Volume 19, issue 6 (2019)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 24
Issue 3, 1225–1808
Issue 2, 595–1223
Issue 1, 1–594

Volume 23, 9 issues

Volume 22, 8 issues

Volume 21, 7 issues

Volume 20, 7 issues

Volume 19, 7 issues

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the Journal
Editorial Board
Editorial Interests
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
ISSN (electronic): 1472-2739
ISSN (print): 1472-2747
Author Index
To Appear
Other MSP Journals
Categories and orbispaces

Stefan Schwede

Algebraic & Geometric Topology 19 (2019) 3171–3215

Constructing and manipulating homotopy types from categorical input data has been an important theme in algebraic topology for decades. Every category gives rise to a “classifying space”, the geometric realization of the nerve. Up to weak homotopy equivalence, every space is the classifying space of a small category. More is true: the entire homotopy theory of topological spaces and continuous maps can be modeled by categories and functors. We establish a vast generalization of the equivalence of the homotopy theories of categories and spaces: small categories represent refined homotopy types of orbispaces whose underlying coarse moduli space is the traditional homotopy type hitherto considered.

A global equivalence is a functor Φ: CD between small categories with the following property: for every finite group G, the functor GΦ: GC GD induced on categories of G–objects is a weak equivalence. We show that the global equivalences are part of a model structure on the category of small categories, which is moreover Quillen equivalent to the homotopy theory of orbispaces in the sense of Gepner and Henriques. Every cofibrant category in this global model structure is opposite to a complex of groups in the sense of Haefliger.

category, orbispace, global homotopy theory
Mathematical Subject Classification 2010
Primary: 55P91
Received: 28 October 2018
Revised: 4 February 2019
Accepted: 23 February 2019
Published: 20 October 2019
Stefan Schwede
Mathematisches Institut
Universität Bonn