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Upsilon-type concordance invariants

ANTONIO ALFIERI

To a region C of the plane satisfying a suitable convexity condition we associate
a knot concordance invariant ‡C. For appropriate choices of the domain this con-
struction gives back some known knot Floer concordance invariants like Rasmussen’s
hi invariants, and the Ozsváth–Stipsicz–Szabó upsilon invariant. Furthermore, to
three such regions C, CC and C� we associate invariants ‡

C˙;C
generalizing the

Kim–Livingston secondary invariant. We show how to compute these invariants for
some interesting classes of knots (including alternating and torus knots), and we use
them to obstruct concordances to Floer thin knots and algebraic knots.

57M27

1 Introduction

In [18], Ozsváth and Szabó, by essentially studying the Floer homology [3] of certain
Lagrangian tori in the g–fold symmetric product of a genus g Riemann surface, found
a package of three-manifold invariants called Heegaard Floer homology. In [17], they
used this circle of ideas to define a related package of knot invariants named knot Floer
homology. See Ozsváth, Stipsicz and Szabó [13] for an extensive exposition of this
topic.

Knot Floer homology has been used to produce knot concordance invariants by many
authors; see Rasmussen [23], Ozsváth and Szabó [16], Ozsváth, Stipsicz and Szabó [14]
and Kim and Livingston [8]. The purpose of this note is to show that all these construc-
tions can be seen as particular cases of a more general construction. Our investigation
is mainly motivated by the following applications.

1.1 In [9], Lidman and Moore characterized L–space pretzel knots. They found that a
pretzel knot has an L–space surgery if and only if it is a torus knot T2;2nC1 for some
n � 1, or a pretzel knot in the form P .�2; 3; q/ for some q � 7 odd. Motivated by
the exploration started by Wang [26] and Livingston [11], one may wonder if L–space
pretzel knots of the form P .�2; 3; q/ are concordant to algebraic knots.
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Theorem 1.1 None of the L–space pretzel knots P .�2; 3; q/, with q � 7 odd, is
concordant to a sum of algebraic knots.

Notice that for these knots the obstruction found in [26, Corollary 3.5] vanishes.

1.2 In [4], Friedl, Livingston and Zentner asked whether a sum of torus knots is
concordant to an alternating knot. In [27], Zemke used the involutive Floer homology
of Hendricks and Manolescu [6] to prove that certain connected sums of torus knots are
not concordant to Floer thin knots. Floer thin knots are upsilon-alternating, meaning
that ‡K .t/ D ��.K/ � .1� j1� t j/. A straightforward argument shows that a sum
of positive torus knots is upsilon-alternating if and only if it is a connected sum of
.2; 2nC 1/ torus knots and indeed alternating. However, when both positive and
negative torus knots are involved this obstruction can vanish.

Proposition 1.2 The knot K D T8;5 #�T6;5 #�T4;3 is upsilon-alternating but not
concordant to a Floer thin knot.

The connected sum formula (Theorem 6.2) employed in the proof of Proposition 1.2
is used by Aceto and Alfieri [1] to decide which sums of two torus are concordant to
alternating knots.

Acknowledgements The author would like to thanks András Stipsicz, András Némethi
and Paolo Aceto. The author was partially supported by the NKFIH grant K112735.

2 A quick review of knot Floer homology

An Alexander filtered, Maslov graded chain complex is a finitely generated, Z–graded,
.Z˚Z/–filtered chain complex C D

�L
x2B Z2ŒU;U

�1�; @
�

such that

� @ is Z2ŒU;U
�1�–linear and for a basis element x 2B, @xD

P
y nx;yU mx;y �y

for suitable coefficients nx;y 2 Z2 , and nonnegative exponents mx;y � 0;

� the multiplication by U drops the homological (Maslov) grading M by two,
and the filtration levels (denoted by A and j ) by one.

An Alexander filtered, Maslov graded chain complex is said to be of knot type if in
addition H�.C; @/DZ2ŒU;U

�1� is graded so that degU D�2. An Alexander filtered,
Maslov graded chain complex can be pictorially described as follows:

(1) picture each Z2 –generator U m � x of C on the planar lattice Z�Z � R2 in
position .A.x/�m;�m/ 2 Z�Z;
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(2) label each Z2 –generator U m �x of C with its Maslov grading M.x/�2m2Z;

(3) connect two Z2 –generators U n �x and U m �y with a directed arrow if in the
differential of U n �x the coefficient of U m �y is nonzero.

In [17], Ozsváth and Szabó show how to associate to a knot K � S3 a knot-type
complex CFK1.K/ whose filtered chain homotopy type only depends on the isotopy
class of K . For a concise introduction to the background material see [7].

2.1 Hom’s invariance principle Denote by CFK the set of knot-type complexes up
to filtered chain homotopy. Say that two knot-type complexes are stably equivalent,
written C1 � C2 , if there exist Alexander filtered, Maslov graded, acyclic chain
complexes A1 and A2 such that C1˚A1'C2˚A2 . The quotient set CFK=� has a
natural group structure: the sum is given by tensor product, the class of zero is the one
represented by the Floer chain complex of the unknot CFK1.U /, and the inverse of the
class of a complex C is the one represented by its dual complex Hom.C;Z2ŒU;U

�1�/.

