following notion:
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Definition 3.4 Let ˛; ˇ 2AC .S;P / with ˛ �right ˇ . Assume that there exist subarcs
ı˛ � ˛ and ıˇ � ˇ such that

� �C 2 ı˛ \ ıˇ ;

� ı˛[ ıˇ bounds a (possibly immersed) bigon D � S which lies on the right side
of ˛ (ie the orientation of ı˛ , as a subarc of ˛ , disagrees with the orientation
of @D ); and

� D\P ¤∅ (D contains some marked points).

We call the bigon D a boundary right P –bigon from ˛ to ˇ .

A boundary right P –bigon gives an obstruction for ˛�right ˇ :

Proposition 3.5 Let ˛; ˇ 2AC .S;P / be arcs with ˛ �right ˇ . If there is a boundary
right P –bigon from ˛ to ˇ then ˛ 6�right ˇ .

Proof If there is a boundary right P –bigon D from ˛ to ˇ then every arc 
 2
AC .S IP / that satisfies ˛ �right 
 �right ˇ must intersect D and yields either a
boundary right P –bigon from ˛ to 
 or from 
 to ˇ (see Figure 2, left). Thus,
for any sequence of arcs ˛ D 
0 �right 
1 �right � � � �right 
n D ˇ there exists an
i 2 f0; : : : ; n � 1g such that 
i and 
iC1 forms a boundary right P –bigon, which
means Int.
i/ and Int.
iC1/ cannot be disjoint.

D

˛



ˇ

˛
ˇ




˛ ˇ

Figure 2: Left: The arc 
 with ˛�right 
 �right ˇ cuts the boundary right P –
bigon D, yielding a boundary right P –bigon from 
 to ˇ . Center: ˛�right ˇ

and ˇ�right 
 , but ˛ 6�right 
 . Right: f .˛/�right f .ˇ/ and ˛ �right ˇ , but
˛ 6�right ˇ .

As a corollary, we observe that conditions ˛ �right ˇ and ˇ�right 
 may not imply
˛�right 
 in general. (Also ˛�right ˇ and ˇ �right 
 may not imply ˛�right 
 .)
For example, the arcs depicted in Figure 2, center, satisfy ˛ �right ˇ and ˇ�right 


but, by Proposition 3.5, ˛ 6�right 
 .
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We conjecture the converse of Proposition 3.5:

Conjecture 3.6 We have ˛ �right ˇ if and only if ˛ �right ˇ and there exist no
boundary right P –bigons from ˛ to ˇ .

We study more properties of �right :

Lemma 3.7 Let f W AC .S;P / ! AC .S/ be the forgetful map. If ˛ �right ˇ in
AC .S IP / then we have f .˛/�right f .ˇ/ in AC .S/.

Proof Since ˛�right ˇ , there is a sequence of arcs ˛ D 
0 �right 
1 �right � � � �right


n D ˇ in AC .S;P / with Int.
i/\ Int.
iC1/D∅ for all i . This implies that 
i and

iC1 do not cobound any marked bigons. Therefore, Int.f .
i//\ Int.f .
iC1//D∅
and we can conclude f .˛/ D f .
0/ �right f .
1/ �right � � � �right f .
n/ D f .ˇ/

in AC .S/; that is, f .˛/�right f .ˇ/ in AC .S/.

Remark The converse of Lemma 3.7 does not hold in general, even if we assume
˛ �right ˇ . See Figure 2, right.

The next proposition gives a sufficient condition for ˛�right ˇ .

Proposition 3.8 Let ˛; ˇ 2 AC .S;P / be arcs with ˛ �right ˇ . If ˛ and ˇ do not
cobound bigons with marked points, then ˛�right ˇ .

Proof If ˛ and ˇ do not cobound bigons with marked points then following the proof
of [18, Lemma 5.2] one can construct an arc 
 2AC .S IP / such that ˛�right 
 �right ˇ

with #.˛; 
 / < #.˛; ˇ/ and #.
; ˇ/ < #.˛; ˇ/. Here #.�;�/ denotes the geometric
intersection number of the interiors of the two arcs. Moreover, the construction of 

shows that the pair ˛ and 
 and the pair 
 and ˇ do not cobound bigons with marked
points. Thus, iterating this interpolation process, we get a sequence of arcs satisfying
the conditions (3-1) and (3-2).

3.2 Definition of quasi-right-veering

The mapping class group MCG.S;P / acts on the set AC .S IP / naturally. Let � 2
MCG.S;P / be represented by ' 2DiffC.S;P; @S/ and ˛2AC .S IP / be represented
by an arc a 2 S nP. Then �.˛/ denotes the isotopy class of the arc '.a/.

Naturally extending the notion of right-veering mapping classes in [18], we define the
following (see Baldwin, Vela-Vick and Vértesi [3, Section 4]):
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Definition 3.9 We say that  2MCG.S;P / is right-veering with respect to the
boundary component C if ˛ �right  .˛/ or ˛ D  .˛/ for every ˛ 2AC .S;P /.

Remark 3.10 Baldwin and Grigsby [2] and Plamenevskaya [31] use a slightly different
definition of “right-veering”. In Section 7 we discuss the relationship between these
two superficially different notions of right-veering.

Since �right is a total ordering on the set AC .S;P /,  2MCG.S;P / is right-veering
if and only if  .˛/ 6�right ˛ for every ˛ 2AC .S;P /.

With this alternative definition of right-veering in mind, we introduce quasi-right-veering
mapping classes.

Definition 3.11 We say that  2MCG.S;P / is quasi-right-veering with respect to
the boundary component C of S if every arc ˛ 2AC .S;P / satisfies  .˛/ 6�right ˛ .
(Warning: since �right is not a total ordering,  .˛/ 6�right ˛ is not equivalent to
˛�right  .˛/ or ˛ D  .˛/.)

We note that the definitions of right-veering and quasi-right-veering are independent of
a choice of the distinguished point �C .

Next we show that right-veering and quasi-right-veering are invariant properties for
equivalence classes LD Œ.S; '/;L�.

Proposition 3.12 Let L (resp. L0 ) be an admissible closed braid with respect to an
abstract open book .S; '/ (resp. .S; '0/). Suppose that ..S; '/;L/ and ..S; '0/;L0/
are equivalent. Then, for every boundary component C of S, the distinguished
monodromy Œ'L� is right-veering (resp. quasi-right-veering) with respect to C if and
only if the distinguished monodromy Œ'0

L0
� is right-veering (resp. quasi-right-veering)

with respect to C.

Proof A diffeomorphism � 2 DiffC.S; @S/ induces a map

��W AC .S;P /!AC .S; �.P //:

By definition of �right and �right , both �right and �right are preserved by �� . That is,
˛�rightˇ (resp. ˛�rightˇ ) if and only if ��.˛/�right ��.ˇ/ (resp. ��.˛/�right ��.ˇ/).