Theorem 2.1 (Hom [7]) The map K 7! CFK1.K/ associating to a knot K � S3

its knot Floer complex descends to a group homomorphism C! CFK=�.

Summarizing, in order to produce a concordance invariant C! Z one only needs to
produce a map f W CFK! Z such that f .C�˚A�/D f .C�/ for every Alexander
filtered, Maslov graded, acyclic chain complex A� .

3 Upsilon-type invariants

Inspired by the exposition in [10], we use knot Floer homology to define some more
concordance invariants. We start with a definition.

Definition 3.1 A region of the plane C �R2 is said to be a south-west region if it is
nonempty and .xx; xy/ 2 C implies f.x;y/ j x � xx; y � xyg � C.

Examples of south-west regions are shown in Figure 1. Let C be a south-west region
of the plane. For t 2 R let Ct D f.x;y/ j .x � t;y � t/ 2 C g denote the translation
of C in the direction of vt D .t; t/. Given a knot-type complex K� consider the
map induced on H0 by the inclusion K�.Ct / ,! K� , where K�.Ct / denotes the
subcomplex spanned by the generators of K� lying in Ct . Since Ct � Ct 0 for t � t 0,
and

S
t2R Ct DR2 , a cycle representing the generator of H0.K�/DZ2 will eventually
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Figure 1: Examples of south-west regions.

be contained in K�.Ct /. Thus, for t big enough the inclusion H0.K�.Ct //!H0.K�/

is a surjective map. Let ‡C .K�/ be the minimum t 2 R such that K�.Ct / ,! K�

induces a surjection on H0 . Here we are using the Maslov grading as homological
grading, so that H2i.K�/D Z2 and zero otherwise.

Lemma 3.2 Suppose that C is a south-west region. If K� and K0� are two stably
equivalent knot-type complexes then ‡C .K�/D ‡

C .K0�/.

Proof The surjectivity of the map induced in homology by the inclusion K�.Ct / ,!K�

is not affected if we sum an acyclic complex A on the right and a subcomplex of the
same acyclic on the left.

Corollary 3.3 Suppose that C � R2 is a south-west region. Given a knot K � S3 ,
set ‡C .K/D ‡C .CFK1.K//. Then ‡C .K/ is a concordance invariant.

3.1 The classical upsilon invariant Choose the lower half-space

Ht D
˚

1
2
t �AC

�
1� 1

2
t
�
� j � 0

	
as the south-west region. As t ranges in Œ0; 2� we get a one-parameter family of
invariants of knot-type complexes ‡t .K�/D ‡

Ht .K�/. According to Corollary 3.3
this provides a one-parameter family of knot concordance invariants. More specifically,
set

‡K .t/D�2 �‡Ht .CFK1.K//:

In [10, Section 14], Livingston proves that the invariant ‡K .t/ agrees with the upsilon
invariant defined by Ozsváth, Stipsicz and Szabó [14].
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3.2 Regions for Rasmussen’s hi invariants For s � 0 choose as south-west region
Qs D fA � s; j � 0g. This leads to a one-parameter family of knot concordance
invariants VK .s/D‡

Qs .K/. These are the invariants hi introduced by Rasmussen [23].
They are characterized by the following property:

Proposition 3.4 [23, Section 7.2] Let K�S3 be a knot and q� 2g.K/�1 be an in-
teger. Denote by Wq.K/ the q–framed two-handle attachment along K to D4 , so that
S3

q .K/D @Wq.K/. For any integer m2
�
�

1
2
q; 1

2
q
�

let sm 2Spinc.S3
q .K// denote the

restriction to S3
q .K/ of a Spinc structure tm on Wq.K/ such that hc1.s/; Œ yF �iCqD2m,

where yF �Wq.K/ denotes a capped-off Seifert surface for K . Then

d.S3
q .K/; sm/D

.q� 2m/2� q

4q
� 2VK .m/;

where d denotes the Heegaard Floer correction term introduced in [20].

3.3 Estimates on the slice genus Suppose that C is a south-west region. Associated
to C there is a height function

hC .x/Dminft 2R j .x; 0/ 2 Ctg;

where Ct denotes as usual the translation of C in the vt D .t; t/ direction. The height
function hC relates the upsilon invariant of the region C to the slice genus.

Theorem 3.5 Let C be a south-west region. Given a knot K � S3 the inequality

(1) maxf‡C .K/; ‡C .�K/g � hC .g4.K//

holds, where g4.K/ denotes the slice genus of K .

Proof First of all notice that hC .x/ is a monotone increasing function: Since C is a
south-west region, .x� ı; 0/ 2 C‡C .K / for ı > 0. Thus, hC .x� ı/� hC .x/.

Let �C DminifVK .i/D 0g. From the definition of the height function hC .x/ and the
fact that C is a south-west region, one immediately concludes that fA� �C; j � 0g �

ChC .�C/
. The fact that VK .�

C/D0 ensures that the south-west region fA��C; j �0g

contains a cycle generating H0.CFK1.K// and consequently (because of the inclusion)
that so does the translation ChC .�C/

. This proves that ‡C .K/ � hC .�
C/. On the

other hand, according to Rasmussen [23, Corollary 7.4] �C � g4.K/, thus ‡C .K/�

hC .�
C/� hC .g4.K//.

By the same argument for �K instead of K we get that ‡C .�K/� hC .g4.�K//D

hC .g4.K//, and we are done.
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Example 3.6 If we choose C D
˚

1
2
tAC

�
1� 1

2
t
�
j � 0

	
as in the classical upsilon

invariant (Section 3.1) one has hC .x/D
1
2
t �x . In this case, equation (1) leads to the

inequality j‡K .t/j D 2 �maxf‡C .K/; ‡C
K
.�K/g � 2hC .g4.K// D tg4.K/, where

the first identity is due to the identity ‡C
K
.�K/D �‡C .K/ (which is not valid for

any C ). Compare this with [14, Theorem 1.11].

4 Secondary invariants

Roughly speaking, upsilon-type invariants measure how far one needs to travel north-
east in the .A; j / plane in order to see a cycle generating H0.CFK1/ appear. As
suggested by Kim and Livingston [8], other concordance invariants could be obtained
by measuring how far one should go in order to find some chain realizing a homology
in between two such cycles.

More specifically, suppose that two south-west regions CC and C� are given. Given
a knot-type complex K� one can consider the maps induced in homology by the
inclusions K�.C

C
t / ,!K� and K�.C

�
t / ,!K� (here we are using again the notation of

the beginning of Section 3). For 
˙D‡C˙.K�/ one gets surjections H0.K�.C
C

C
//!

H0.K�/ and H0.K�.C
�

�
//!H0.K�/. Denote by ZC and Z� the set of cycles of

K�.C
C

C
/ and K�.C

�

�
/, respectively, projecting on the generator of H0.K�/. Suppose

now that a third south-west region C has been fixed. Since H0.K�/D Z2 , for t 2R

large enough there will be a 1–chain ˇ 2K1 realizing a homology between a 0–cycle
in ZC and one in Z� . We define ‡C˙;C .K�/ as the minimum t 2R for which there
exist a cycle zC 2 ZC and a cycle z� 2 Z� representing the same homology class
inside K�.C

C

C
/CK�.C

�

�
/CK�.Ct /. We set ‡C˙;C .K�/D�1 in the eventuality

that ZC\Z� ¤∅.

Lemma 4.1 Suppose that CC , C� and C are given south-west regions. If K� and
K0� are two stably equivalent knot-type complexes, then ‡C˙;C .K�/D ‡C˙;C .K

0
�/.

Proof Suppose that K0� D K� ˚ A is obtained from K� by adding an acyclic
complex A. Set 
˙ D ‡C˙.K�/ D ‡C˙.K0�/ and let Z˙.K�/ and Z˙.K0�/ be
the sets of cycles projecting to the generator through H0.K�.C

˙

˙
//!H0.K�/ and

H0.K
0
�.C

˙

˙
//!H0.K

0
�/, respectively.

We prove that ‡C˙;C .K�/D ‡C˙;C .K
0
�/ by proving the two inequalities. Suppose

by contradiction that there exists t < ‡C˙;C .K
�/ for which a cycle zC 2 ZC.K0�/

gets identified with a cycle in z� 2 Z�.K0�/ in K0�.Ct /CK0�.C
C

C
/CK0�.C

�

�
/.
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Pick a 1–chain ˇ0t 2K0�.Ct /CK0�.C
C

C
/CK0�.C

�

�
/ such that zC�z�D@ˇ0t , and write

ˇ0t D ˇt Ca with ˇt 2K�.Ct /CK�.C
C

C
/CK�.C

�

�
/ and a 2A. Notice that zCD

zC
K
CaC and z�D z�

K
Ca� for some aC; a� 2A, zC

K
2ZC.K�/ and z�

K
2Z�.K�/.

By rewriting the relation zC�z�D@ˇ0t we get that .zC
K
�z�

K
�@ˇt /C.a

C�a��@a/D0,
from where we can conclude that zC

K
� z�

K
D @ˇt . This contradicts the fact that

‡C˙;C .K�/ is the minimum t for which such an homology exists, and proves that
‡C˙;C .K�/� ‡C˙;C .K

0
�/. The reverse inequality has a similar proof.

Corollary 4.2 For a knot K � S3 set ‡C˙;C .K/ D ‡C˙;C .CFK1.K//. Then
‡C˙;C .K/ defines a knot concordance invariant.

4.1 Breaking points Summarizing, given south-west regions CC , C� and C �R2

we get a map ‡C˙;C W CFK=�! Œ�1;C1/. In [8], Kim and Livingston produce
south-west regions for which the condition ZC\Z� D∅ is guaranteed.

Lemma 4.3 (Kim and Livingston) For t 2 Œ0; 2� let ‡t W CFK=�! R denote the
stable equivalence invariant associated to the lower half-space Ht of Section 3.1.
Suppose that K� is a knot-type complex such that ‡t .K�/ as function of t 2 Œ0; 2� is
nonsmooth at t D t� . Furthermore, suppose that the derivative of ‡t .K�/ at t D t�

has a positive jump, meaning that

�‡ 0t .K�/D lim
�!0

.‡ 0tC�.K�/�‡
0
t��.K�//

is positive at t D t� . Then, for ı > 0 small enough, C� DHt��ı and CC DHt�Cı

give two south-west regions such that ZC\Z� D∅.