This implies that, if ‚WMCG.S;P /!MCG.S;P 0/ is a point-changing isomorphism
(Definition 2.6) then � 2MCG.S;P / is right-veering (resp. quasi-right-veering) if
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and only if ‚.�/ 2 MCG.S;P 0/ is right-veering (resp. quasi-right-veering). By
Theorem 2.9, this means that the distinguished monodromy Œ'L� is right-veering (resp.
quasi-right-veering) if and only if Œ'0

L0
� is right-veering (resp. quasi-right-veering).

Now we define a (quasi-)right-veering closed braid, which is a central object in the
paper.

Definition 3.13 Let C be a boundary component of S. Let L be a closed braid with
respect an abstract open book .S; '/. We say that the closed braid L WD Œ.S; '/;L�

with respect to the open book .S; �/ is

� right-veering with respect to C (resp. quasi-right-veering with respect to C ) if
there exists an admissible closed braid L0 with respect to .S; '/ that represents L

such that Œ'L0 � 2MCG.S;P / is right-veering (resp. quasi-right-veering) with
respect to C.

� right-veering (resp. quasi-right-veering) if L is right-veering (resp. quasi-right-
veering) with respect to every boundary component of S.

Well-definedness follows from Proposition 3.12.

3.3 Comparison of quasi-right-veering and right-veering

In this section, we discuss relation (Proposition 3.14) and difference (Proposition 3.16
and Corollary 3.17) between quasi-right-veering and right-veering.

First, if L is empty then by identifying Œ'L� with � , the empty closed braid is quasi-
right-veering if and only if the monodromy � is right-veering.

In general, we have the following:

Proposition 3.14 Let  2MCG.S;P / be a mapping class.

(1) If  is right-veering then  is quasi-right-veering.

(2) If f . / 2 MCG.S/ is right-veering then  is quasi-right-veering, where
f WMCG.S;P /!MCG.S/ is the forgetful map in the generalized Birman
exact sequence (2-2).

We rephrase Proposition 3.14 as follows, in terms of open books and closed braids.

Corollary 3.15 Every closed braid with respect to an open book .S; �/ is quasi-right-
veering if � 2MCG.S/ is right-veering.
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Proof of Proposition 3.14 The first statement immediately follows from the definition
of quasi-right-veering.

To prove the second statement, assume that  2 MCG.S;P / is not quasi-right-
veering with respect to some boundary component C of S. Then there exists an
arc ˛ 2 AC .S;P / such that  .˛/�right ˛ . By Lemma 3.7 we get f . /.f .˛// D
f . .˛//�right f .˛/ in AC .S/; that is, f . / 2MCG.S/ is not right-veering.

It is proved in [18, Section 3] that the right-veeringness of � 2MCG.S/ is almost
equivalent to positivity of its FDTC. We say “almost” because the statement is slightly
complicated when � is not pseudo-Anosov and its FDTC is 0. If � 2MCG.S/ is
pseudo-Anosov, � is right-veering with respect to a boundary component C if and only
if c.�;C / > 0. We remark that parallel statements on positivity and right-veeringness
hold for elements  2MCG.S;P /. Namely if  is right-veering then c. ;C /� 0.
Moreover, if  is pseudo-Anosov then  is right-veering with respect to C if and
only if c. ;C / > 0.

The next proposition shows significant difference between quasi-right-veering and right-
veering. In particular, quasi-right-veering is much less related to positivity of the FDTC.

Proposition 3.16 Let .S; �/ be an open book.

(1) For every boundary component C of S and integers N < 0 and n > 1, there
exists a closed n–braid LD Œ.S; '/;L� with respect to .S; �/ such that

� L is quasi-right-veering with respect to C, and

� c.�;L;C /�N < 0; ie L is non-right-veering with respect to C.

(2) For every negative integer N there exists a closed braid L with respect to .S; �/
such that

� L is quasi-right-veering , and

� c.�;L;C / �N < 0 for every boundary component C ; ie L is non-right-
veering.

Proof Fix a boundary component C of S. Take ' 2 DiffC.S; @S/ representing �
such that 'j�.@S/D id�.@S/ . Let �.C / denote the connected component of �.@S/ that
contains C. We identify �.C / with the annulus AD fz 2C j 1� jzj< 2g so that the
boundary component C is identified with fz 2C j jzj D 1g.
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We put

P D
n
pi 2C j i D 1; : : : ; n and pi D 1C

i

nC1

o
�AŠ �.C /� S:

For k 2N let ˇC;k�S�Œ0; 1� be the geometric n–braid whose i th strand 
k;i W Œ0; 1�!

A� Œ0; 1�� S � Œ0; 1� is given by (see Figure 3, left)


k;i.t/D

8̂<̂
:
��

1C 1
nC1

�
exp.2�

p
�1k t/; t

�
.i D 1/;��

1C 2
nC1

�
exp.�2�

p
�1k t/; t

�
.i D 2/;�

1C i
nC1

; t
�

.i D 3; : : : ; n/:

Thus, the 1st strand of ˇC;k winds k times around C counterclockwise and the 2nd

strand winds k times clockwise. Let LC;k WD….ˇC;k/ �M.S;'/ be the closed n–
braid with respect to the abstract open book .S; '/ obtained by taking the braid closure
of ˇC;k , where …W S � Œ0; 1�!M.S;'/ WD S � Œ0; 1�=� is the quotient map.

t D 1

t D 0

ˇC

C
C 0C 00

�.C /

Œi.ˇ/�.
 /

i.ˇ/




Figure 3: Left: The braid LC;1 is not right-veering but quasi-right-veering.
Right: The map .TC /

�1.TC 0/
2.TC 00/

�1 forces to form a boundary right
P –bigon.

With the push map i W Bn.S/!MCG.S;P / in the generalized Birman exact sequence
(2-2) we have i.ŒˇC;1�/ D .TC /

�1.TC 0/
2.TC 00/

�1 , where TC , TC 0 and TC 00 are
the right-handed Dehn twists about the curves C, C 0 D

˚
z 2 A j jzj D 3

2nC2

	
and

C 00 D
˚
z 2 A j jzj D 5

2nC2

	
. The distinguished monodromy of the closed braid

L WDLC;k is

Œ'L�D Œ'LC;k
�D i.ŒˇC;k �/Œj .'/�D .TC /

�k.TC 0/
2k.TC 00/

�k Œj .'/�:
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Since j .'/j�.C / D idj�.C / we have c.�;L;C /D c.Œ'L�;C /D �k < 0. This shows
that L is not right-veering.

For any 
 2 AC .S IP / the factor .TC /
�k.TC 0/

2k.TC 00/
�k of Œ'L� forces to form a

boundary right P –bigon from Œ'L�.
 / to 
 . See Figure 3, right. Thus, by Proposition
3.5, Œ'L�.
 / 6�right 
 for every 
 2AC .S IP /, which means L is quasi-right-veering
with respect to C. This proves (1).