We say that the upsilon function ‡t .K�/ of a knot-type complex K� has a breaking
point at t D t� if, for a small perturbation ı > 0, C� DHt��ı and CC DHt�Cı are
two south-west regions such that ZC\Z�D∅. The cycles in ZC and Z� are called
the positive and the negative exceptional cycles of the breaking point. Lemma 4.3
says that the singularities of ‡t .K�/ (points where ‡t .K�/ is nonsmooth) at which
�‡ 0t .K�/ > 0 are in fact breaking points.

In the notation of Lemma 4.3 set

(2) ‡
.2/
C;t
.K�/D�2 � .‡Ht˙ı;C

.K�/�‡t .K�//

for ı > 0 small enough. This provides a one-parameter family of knot concordance
invariants ‡ .2/

C;t
.K/D‡

.2/
C;t
.CFK1.K//. Notice that the invariant ‡ .2/

K ;t
.s/D‡

.2/
Hs ;t

.K/

is exactly the secondary upsilon invariant introduced by Kim and Livingston [8].
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Figure 2: The square complex Q (left), and the staircase complex S� (� � 0

on the centre, � > 0 on the right).

5 Floer thin knots

A knot K � S3 is called Floer thin if its knot Floer homology groups bHFK�;�.K/ are
concentrated on a diagonal, meaning that bHFKi;j .K/D 0 if i � j ¤ ı for a suitable
constant ı . Examples of Floer thin knots are alternating and quasialternating knots
[15; 12]

�
in these cases, ı D �1

2
� , where � denotes the knot signature

�
. In [22],

Petkova shows that for a Floer thin knot the chain homotopy type of CFK1.K/ can
be completely reconstructed from its Ozsváth–Szabó tau invariant � D �.K/ and its
Alexander polynomial �K D a0C

P
s>0 as.T

sCT �s/. More precisely we have that:

� CFK1.K/ has exactly jasj generators with AD s and j D 0,

� CFK1.K/ D .S� ˝ Z2ŒU;U
�1�/˚

�L
i Qi ˝ Z2ŒU;U

�1�
�
, where S� is a

staircase complex, and the Qi are square complexes as the one shown in Figure 2.

Notice that AD
L

i Qi ˝Z2ŒU;U
�1� is acyclic. Consequently, up to acyclics, for a

Floer thin knot K we have that CFK1.K/D S�.K /˝Z2ŒU;U
�1�.

5.1 Three-parameter upsilon invariants of thin knots We show how to compute
some upsilon-type invariants in the case of Floer thin knots. Choose as south-west
region

C D
˚

1
2
t �AC

�
1� 1

2
t
�
� j � 0

	
[
˚

1
2
s �AC

�
1� 1

2
s
�
� j � q

	
:

As the parameters s; t 2 Œ0; 1� and q 2 R vary, the concordance invariant ‡C gives
rise to a three-parameter family of concordance invariants ‡K .t; s; q/ collapsing to
the classical upsilon invariant when t D s and q D 0. Let us compute ‡C .K/ D

‡C .CFK1.K// for a Floer thin knot K .
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Suppose first that � D �.K/ is positive. Since CFK1.K/ D S� ˝Z2ŒU;U
�1�˚A

with S� staircase shaped as in Figure 2 and A acyclic, Hom’s principle shows that
‡C .CFK1.K//D ‡C .S� ˝Z2ŒU;U

�1�/.

Let C
 denote the translation of C in the v
 D .
; 
 / direction. The south-west
region C
 contains a generator of H0.S� ˝Z2ŒU;U

�1�/D Z2 as soon as it contains
one of the xi generators of Figure 2. Thus, ‡C .S� ˝Z2ŒU;U

�1�/ is the minimum 


such that

1
2
t �A.xi/C

�
1� 1

2
t
�
� j .xi/� 
 or 1

2
s �A.xi/C

�
1� 1

2
s
�
� j .xi/� q � 


for at least one of the xi generators, hence ‡C .S� ˝Z2ŒU;U
�1�/ is computed by the

expression

min
i

min
˚

1
2
tA.xi/C

�
1� 1

2
t
�
j .xi/;

1
2
sA.xi/C

�
1� 1

2
s
�
j .xi/� q

	
:

Plugging in A.xi/D � � i and j .xi/D i we get

‡C .S� ˝Z2ŒU;U
�1�/Dmin

i
minf.1� t/i C �; .1� s/i C � � qg;

from where the identity

‡C .S� ˝Z2ŒU;U
�1�/Dmin

˚
1
2
t�; .1� s/

l
1
2
� C

q

t�s

m
C

1
2
.s� � 2q/

	
follows for t ¤ s . For t D s one can easily see that

‡C .S� ˝Z2ŒU;U
�1�/D 1

2
t� �maxf0; qg:

If � < 0 then the situation is somehow easier: there is only one 0–cycle generating
H0.S� ˝ Z2ŒU;U

�1�/ D Z2 , namely z D
P

i xi . Thus, in this case, the invariant
‡C .S� ˝Z2ŒU;U

�1�/ is computed by the expression

max
i

min
˚

1
2
tA.xi/C

�
1� 1

2
t
�
j .xi/;

1
2
sA.xi/C

�
1� 1

2
s
�
j .xi/� q

	
:

By substituting the values of A.xi/ and j .xi/ we get

‡C .S� ˝Z2ŒU;U
�1�/Dmin

n
.1� s/

j
1
2
� C

q

t�s

k
C

1
2
.s� � 2q/; 1

2
.2� t/�

o
if t ¤ s . If t D s , we have the identity

‡C .S� ˝Z2ŒU;U
�1�/D 1

2
.2� t/� �minf0; qg:

As an immediate corollary of this discussion we get the following proposition:
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Proposition 5.1 Suppose that K � S3 is a Floer thin knot. Then

‡K .t/D��.K/ � .1� jt � 1j/:

Notice that the Ozsváth–Stipsicz–Szabó upsilon function of a Floer thin knot K � S3

has only one singularity at t D 1, where it actually has a breaking point if �‡ 0
tD1

.K/D

2�.K/ > 0. We now compute the Kim–Livingston secondary invariant of these singu-
larities.

Proposition 5.2 Suppose that K � S3 is a Floer thin knot. Then

‡
.2/
K ;1

.s/D .1� �.K// � j1� sj � 1

if �.K/ > 0, and ‡ .2/
K ;1

.s/D�1 otherwise.

Proof In the notation of Section 4.1, we would like to compute ‡ .2/
C;1
.K�/ for C D˚

1
2
sAC

�
1� 1

2
s
�
j � 0

	
and K� D S� ˝Z2ŒU;U

�1�.

If � > 0, the upsilon function ‡t .S�˝Z2ŒU;U
�1�/ has a breaking point at t D 1. The

exceptional sets ZC and Z� of this breaking point are easy to identify: there is only
one positive and one negative exceptional cycle, namely zC D x0 and z� D x� (see
Figure 2 again). A quick inspection of the same figure reveals that a 1–chain realizing
a homology between zC and z� is given by b D

P
i yi . Notice that there is exactly

one such chain since H1.S� ˝Z2ŒU;U
�1�/D 0, and @ vanishes on chains with even

Maslov grading. Thus,

‡
.2/
C;1
.S� ˝Z2ŒU;U

�1�/D�2
�
max

i

�
1
2
sA.yi/C

�
1� 1

2
s
�
j .yi/

�
�

1
2
�
�
:

Plugging in A.yi/D � � i and j .yi/D i C 1, the claimed identity can be deduced by
algebraic manipulation.

If ��0, there is only one 0–cycle generating H0.S�˝Z2ŒU;U
�1�/, namely zD

P
i xi .

Thus ZC\Z� D fzg and we conclude that ‡ .2/
K ;1

.s/D�1.

6 L–space knots

Another interesting class of knots is provided by L–space knots. Recall that a rational
homology sphere Y is an L–space if bHF.Y; s/D Z2 in every Spinc structure. This
happens for example in the case of a lens space Y D L.p; q/, whence the name. A
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knot K � S3 is said to be an L–space knot if it has a positive surgery S3
p .K/ that is

an L–space. Basic examples of L–space knots are positive torus knots.

The homotopy type of the master complex of an L–space knot can be reconstructed
from its Alexander polynomial. More precisely, suppose that K � S3 is a genus g

L–space knot. According to [19], its Alexander polynomial can be written in the form
�K .t/D 1� t˛1 C � � � � t˛2k�1 C t˛2k , with 0D ˛0 < ˛1 < � � �< ˛2k D 2g . Starting
from the sequence ai D ˛i �˛i�1 recording the jumps between consecutive exponents
of the monomials appearing in the Alexander polynomial, construct a chain complex
S�.K/D S�.a1; : : : ; a2k/ as follows. Set

S�.a1; : : : ; a2k/D Z2fx0; : : : ;xk ;y0; : : : ;yk�1g˝Z2ŒU;U
�1�;

and consider the differential�
@xi D 0; i D 0; : : : ; k;

@yi D xi CxiC1; i D 0; : : : ; k � 1:

Define

(3)

8<:
A.xi/D ni ;

j .xi/Dmi ;

M.xi/D 0;

and

8<:
A.yi/D ni ;

j .yi/DmiC1;

M.yi/D 1;

where �
ni D g�

Pi
jD0 a2j ;

n0 D 0;

�
mi D

Pi
jD1 a2j�1;

m0 D 0;

and coherently extend these gradings to Z2fx0; : : : ;xk ;y0; : : : ;yk�1g˝Z2ŒU;U
�1�

so that multiplication by U drops the Maslov grading M by �2, and the Alexander
filtration A as well as the algebraic filtration j by �1. In [21], Peters proves that there
is a chain homotopy equivalence CFK1.K/' S�.K/.