Next we prove (2). Let fC1; : : : ;Cdg be the set of boundary components of S. For
each component Ci we take a closed braid LCi ;k as given in the proof of (1), and let
LD

Fd
iD1 LCi ;k be the disjoint union of the LCi ;k . By (1) we see that L is quasi-

right-veering. By Proposition 2.11 we obtain c.�;L;Ci/��k for all i D 1; : : : ; d .

The set of right-veering mapping classes in MCG.S;P / forms a monoid. However,
this is not the case for quasi-right-veering mapping classes:

Corollary 3.17 The set of quasi-right-veering mapping classes in MCG.S;P / does
not form a monoid.

Proof We use the same notation as in Proposition 3.16. Let �D .TC 0/
�1i.ŒˇC;1�/

�1D

TC T �3
C 0

TC 00 and  D i.ŒˇC;1�/. Both � and  are quasi-right-veering but � D
.TC 0/

�1 is not quasi-right-veering.

3.4 Transverse links are right-veering and quasi-right-veering

We have defined right-veering and quasi-right-veering and studied their properties.
In this section, we study transverse links in contact manifolds from the viewpoint of
right-veering and quasi-right-veering and obtain Propositions 3.20 and 3.22.

Recall that an abstract open book .S; '/ gives an embedded open book .B.S;'/; �.S;'//
of the manifold M.S;'/ (see Section 2.1). We say that a contact structure � on M.S;'/ is
supported by .S; '/ if � is isotoped through contact structures so that there is a contact
1–form ˛ for � such that d˛ is a positive area form on each page St of the embedded
open book and ˛ > 0 on the binding B.S;'/ . By Thurston and Winkelnkemper [32],
for every .S; '/ there exists a contact structure �.S;'/ on M.S;'/ supported by .S; '/.
Such a contact structure is unique up to isotopy due to Giroux [17].

Definition 3.18 Let �.S;'/ be a contact structure on M.S;'/ supported by .S; '/. In
this paper, we say that
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� a contact 3–manifold .M; �/ is supported by .S; '/ if the manifolds .M; �/

and .M.S;'/; �.S;'// are contactomorphic;

� .S; �/ is an open book of .M; �/ if .M; �/ is supported by an abstract open
book .S; '/ with Œ'�D � .

Next we list basic facts about transverse links and closed braids. The fact (3) was dis-
covered by Bennequin [4] (for the .S; �/D .D2; Œid�/ case), Mitsumatsu and Mori [28]
and Pavelescu [30, Theorem 3.2]:

(1) Every closed braid with respect to an abstract open book .S; '/ is a transverse link
when viewed in .M.S;'/; �.S;'// for some contact structure �.S;'/ supported by .S; '/.

(2) The transverse link type in (1) only depends on the equivalence class of the closed
braid, in the following sense:

Let L and L0 be closed braids with respect to .S; '/ and .S; '0/, respectively,
and assume that ..S; '/;L/ and ..S; '0/;L0/ are equivalent. Suppose that �.S;'/
(resp. � 0

.S;'/
) is a contact structure on M.S;'/ (resp. M.S;'0/ ) supported by .S; '/

(resp. .S; '0/) so that L (resp. L0 ) is regarded as a transverse link in .M.S;'/; �.S;'//

(resp. .M.S;'0/; �.S;'0//).

Since ' and '0 are isotopic, an isotopy between ' and '0 induces a diffeomorphism
�W M.S;'/!M.S;'0/ (see (2-12)) that preserves the embedded open book structure.
In particular, ��.�.S;'// is supported by the open book .S; '0/, hence it is isotopic
to �.S;'0/ . By Gray stability we have a diffeomorphism � W M.S;'0/!M.S;'0/ isotopic
to the identity satisfying ��.���.S;'//D �.S;'0/ . Consequently, we have a contacto-
morphism

(3-3) %D � ı �W .M.S;'/; �.S;'//! .M.S;'0/; �.S;'0//

and %.L/ and L0 are transversely isotopic. Note that %.L/ is a transverse link in
.M.S;'0/; �.S;'0// but may not be a closed braid with respect to .S; '0/ since � may
not preserve the pages.

(3) Any transverse link in a contact 3–manifold .M.S;'/; �.S;'// can be transversely
isotoped to a closed braid with respect to .S; '/.

Definition 3.19 Suppose that .S; �/ is an open book of .M; �/. We say that a
transverse link T in .M; �/ is represented by a closed braid L with respect to .S; �/,
if there is an abstract open book .S; '/ with Œ'�D � and a closed braid L with respect
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to .S; '/ such that L D Œ.S; '/;L� and there is a contactomorphism � W .M; �/!

.M.S;'/; �.S;'// such that LD �.T /.

We prove two propositions. The first one is on quasi-right-veeringness of transverse
links.

Proposition 3.20 Every transverse link in a contact manifold .M; �/ admits a quasi-
right-veering closed braid representative with respect to some open book of .M; �/.

Proof Honda, Kazez and Matić [18, Proposition 6.1] show that every contact 3–
manifold admits an open book decomposition .S; �/ with right-veering monodromy.
This fact and our Corollary 3.15 yield the proposition.

The second proposition is about right-veeringness of transverse links.

To state the proposition, we recall a positive stabilization of a closed braid. Here we
present an algebraic formulation so that the connection to distinguished monodromy is
clear. For a geometric formulation based on open book foliation machinery, we refer
to [26].

Definition 3.21 Let '2DiffC.S; @S/ with Œ'�D�2MCG.S/ be such that 'j�.@S/D

id�.@S/ . Let L be an admissible closed n–braid with respect to an abstract open book
.S; '/ such that P D p.L\S0/ � �.@S/, and let ˇL � S � Œ0; 1� be the geometric
n–braid obtained from L. Let C be a boundary component of S and �.C / be the
connected component of �.@S/ that contains C. Take �0.C / � �.C /, a subcollar
neighborhood of C such that

(3-4) ˇL\ .�
0.C /� Œ0; 1�/D∅:

Let q 2 �0.C / and 
 be a properly embedded arc in S n.P [fqg/ that connects a point
p 2 P and q . The disjoint union of the strand fqg � Œ0; 1� and ˇL yields a geometric
.nC1/–braid

x̌
L WD ˇL t .fqg � Œ0; 1�/� S � Œ0; 1�:

Let H
 2MCG.S;P [fqg/ be the positive half twist about 
 , and h
 � S � Œ0; 1� be
a geometric .nC1/–braid that represents H
 in the sense that i.Œh
 �/DH
 , where
i W BnC1.S/!MCG.S;P [ fqg/ denotes the push map in the generalized Birman
exact sequence (2-2). A positive stabilization of the closed braid L about the arc 
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(and the binding corresponding to C ) is a closed .nC1/–braid L0 obtained by taking
the braid closure of the geometric .nC1/–braid

h
 � x̌L (read from right to left),

where the bullet � denotes the concatenation of geometric braids.

Since q 2 �0.C /, the property (3-4) implies that L0 is obtained by connecting L

and a meridian circle of C with a positively twisted band. Therefore, L and L0 are
transversely isotopic. See [30, Theorem 4.2], where Pavelescu proves that closed
braids are transversely isotopic if and only if they differ by braid isotopies and positive
stabilizations and their inverses.