6.1 Kim–Livingston secondary invariant of L–space knots Let us compute the
upsilon invariant ‡t .S�/ of a staircase complex S� D S�.a1; : : : ; a2k/. Since the
lower half-space 1

2
t �AC

�
1� 1

2
t
�
� j � 
 contains a cycle generating H0.S�/ as soon

as it contains one of the xi generators, we have that

(4) ‡t .S�/Dmin
i

˚
1
2
tni C

�
1� 1

2
t
�
mi

	
:

Thus, for an L–space knot K � S3 one has

‡K .t/D�2 �min
i

˚
.ni �mi/ �

1
2
t Cmi

	
D�min

i
f˛i t Cmig;

as already pointed out by Ozsváth, Stipsicz and Szabó [14].
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From (4) it is clear where the upsilon function ‡t .S�/ of a staircase complex S� has
its breaking points. A parameter t is a singularity for ‡t .S�/ if and only if the min on
the left-hand side of (4) is realised by more than one index i . These singularities are
breaking points since, at these points, �‡ 0t > 0. Notice that there are no other breaking
points since at a regular parameter t the half space 1

2
t �AC

�
1� 1

2
t
�
� j � ‡t .S�/

contains (on its boundary line) exactly one xi generator.

Proposition 6.1 Let S� D S�.a1; : : : ; a2k/ be a staircase complex. Suppose that t is
a breaking point of ‡t .S�/; then

‡
.2/
S�;t

.s/D�2
�

max
i��j<i�

˚
1
2
snj C

�
1� 1

2
s
�
mjC1

	
�‡t .S�/

�
;

where i� and iC denote respectively the minimum and the maximum index realizing
the minimum in (4).

Proof If t is a breaking point of ‡t .S�/ then the half-space

1
2
t �AC

�
1� 1

2
t
�
� j � ‡t .S�/

contains (actually on its boundary line) exactly those xi generators which have index
i 2 f0; : : : ; kg realizing the minimum in the expression of (4).

The exceptional sets ZC and Z� of such a singularity both contain exactly one 0–
cycle: zC D xiC and z� D xi� , respectively. Notice that since H1.S�/D 0, there is
only one 1–chain realizing a homology between these cycles, namely ˇ D

PiC�1

jDi�
yj .

Thus, in the notation of equation (2) of Section 4.1, we have that

‡Ht˙ı;Hs
.S�/D max

i��j<iC

˚
1
2
snj C

�
1� 1

2
s
�
mjC1

	
;

from which the formula follows.

6.2 A connected sum formula One of the fundamental properties of the Ozsváth–
Stipsicz–Szabó upsilon invariant is its additivity property

‡t .A�˝B�/D ‡t .A�/C‡t .B�/;

turning ‡t into a group homomorphism from CFK=� to the group of piecewise linear
functions Œ0; 2�!R. General upsilon-type invariants and their secondary counterparts
do not enjoy this property. In this section we prove a connected sum formula for the
Kim–Livingston secondary invariant of staircase complexes.
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Theorem 6.2 Let A� D S�.a1; : : : ; a2n/ and B� D S�.b1; : : : ; b2m/ be staircase
complexes. Suppose that ‡t .A�/ has a breaking point at a point t D s where ‡t .B�/

is smooth. Then

‡
.2/
A�˝B�;s

.s/D ‡
.2/
A�;s

.s/:

Proof Denote by x0; : : : ;xn and z0; : : : ; zm the Maslov grading zero generators of
the staircases of A� and B� , respectively. Similarly, denote by y0; : : : ;yn�1 and
w0; : : : ; wm�1 their Maslov grading one generators.

The fact that ‡t .B�/ is smooth at t D s guarantees that the half-space

1
2
s �AC

�
1� 1

2
s
�
� j � ‡s.B�/

only contains (actually on its boundary line) one 0–cycle z D zr generating H0.B�/.
Since A� is a staircase complex, the sets of its exceptional cycles ZC and Z� at t D s

both include exactly one 0–cycle. Denote those cycles by xC D xk and x� D xh ,
respectively. In this notation, the sets of exceptional cycles of A�˝B� at t D s are
given by ZC D fxk ˝ zr g and Z� D fxh˝ zr g.

Given a chain � D
P

i �i with �1; : : : ; �n homogeneous with respect to both the
Alexander and the algebraic grading, set

Es.�/Dmax
i

˚
1
2
s �A.�i/C

�
1� 1

2
s
�
� j .�i/

	
:

In this notation, Es.x/� 
 if and only if the chain � is contained in the subcomplex
of the lower half-space 1

2
s �AC

�
1� 1

2
s
�
� 
 .

It is easy to find a 1–chain realizing a homology between xk ˝ zr and xh˝ zr :

@

� b�1X
`Da

y`˝ zr

�
D

b�1X
`Da

@y`˝ zr D

b�1X
`Da

.x`Cx`C1/˝ zr D xk ˝ zr �xh˝ zr :

If we prove that between the 1–cycles realizing a homology between xk ˝ zr and
xh˝ zr this is the one with minimal Es , then we conclude that

‡
.2/
A�˝B�;s

.s/D�2

�
Es

� b�1X
`Da

y`˝ zr

�
�‡t .A�˝B�/

�

D�2

�
Es

� b�1X
`Da

y`

�
CEs.zr /�‡t .A�/�‡t .B�/

�
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D�2

�
Es

� b�1X
`Da

y`

�
�‡t .A�/

�
D ‡

.2/
A�;s

.s/

and we are done. Let us prove that ˇ D
Pb�1
`Da y`˝ zr is a cycle minimizing Es.ˇ/

in the class of 1–cycles realizing homologies between xk ˝ zr and xh˝ zr .