Recall the diffeomorphism 'L 2 DiffC.S;P; @S/ in (2-6) that represents the distin-
guished monodromy Œ'L� 2MCG.S;P /. By (3-4), we may assume that 'Lj�0.C / D

id�0.C / . Since q 2 �0.C /, we may view 'L as an element of DiffC.S;P [ fqg; @S/
and denote it by x'L . We obtain Œx'L� 2 MCG.S;P [ fqg/ and the distinguished
monodromy for L0 satisfies

(3-5) Œ'L0 �DH
 Œx'L� 2MCG.S;P [fqg/:

Here is the second proposition:

Proposition 3.22 Every closed braid L D ŒL� with respect to an open book .S; �/
can be made right-veering after a sequence of positive stabilizations of L.

When .S; �/D .D2; Œid�/ the same statement is proved by Plamenevskaya [31, Propo-
sition 3.1].

Proof Suppose that L is an admissible closed braid with respect to an abstract open
book .S; '/ that represents L.

Let C be a boundary component of S. Let �0.C /� �.C / be a subcollar neighborhood
of C that does not contain (or intersect) P D p.L\S0/� �.@S/. Choose points q

and q0 in �0.C /. See Figure 4. Let 
1 � S n .P [fq; q0g/ be a properly embedded arc
that connects one of the points in P and the point q . Let 
2 � �

0.C / n fq; q0g be an
arc that connects q and q0. Assume the following:

(1) The interiors of 
1 and 
2 intersect exactly at one point in �0.C /. We name it r .

(2) Let 
 0
1
� 
1 and 
 0

2
� 
2 be the subarcs connecting r and q . Then the simple

closed curve 
 0
1
[ 
 0

2
is homotopic to C in S n .P [fq0g/.
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�.C /

�0.C /
C

q

q0

r


2


1

Figure 4: Twice stabilizing about C makes a closed braid right-veering with
respect to C.

Let L0 be a closed .nC2/–braid obtained from L by positive stabilizations first
about 
1 and then 
2 as constructed in Definition 3.21.

The diffeomorphism 'L2DiffC.S;P; @S/ satisfies 'Lj�0.C /D id�0.C / . Let x'L denote
the diffeomorphism 'L viewed as an element of DiffC.S;P[fq; q0g; @S/. By (3-5) the
distinguished monodromy of L0 satisfies Œ'L0 �DH
2

H
1
Œx'L�2MCG.S;P [fq; q0g/.

Since 'Lj�0.C / D id�0.C / and every essential arc in AC .S;P [ fq; q
0g/ intersects

either 
1 or 
2 , the monodromy Œ'L0 � is right-veering with respect to C.

Applying this operation for every boundary component, we get a right-veering closed
braid that is transversely isotopic to the original braid L.

4 Characterization of nonloose links

We now prove our main theorem:

Theorem 4.1 A transverse link T in a contact 3–manifold .M; �/ is nonloose if and
only if every braid representative of T with respect to every open book of .M; �/ is
quasi-right-veering.

Our proof of Theorem 4.1 is a generalization of the proof of [22, Theorem 2.4]. We may
assume that the readers are familiar with basic definitions and properties of open book
foliations that can be found in [20; 21; 25]. As stated in Section 1, the monograph [27]
and the article [5] are helpful introductions of braid foliations and open book foliations.

Proof of Theorem 4.1 (D)) First we show that non-quasi-right-veering braids are
loose.
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Assume that a transverse link T can be represented by an admissible non-quasi-right-
veering closed braid L with respect to an abstract open book .S; '/ that supports
.M; �/. Let P WD p.L\ S0/. That is, there exist a boundary component C � @S

and an arc ˛ 2 AC .S;P / such that there is a sequence of arcs Œ'L�.˛/ D ˛0 �right

˛1 �right � � � �right ˛k D ˛ with Int.˛i/\ Int.˛iC1/D∅ for all i D 0; : : : ; k � 1.

We explicitly construct a transverse overtwisted disk Dtrans in M.S;'/ nL by giving
its movie presentation. A similar construction can be found in [22]. Here, a transverse
overtwisted disk (see [20, Definition 4.1] for the precise definition) is a disk admitting
a certain type of open book foliation and is bounded by a transverse pushoff of a usual
overtwisted disk.

For i D 0; : : : ; k denote the endpoint ˛i.1/ 2 @S of the arc ˛i by wi . Slightly
moving wi along @S, if necessary, we may assume that all the points w0; : : : ; wk�1

are distinct and still satisfying Int.˛i/\ Int.˛iC1/D ∅. Since Œ'L�.˛/D ˛0 we get
w0 D wk . Fix a sufficiently small " > 0.

The open book foliation of Dtrans contains one negative elliptic point at �C and k

positive elliptic points at w0; : : : ; wk�1 . See Figure 5.

w1 h2

h1
w0

hk

wk�1

Figure 5: Transverse overtwisted disk Dtrans .

The movie presentation of Dtrans on the page S0 consists of k � 1 a–arcs emanating
from w1; : : : ; wk�1 and a b–arc that is a copy of ˛0 joining w0 and �C . For t 2�
0; 1

kC1

�
the movie presentation on the page St is the same as S0 .

The movie presentation on the page S1=.kC1/ contains one hyperbolic point, h1 , whose
describing arc joining ˛0 and the a–arc from w1 is a parallel copy of ˛1 in S1=.kC1/�" .
Since Int.˛0/\ Int.˛1/D∅ the interior of the describing arc is disjoint from all the
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w0 w1

˛0 ˛1

�C

S1=.kC1/�"

h1

S1=.kC1/ S1=.kC1/C"=2 S1=.kC1/C"

Figure 6: Movie for t 2
�

1
kC1
� "; 1

kC1
C "

�
: the b–arc ˛0 disappears and

the new b–arc ˛1 appears at t D 1
kC1

. The black dashed arc is the describing
arc and the gray dashed arc is ˛1 . Black solid arrows indicate the orientation
of @S. Dashed arrows are positive normals to Dtrans .

a–arcs and the b–arc in the page S1=.kC1/�" . Since ˛0 �right ˛1 , the normal vectors
of Dtrans point out of the describing arc, thus by [23, Observation 2.5] the sign of
the hyperbolic point h1 is positive. The movie presentation on the page S1=.kC1/C"

consists of one b–arc which is a copy of ˛1 connecting w1 and �C and k � 1 a–arcs
emanating from w0; w2; : : : ; wk�1 .

We inductively apply the above procedure. Let j D 1; : : : ; k . The above paragraph
describes the j D 1 case.

On the page Sj=.kC1/ (j > 1) we put a positive hyperbolic point hj whose describing
arc is a parallel copy of j̨ . As a consequence the page Sj=.kC1/C" has one b–arc
which is a copy of j̨ connecting wj and �C and k � 1 a–arcs emanating from wi

for i D 1; : : : ; j � 1; j C 1; : : : ; k � 1.

On the page S1 the movie presentation consists of one b–arc which is a copy of
˛k D ˛ and k � 1 a–arcs emanating from w0; : : : ; wk�1 . Since Œ'L�.˛/ D ˛0 , the
slices Dtrans\S1 and Dtrans\S0 of Dtrans can be identified under the diffeomorphism
'L2DiffC.S;P; @S/. In other words, the movie presentation gives rise to an embedded
surface in M.S;'/ nL. The construction tells us that the surface is topologically a disk,
and moreover it is a transverse overtwisted disk (see [22]).

( D)) Assume that a transverse link T � .M; �/ is loose. By taking a neighborhood
of an overtwisted disk D � M n T , we may regard .M; �/ as the connected sum
.M 0; � 0/#.S3; � 0ot/ such that T � .M 0; � 0/. Here � 0ot denotes some overtwisted contact
structure on S3 . Applying the argument of Honda, Kazez and Matić in [18, page 444]
to .S3; � 0ot/ we may regard .M; �/ as .N; �N /#.S3; �ot/ such that T � .N; �N /, where
.S3; �ot/ denotes the overtwisted contact structure supported by .A;T �1

A
/, an annulus

open book with a left-handed Dehn twist about a core curve of A.
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Take an abstract open book .SN ; 'N / supporting .N; �N / and a closed braid LN

representing T . Then the original contact 3–manifold .M; �/ is supported by the open
book .S; '/ WD .SN ; 'N / � .A;T

�1
A
/, where � represents the Murasugi sum of the

open books (see [11, Definition 2.16]) and LN is closed braid with respect to .S; '/.

Let 
 be the isotopy class of a cocore of the attached 1–handle S nSN . We have

Œ'LN
�
 D ŒT �1

A �
 �right 
;

hence LN is not quasi-right-veering.

Corollary 4.2 A transverse link T in a contact 3–manifold .M; �/ is nonloose if
and only if for every closed braid representative L of T with respect to every abstract
open book .S; '/ that supports .M; �/ and for every boundary component C and

 2AC .S IP /, where P WD p.L\S/, at least one of the following holds:

(1) 
 D Œ'L�.
 /.

(2) 
 �right Œ'L�.
 /.

(3) 
 and Œ'L�.
 / cobound bigons that contain points of P.

Proof (D)) If there exists 
 such that Œ'L�.
 /�right 
 and no marked bigons are
cobounded by Œ'L�.
 / and 
 , then Proposition 3.8 shows that Œ'L�.
 /�right 
 . Thus
Œ'L� 2MCG.S;P / is not quasi-right-veering. Then Theorem 4.1 shows that T is
loose.

( D)) This implication holds by exactly the same proof of (the D)part of) Theorem
4.1.

5 Depth of transverse links

Theorem 4.1 can be used to study the depth introduced by Baker and Onaran [1], which
measures nonlooseness of transverse links.

Let F be an oriented surface in an oriented 3–manifold M and K � M be an
oriented link that transversely intersects F. We denote the number of intersection
points of K and F by #.K \F /, which does not necessarily realize the geometric
intersection number. We also denote the number of positive and negative intersection
points of K and F by #C.K\F / and #�.K\F /, respectively. We have #.K\F /D

#C.K\F /C #�.K\F /.
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Definition 5.1 [1] Let K be a transverse link or a Legendrian link in .M; �/. The
depth d.K/ of K is defined by

d.K/Dminf#.K\D/ jD is an overtwisted disk in .M; �/g:

Assuming that .M; �/ is overtwisted, we see that K is loose if and only if d.K/D 0.

In the following K represents a transverse link. First we give a new interpretation of the
depth d.K/ in terms of open book foliations. Let .S; �/ be an open book supporting
a contact 3–manifold .M; �/. Recall that existence of a transverse overtwisted disk
in the open book .S; �/ (see [20, Definition 4.1]) is equivalent to existence of an
overtwisted disk in .M; �/.

Theorem 5.2 For a transverse link K in .M; �/ let

d�trans.K/ WDmin
�

#�.K0\D/
ˇ̌̌
K0 is a link transversely isotopic to K;

D is a transverse overtwisted disk in .S; �/:

�
Then d.K/D d�trans.K/.

In a special case, where K is the binding of an open book, the equality is proved in [24].

The theorem highlights the difference between a transverse overtwisted disk (whose
boundary is a transverse unknot) and an ordinary overtwisted disk (whose boundary is
a Legendrian unknot).

Applications of the theorem can be found in Theorems 5.5 and 6.1.

Proof We first show that d.K/� dtrans.K/.

Let Dtrans and K0 be a transverse overtwisted disk and transverse link which attain
dtrans.K/. Therefore, dtrans.K/D #�.K0\Dtrans/. By the structural stability theorem
[20, Theorem 2.21], we may assume that

(a) the characteristic foliation F�.Dtrans/ and the open book foliation Fob.Dtrans/

are topologically conjugate.

Let GCC.F�.Dtrans// (resp. G��.F�.Dtrans//) be the Giroux graph [17, page 646]
consisting of the positive (resp. negative) elliptic points and the stable (resp. unstable)
separatrices of positive (resp. negative) hyperbolic points. By the assumption (a), these
graphs are identified with the corresponding graphs GCC WDGCC.Fob.Dtrans// and
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G�� WDG��.Fob.Dtrans// in the open book foliation Fob.Dtrans/; see Definition 2.17
of [20] for the definitions.

Take small neighborhoods NC;N� � Dtrans of the graphs GCC.F�.Dtrans// and
G��.F�.Dtrans//, respectively. By transverse isotopy we move K0 without introducing
new intersection points with Dtrans so that

(b) the intersection K0\Dtrans is disjoint from the region NC[N� .

We apply the Giroux elimination lemma [16, Lemma 3.3] to remove all the positive
elliptic and positive hyperbolic points of F�.Dtrans/ (see Figure 7). Call the resulting
disk D0. By (a) and the definition of a transverse overtwisted disk, the characteristic
foliation F�.D0/ has a unique negative elliptic point enclosed by a circle leaf. We can
find an ordinary overtwisted disc D�D0. Since the Giroux elimination is supported on
NC[N� , the condition (b) implies that this process does not produce new intersections,
ie K0\Dtrans DK0\D0.

Figure 7: Left: From a transverse overtwisted disk to a usual overtwisted
disk. The graphs GCC and G�� are depicted by black and gray bold lines,
respectively. A dot ˇ represents an intersection of K and Dtrans which is
moved away from the gray regions before applying the Giroux elimination
lemma to the gray regions. Right: Disk D0 and an overtwisted disk D0

(highlighted in gray).

Due to Epstein, Fuchs and Meyer [10] and Etnyre and Honda [13], the set of transverse
links up to transverse isotopy is naturally identified, through positive transverse pushoff,
with the set of Legendrian links up to Legendrian isotopy and negative stabilization.