From the fact that, for a staircase complex, @.x/D 0 for those x ’s with homogeneous
even Maslov degree, one can conclude that any 1–chain realizing an homology between
xk ˝ zr and xh˝ zr differs from ˇ by the boundary of an element in A1˝B1 . In
other words, such a 1–chain should be of the form

@

�X
i;j

�ij yi ˝wj

�
C

b�1X
`Da

y`˝ zr

for some coefficients �ij 2 Z2 . Obviously, we have that

(5) Es

�
@

�X
i;j

�ij yi ˝wj

�
C

b�1X
`Da

y`˝ zr

�
�Es

� b�1X
`Da

y`˝ zr

�
provided that none of the generators ya˝ zr ; yaC1˝ zr ; : : : ; yb�1˝ zr appears as a
component of

@

�X
i;j

�ij yi ˝wj

�
D

X
i;j

�ij@yi ˝wj C

X
i;j

�ij yi ˝ @wj :

On the other hand, it so happens that for some yi˝zr , after cancellation, the summandX
j

�ij yi ˝ @wj D

X
j

�ij yi ˝ zj C �ij yi ˝ zjC1

has a component of the form yi ˝ z� for some �¤ k . Thus, since Es.yi ˝ z�/D

Es.yi/CEs.z�/ >Es.yi/C‡s.B�/DEs.yi/CEs.zr /DEs.yi˝ zr /, also in this
case the inequality in (5) holds, and we are done.

Proof of Proposition 1.2 According to Feller and Krcatovitch [2], the Ozsváth–
Stipsicz–Szabó upsilon function ‡p;q.t/ of the .p; q/ torus knot can be computed
recursively by means of the formula ‡p;q.t/D‡p�q;q.t/C‡qC1;q.t/. Thus, ‡K .t/D

‡8;5.t/�‡6;5.t/�‡4;3.t/D‡6;5.t/C‡4;3.t/C‡3;2.t/�‡6;5.t/�‡4;3.t/D‡3;2.t/,
proving that K is an upsilon-alternating knot.

Now suppose by contradiction that there exists a Floer thin knot J such that T6;5#T4;3�

T8;5#J. The upsilon function of the torus knot T6;5 has its singularities at tD 2
5
; 4

5
; 6

5
; 8

5
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while the one of J has its only singularity at t D 1. The upsilon functions of the torus
knot T4;3 and T8;5 on the other hand both have a singularity at t D 2

3
. Thus, as a

consequence of Theorem 6.2 we have that

‡
.2/

T4;3;2=3

�
2
3

�
D ‡

.2/

T6;5#T4;3;2=3

�
2
3

�
D ‡

.2/

T8;5#J ;2=3

�
2
3

�
D ‡

.2/

T8;5;2=3

�
2
3

�
:

We claim that ‡ .2/
T4;3;2=3

�
2
3

�
¤ ‡

.2/

T8;5;2=3

�
2
3

�
. In fact, by Proposition 6.1 we have that

‡
.2/

T4;3;2=3

�
2
3

�
D�

4
3

and ‡ .2/
T8;5;2=3

�
2
3

�
D�

20
3

.

7 Algebraic knots

Suppose that Z �C2 is a planar complex curve given by the equation f .x;y/D 0.
Recall that a point p 2 Z is said to be regular if the partial derivatives @f=@x and
@f=@y do not both vanish at p . A point that is not regular is said to be singular. In
what follows, by an isolated plane curve singularity .Z;p/ we mean a planar complex
curve Z with an isolated singularity at p 2 Z . Without loss of generality we can
always suppose p to be the origin of C2 .

Let .Z; 0/ be an isolated plane curve singularity. A small sphere S3
� .0/ centred at the

origin intersects Z transversally in a link KD S3
� .0/\Z . This is the link of the plane

curve singularity and, in a neighbourhood of the origin, Z looks like a cone over it. If
the link K � S3 is actually a knot, we say that .Z; 0/ is cuspidal. Knots arising from
this construction are called algebraic knots.

Naturally attached to a plane curve singularity .Z; 0/ there is an arithmetic object captur-
ing information about the complex geometry of its germ. Given an analytic parametriza-
tion '.z/ of Z around 0, consider the pullback homomorphism '�W CŒŒx;y��!CŒŒz��

defined by g 7! g ı' . Set

S Dfs 2Z�0 j g.'.z//D zsh.z/ for some g 2CŒŒx;y�� and h2CŒŒz�� with h.0/¤ 0g:

It is easy to see that S is a semigroup, meaning that 0 2 S and, if a; b 2 S, so is
aC b . The semigroup of a cuspidal singularity .Z; 0/ is related to its knot K via the
Alexander polynomial

(6) �K .t/D
X
s2S

t s
� t sC1:

Notice that this is a finite sum since the semigroup of a plane curve singularity eventually
covers all the positive integers.
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76543210

Figure 3: The semigroup of the plane curve singularity x5 C y3 D 0 is
generated by 5 and 3 . Its link is the torus knot T5;3 . The associated staircase
can be computed from the colouring above by counting the gaps between
blue (1 , 2 , 4 , 7) and red (0 , 3 , 5 , 6) numbers. In this case r1 D 1 , r2 D 1 ,
r3 D 2 , b1 D 2 , b2 D 1 , b3 D 1 and CFK1.T5;3/D S�.1; 2; 1; 1; 2; 1/ .