Baker and Onaran in the proof of [1, Theorem 4.1.4] show that every positive intersection
of a Legendrian link and an overtwisted disk can be removed by a negative stabilization
of the Legendrian link.
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Therefore, each positive intersection of K0 and the overtwisted disk D can be removed
by a suitable transverse isotopy. That is, there exists a link K1 that is transversely
isotopic to K0 such that #.K1\D/D #�.K1\D/D #�.K0\D/. We conclude

d.K/� #.K1\D/D #�.K0\D/� #�.K0\D0/D #�.K0\Dtrans/D dtrans.K/:

Next we show that d.K/ � dtrans.K/. Let D be an overtwisted disk in .M; �/ that
intersects K at d.K/ points.

Take a slightly larger disc, D0, which contains D in its interior and is bounded by a
positive transverse pushoff of the Legendrian unknot @D such that D0\K DD\K .

Using transverse isotopy we make K disjoint from the binding of the embedded open
book. Following Pavelescu’s proof of Alexander’s theorem [30, Theorem 3.2], one can
find an isotopy of M preserving each page of the embedded open book setwise and
taking the nonbraided part of @D0[K (subsets which are not positively transverse to
pages) into a neighborhood of the binding.

Inside the neighborhood of the binding we make @D0[K braided with respect to the
open book using Bennequin’s techniques from [4]. We call the resulting link and disk
K0 and D00, respectively. It is possible that new positive intersection points of D00

and K0 may be created if a component of K is transversely isotopic to a binding
component. However, no new negative intersection points will be introduced. Hence,
#�.K0\D00/D #�.K\D0/� d.K/.

Fixing @D00 and K0, and following the proof of [25, Theorem 3.3], we perturb D00 so
that the resulting disk, D000, admits an essential open book foliation. This process can
be done without introducing new intersection points with K0, hence #�.K0\D000/D

#�.K0\D00/.

Since the Bennequin–Eliashberg inequality does not hold, since

sl.@D000; ŒD000�/D sl.@D00; ŒD00�/D sl.@D0; ŒD0�/D tb.@D; ŒD�/� rot.@D; ŒD�/

D 1— ��.D000/;

we can apply the proof of [20, Theorem 4.3] to D000 and obtain a transverse overtwisted
disc, Dtrans . By the nature of this construction we have

(5-1)

#�.K0\Dtrans/D #�.K0\D000/;

#C.K0\Dtrans/� #C.K0\D000/;
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where strict inequality in (5-1) may hold only when a component of K0 is transversely
isotopic to a binding component. Summing up, we have

dtrans.K/�#�.K0\Dtrans/D#�.K0\D000/D#�.K0\D00/D#�.K\D0/�d.K/:

Many properties of quasi-right-veering braids are studied in Sections 3.3 and 3.4.
Theorem 5.5 below gives another property of quasi-right-veering. One may also apply
Theorem 5.5 to the study of knots and links of large depth.

Definition 5.3 Let .S; �/ be an open book of a contact 3–manifold .M; �/ and
LD Œ.S; '/;L� be a closed braid with respect to .S; �/. The axis-augmented transverse
link for L is a transverse link represented by B [L, where B D B.S;'/ denotes the
binding of the embedded open book supporting .M; �/.

Lemma 5.4 The axis-augmented transverse link for a closed braid L is well defined
up to contactomorphism.

Proof Suppose that ' and '0 2 DiffC.S; @S/ are isotopic. Fix a contact structure
�.S;'/ on M.S;'/ (resp. �.S;'0/ on M.S;'0/ ) that is supported by .S; '/ (resp. .S; '0/).
Starting with an isotopy between ' and '0 we have a contactomorphism

%W .M.S;'/; �.S;'//! .M.S;'0/; �.S;'0//

as constructed in (3-3). Let B (resp. B0 ) be the binding of the embedded open book
on M.S;'/ (resp. M.S;'0/ ). When closed braids ..S; '/;L/ and ..S; '0/;L0/ are
equivalent, the link %.B[L/ is transversely isotopic to B0[L0. Thus, up to choice of
identification .M.S;'/; �.S;'//Š .M; �/, the transverse link type of B[L is uniquely
determined.

Theorem 5.5 Let L be a closed braid in the open book .S; �/. The depth of the
axis-augmented transverse link for L is 1 if and only if the braid L is not quasi-right-
veering.

When the closed braid L is empty we can reprove the following:

Corollary 5.6 [24, Corollary 1] Let B be the binding of the embedded open book
on M.S;'/ . The depth d.B/D 1 if and only if � D Œ'� is not right-veering.

Proof of Theorem 5.5 In the following, we take an abstract open book .S; '/ and a
closed braid L such that LD Œ..S; '/;L/�, and let K DL[B, where B denotes the
binding of the embedded open book on M.S;'/ .
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( D)) Suppose that the braid L is not quasi-right-veering. As in the proof of
Theorem 4.1, we can construct a transverse overtwisted disk with only one negative
elliptic point in the complement of L. By Theorem 5.2 we have d.K/ � 1. On the
other hand, since K contains the binding B and the binding of any open book is
nonloose, which is proved by Etnyre and Vela-Vick [14], we have d.K/� d.B/� 1.

(D)) Assume that d.K/ D 1. Let D be an overtwisted disk in .M; �/ satisfying
#.K \D/D d.K/D 1. Since the complement of the binding of a supporting open
book decomposition is tight [14], #.D\K/D #.D\B/D 1 and #.D\L/D 0.

Following the proof of Theorem 5.2 (the second half showing d.K/� dtrans.K/) we
can construct starting from D a transverse overtwisted disk Dtrans in the complement
of L such that

#�.K\Dtrans/D #�.B \Dtrans/D 1:

Let v 2 B \Dtrans denote the unique negative intersection point. That is, v is the
unique negative elliptic point in the open book foliation Fob.Dtrans/ of Dtrans . Assume
that v lies on a boundary component C of S. For a regular page St of the embedded
open book let bt � St denote the unique b–arc in Fob.Dtrans/ that ends at v . We
use v as the basepoint �C of C. Recall the projection map (2-3),

pW M.S;'/! S:

We view the image p.bt / as an element of AC .S;P /, where P D p.L\S0/.

Let St1
; : : : ;Stk

.0 < t1 < � � � < tk < 1/ be the singular pages of the open book
foliation Fob.Dtrans/ and " > 0 be a sufficiently small number such that Sti

is the only
singular page in the interval .ti � "; ti C "/. Since Dtrans is a transverse overtwisted
disk with one negative elliptic point, by the definition of a transverse overtwisted
disk [20, Definition 4.1], all the hyperbolic points of Fob.Dtrans/ are positive. This
shows that p.bti�"/ �right p.btiC"/ with Int.p.bti�"//\ Int.p.btiC"// D ∅ for all
i D 1; : : : ; k (see Figure 8, top-right, or consult Observation 2.5 of [23]). Let us put


i WD p.btiC"/D p.btiC1�"/ 2AC .S IP /:

Then the sequence of arcs satisfies

Œ'L�.p.b1//D p.b0/D 
0 �right 
1 �right � � � �right 
k D p.b1/

and Int.
i/\Int.
iC1/D∅; hence, Œ'L�2MCG.S;P / is not quasi-right-veering.
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t v

bti�"

btiC"

h

p.v/D �C

C
p.bti�"/

p.btiC"/

v
bti�"

btiC"

Figure 8: Left: A positive hyperbolic point h (saddle tangency). The gray
dashed arrows indicate positive normal vectors to the surface. Black arrows
indicate the orientations of the binding. Top-right: Comparison of the b–arcs
p.bti�"/ and p.btiC"/ projected to S. Bottom-right: Corresponding portion
of the open book foliation Fob.Dtrans/ .

6 Very positive FDTC and nonloose links

Proposition 3.16 and Theorem 4.1 show that negative FDTC c.�;L;C / < 0 does not
always imply looseness of the closed braid L. This makes a sharp contrast to the empty
braid case, where the negative FDTC c.�;C / < 0 implies that the contact structure
�.S;�/ is overtwisted.

On the other hand, if the FDTC is very positive then there is some similarity between
the nonempty braid case and the empty braid case. In [23, Corollary 1.2] it is proved
that a planar open book .S; �/ with c.�;C / > 1 for every boundary component C

supports a tight contact structure. We may regard this as a special case (LD∅) of the
following theorem:

Theorem 6.1 Let .S; �/ be a planar open book of a contact 3–manifold .M; �/. If a
transverse link T � .M; �/ is represented by a closed braid LD Œ.S; '/;L� such that
c.�;L;C / > 1 for every boundary component C of S, then T is nonloose.

Proof Let .S; '/ be an abstract open book that supports .M; �/ and L be an admis-
sible closed braid with respect to .S; '/ that represents L. By (2-7) we have

..S nP /� Œ0; 1�/=�'L
'M.S;'/ nL:
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Assume that L is loose. By Theorem 5.2 there exists a transverse overtwisted disk D

in M.S;'/ n L. Applying the proof of [23, Theorem 1.1] to the diffeomorphism
'L 2DiffC.S;P; @S/, we can construct a transverse overtwisted disk D0 in M.S;'/nL

such that every b–arc of Fob.D
0/ ending at a valence � 1 vertex of the graph G��.D

0/

is projected to an essential arc in the punctured surface S nP under the projection map
pW M.S;'/ ! S in (2-3). Using [25, Lemma 5.11] the existence of such a disk D0

implies that c.�;L;C /D c.Œ'L�;C /� 1 for some boundary component C of S.

7 Comparison of three definitions of right-veering

In this section we compare several proposed definitions of a right-veering mapping
class in MCG.S;P /.

Definition 7.1 We say that an arc 
 W Œ0; 1� ! S is a @–P (resp. @–@) arc if the
following are all satisfied:

(1) 
 .0/ 2 @S and 
 is transverse to @S at 
 .0/.

(2) 
 .t/ 2 Int.S/ nP for t 2 .0; 1/.

(3) 
 .1/ 2 P (resp. 
 .1/ 2 @S and 
 is transverse to @S at 
 .1/).

(4) Int.
 / is embedded in S nP and not boundary-parallel.

For a boundary component C of S, we say that a @–P or @–@ arc is based on C if

 .0/ 2 C.

As natural generalizations of the right-veeringness for �2MCG.S/ to  2MCG.S;P /
there are three candidates.

Definition 7.2 For a boundary component C of S we say that  2MCG.S;P / is

(1) @–.@CP / right-veering with respect to C if 
 �right  .
 / or 
 D  .
 / for
all @–@ and @–P arcs 
 based on C ;

(2) @–@ right-veering with respect to C if 
 �right  .
 / or 
 D  .
 / for all @–@
arcs 
 based on C ;

(3) @–P right-veering with respect to C if 
 �right  .
 / or 
 D  .
 / for all @–P

arcs 
 based on C ;

(4) @–.@CP /, @–@ or @–P right-veering, respectively, if  is @–.@CP /, @–@ or
@–P right-veering, respectively, with respect to every boundary component of S.
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The @–@ right-veering is used by Baldwin, Vela-Vick and Vértesi in [3]. It is easy
to see that our Definition 3.9 of right-veering is equivalent to the @–@ right-veering.
Recall that in Definition 3.9 we only consider @–@ arcs starting from the distinguished
basepoint �C 2 C. This restriction is just to define the orderings �right and �right

on AC .S IP /.

On the other hand, Baldwin and Grigsby [2] and Plamenevskaya [31] use the notion
of @–P right-veering to study the classical braid group MCG.D2;P /. Baldwin and
Grigsby ask in [2, Remark 3.3] whether these two superficially different notions of
right-veering are equivalent or not. The following example shows that the notions (2)
and (3) are in general not exactly the same:

Example 7.3 Assume that S has more than one boundary component and nonempty
marked points P � Int.S/. Let C and C 0 be distinct boundary components. Clearly
T �1

C 0
2MCG.S;P / is not @–@ right-veering with respect to C. On the other hand,

T �1
C 0

preserves all @–P arcs based on C. This means that T �1
C 0

is @–P right-veering
with respect to C.

More generally, let  2MCG.S;P / be a @–P right-veering map with respect to C,
and suppose that  .
 /D 
 for some @–@ arc 
 connecting distinct C and C 0. Then
T �1

C 0
 is still @–P right-veering with respect to C, but is not @–@ right-veering with

respect to C since T �1
C 0
 .
 /D T �1

C 0
.
 /�right 
 .

It turns out that the difference between @–@ right-veering and @–P right-veering
only shows up when  2MCG.S;P / involves negative Dehn twists along boundary
components like in Example 7.3.

Definition 7.4 We say that  2 MCG.S;P / is special with respect to C if the
following two conditions are satisfied:

�  is not @–@ right-veering with respect to C.

� If a @–@ arc 
 that is based on C and ending at C 0 has  .
 / �right 
 , then
C 0 ¤ C and  .
 /D T �n

C 0
.
 / for some n> 0.

That is, a special map  is not @–@ right-veering with respect to C only because of
negative Dehn twists about some other boundary component C 0.

Theorem 7.5 Let  2MCG.S;P /.

(1) If  is @–@ right-veering with respect to C, then  is @–P right-veering with
respect to C.
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(2) If  is @–P right-veering with respect to C then either

�  is @–@ right-veering with respect to C, or

�  is special with respect to C.

Proof We prove both (1) and (2) by showing the contrapositives.

First we prove (1). Assume to the contrary that there is a @–P arc 
 based on C with
 .
 /�right 
 . Let � 2AC .S IP / be a properly embedded arc which is the boundary of
a regular neighborhood of 
 in S. Then we see that � is a @–@ arc with  .�/�right � .

To see (2), assume to the contrary that  is not @–@ right-veering with respect to C

and is not special with respect to C. Then there exists a @–@ arc 
 based on C such
that  .
 /�right 
 . We put  .
 / and 
 so that they intersect efficiently. Our goal is
to show that there exists a @–P arc � based on C with �.0/D 
 .0/ and

 .
 /�right � �right 
:

This shows  .�/ �right  .
 / �right � ; hence,  cannot be @–P right-veering with
respect to C.

If j
 \ .
 /j Dm> 0, we name Int.
 /\ Int. .
 //D fp1; : : : ;pmg D fq1; : : : ; qmg,
where pi D 
 .ti/ with 0< t1 < t2 < � � �< tm < 1 and qi D . .
 //.si/ with 0< s1 <

s2 < � � �< sm < 1. If j
 \ .
 /j DmD 0, we put t1 D s1 D 1 and p1 D q1 D 
 .1/.

Suppose that q1 D pk . Let

ı WD 
 jŒ0;tk � � . .
 /jŒ0;s1�/
�1
I

then ı is an oriented simple closed curve in S nP. Here � denotes concatenation of
paths read from left to right, and .�/�1 means the arc with reversed orientation. If
ı is separating, we denote by R the connected component of S n .ı [P / that lies
on the left side of ı with respect to the orientation of ı . If ı is nonseparating, let
R WD S n .ı[P /.

Let us call the arc 
 bad if the following two properties are satisfied:

� R is an annulus (possibly a pinched annulus if mD 0) with no punctures. (In
particular, ı is separating.)

� The sign of the intersection of 
 and  .
 / (in this order) at q1 is positive.

Algebraic & Geometric Topology, Volume 19 (2019)



Quasi-right-veering braids and nonloose links 3027

 .
 /

C 0
R




C

 .
 /D T �n
C .
 /

Figure 9: A bad arc 
 and its image  .
 / .

Assume that 
 is bad. Let C 0 D @R n ı . Note that C 0 is a boundary component of S.
Since 
 and  .
 / intersect efficiently and ı is separating, we can see that  .
 /
cannot exit out of the annulus R and C ¤ C 0. See Figure 9. Therefore, we observe
that if 
 is bad then C 0 ¤ C and  .
 /D T �n

C 0
.
 / for some n> 0.

Since we assume that  is not @–@ right-veering with respect to C and is not special
with respect to C, the above observation implies that 
 is not bad.

Knowing that 
 is not bad, we consider two cases to construct � :

Case 1 R is an annulus with punctures or a nonannulus surface with or without
punctures.

The sign of the intersection of 
 and  .
 / at q1 can be either positive or negative.
Take an arc 
 0 in S n .P [ 
 [ ı/ which connects q1 and some puncture point and
efficiently intersects  .
 /jŒs1;1� .

Case 1A There exists such an arc 
 0 which lies on the left side of 
 near q1 .

Define � WD 
 jŒ0;tk � � 

0. See Figure 10, left.

Case 1B The arc 
 0 cannot exist on the left side of 
 near q1 , so 
 0 lies on the right
side of 
 near q1 .

See Figure 10, right. If R contains punctures then let � �R be an arc connecting 
 .0/
and one of the punctures in R and satisfying  .
 /�right � �right 
 and Int.�/\ıD∅.
(We do not use 
 0 here.)

Now we may assume that R is a nonannular surface with no punctures. We can take
an arc 
 00 in R n .R\ 
 0/ such that:

� 
 00.0/D 
 00.1/D 
 .0/.

�  .
 /�right 

00 �right 
 .
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� Int.
 00/\ ı D∅.

� 
 00 is not parallel to ı .

� 
 00 and 
 efficiently intersect.

Let q00 WD 
 00.u/D 
 .t/2 
 00\
 be the intersection point such that 
 00j.0;u/ is disjoint
from 
 . If Int.
 00/\ Int.
 /D ∅ then we take q00 WD 
 00.1/D 
 .0/. Namely, uD 1

and t D 0. Define

� WD

�

 00jŒ0;u� � 
 jŒt;tk � � 


0 if t < tk ;


 00jŒ0;u� � 
 jŒtk ;t � � 

0 if tk < t:

Case 2 R is an annulus with no punctures, and the sign of the intersection of 
 and
 .
 / at q1 is negative.

�

q1


 00

Figure 10: Case 1A (left) and Case 1B (right). A @–P arc � (dashed arc) is
chosen so that it does not intersect 
 (black bold line) and  .
 /jŒ0;s1�

(gray
bold arc), possibly with one exceptional point q1 .

Let k 0 (¤ k ) be the number satisfying q2 D pk0 .

Case 2A (k 0 < k ) Since ı is separating the sign of the intersection of 
 and
 .
 / at q2 is positive. Take an arc 
 0 in S n .P [ 
 [  .
 /jŒ0;s2�/ which con-
nects q2 and a puncture point and efficiently intersects  .
 /jŒs2;1� . Then put � WD
 .
 /jŒ0;s1� � .
 jŒtk0 ;tk �/

�1 � 
 0. See Figure 11, left.

Case 2B (k < k 0 ) Let 
 0 be an arc in S n .P [ 
 [ .
 /jŒ0;s2�/ that connects 
 .0/
and a puncture point. Put

� WD

�

 jŒ0;tk0 �

� . .
 /jŒs1;s2�/
�1 � .
 jŒ0;s1�/

�1 � 
 0 if 
 �right 

0;


 jŒ0;tk0 �
� . .
 /jŒs1;s2�/

�1 �C � .
 jŒ0;s1�/
�1 � 
 0 if 
 0 �right 
:

In the second case, in order to make � embedded, it turns along C. See Figure 11,
right.
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R
q1

q2 �

q2

q1

q2

q1
C

Figure 11: Case 2A (left) and Case 2B (right), with the case 
 0 �right 


rightmost: construction of a @–P arc � (dashed); � does not intersect 

(black bold line) and  .
 /jŒ0;s2�

(gray bold arc), possibly with exceptions
near q1 , q2 and 
 .1/ (if 
 .1/ 2 C ).

As a consequence of Theorem 7.5, we conclude the three notions of right-veering
are equivalent when all the boundary components are considered simultaneously that
prevent  being special.

Corollary 7.6 For  2MCG.S;P / the following are equivalent :

(1)  is @–.@CP / right-veering with respect to all the boundary components of S.

(2)  is @–@ right-veering with respect to all the boundary components of S.

(3)  is @–P right-veering with respect to all the boundary components of S.

In particular, when S has connected boundary the three notions of right-veering are
equivalent.

Therefore, in the case of the braid group Bn DMCG.D2; fn pointsg/ the proposed
definitions of right-veering in [3] and [2; 31] are the same because D2 has connected
boundary. Also, we remark that the subtle difference between @–P right-veering with
respect to C and @–@ right-veering with respect to C (existence of a special mapping
class  ) only appears when c. ;C /D 0.

Remark 7.7 One may come up with further different candidates of right-veering.
Instead of using embedded arcs, one may use immersed arcs. However, one can check
that immersed @–.@CP / (resp. @–@, @–P ) right-veering with respect to C is equivalent
to the (embedded) @–.@CP / (resp. @–@, @–P ) right-veering with respect to C.
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