Any cuspidal plane curve singularity .Z; 0/ has a parametrization of the form x D za ,
y D zq1 C � � � C zqn for some positive integers q1 < q2 < � � � < qn . Such a repre-
sentation is unique if we further assume gcd.a; q1; : : : ; qi/ to not divide qiC1 and
gcd.a; q1; : : : ; qn/ D 1. The sequence .aI q1; : : : ; qn/ is the Puiseaux characteristic
sequence of the cuspidal singularity .Z; 0/, and the number a is its Puiseaux exponent.
It is a fundamental fact of the theory of plane curve singularities [24, Chapter 5] that
starting from the Puiseaux characteristic sequence of a cuspidal singularity one can
reconstruct both its semigroup and the topology of its link.

Theorem 7.1 Let .Z; 0/ be a cuspidal plane curve singularity with Puiseaux charac-
teristic sequence .aI q1; : : : ; qn/. Set Di D gcd.a; q1; : : : ; qi/, s1 D q1 and

si D
aq1CD1.q2� q1/C � � �CDi�1.qi � qi�1/

Di�1

for i D 0; : : : ; n� 1. Then the link K of .Z; 0/ is the .n�1/–fold iterated cable of
the .a=D1; q1=D1/ torus knot with cabling coefficients .Di�1=Di ; si�1=Di/ for i D

2; : : : ; n. Furthermore, the semigroup of .Z; 0/ is generated by fa; s1; : : : ; sng.

From the viewpoint of Heegaard Floer theory, algebraic knots are interesting since they
provide a good source of examples of L–space knots [5]. Because of (6), the staircase of
an algebraic knot can be recovered from the semigroup of its singularity. More precisely,
suppose that .Z; 0/ is a plane curve singularity giving rise to a genus g algebraic
knot K . The semigroup S of .Z; 0/ determines a colouring of f0; : : : ; 2g�1g: colour
by red the numbers in S \ f0; : : : ; 2g � 1g and by blue the ones in its complement
.Z n S/\ f0; : : : ; 2g � 1g. By counting the gaps between blue and red numbers as
suggested by Figure 3, we get two sequences of numbers r1; : : : rg and b1; : : : ; bg . As
a consequence of the general recipe discussed at the beginning of Section 6 one can
see that CFK1.K/' S�.r1; b1; : : : ; rg; bg/.
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7.1 L–space pretzel knots We now proceed to the proof of Theorem 1.1. Suppose
that C is a south-west region. For every x 2R we can consider the truncated south-
west region Cx D C \fA� xg. This leads to a one-parameter family of upsilon-type
invariants ‡Cx .K�/. Since Cx �C we have that ‡Cx .K�/�‡

C .K�/. Furthermore,
for x large enough, ‡Cx .K�/D ‡

C .K�/. Set

�C .K�/Dminfx j ‡Cx .K�/D ‡
C .K�/g:

Obviously, this is an invariant of stable equivalence. For a knot K � S3 denote by
�C .K/D �C .CFK1.K// the associated knot concordance invariance.

Lemma 7.2 Suppose that .Z; 0/ is a cuspidal plane curve singularity with Puiseaux
sequence .aI q1; : : : ; qn/. Denote by K the algebraic knot associated to .Z; 0/ and by
S its semigroup. Let n.S/ be the maximum among the integers n� 0 such that

S \Z�na D f0; a; 2a; : : : ; nag:

Choose C D f1=a �AC .1� 1=a/ � j � 0g. Then

�C .K/D
�
1�

1

a

�
�.K/� .a� 1/n.S/:

Proof Let g be the genus of K . Colour red and blue the numbers in f0; 1; : : : ; 2g�1g

as specified by .R D S \ f0; 1; : : : ; 2g � 1g;B D .Z n S/\ f0; 1; : : : ; 2g � 1g/ and
by recording the gaps between red and blue numbers form the sequences r1; : : : ; rg

and b1; : : : ; bg suggested by Figure 3. By the definition of n.S/ we have that r1 D

� � � D rn D 1, b1 D � � � D bn D a � 1 and 1 � bi < a � 1 for i D nC 1; : : : ;g .
Thus, CFK1.K/' S�.1; a� 1; : : : ; 1; a� 1; rnC1; bnC1; : : : ; rg; bg/, where the pair
.1; a� 1/ repeats n D n.S/ times. Denote by x0; : : : ;xg the Maslov grading zero
generators of the staircase for CFK1.K/. Similarly, denote by y1; : : : ;yg its Maslov
grading one generators.

Consider the half-space C
 of the .A; j / plane defined by 1=a �AC .1�1=a/ � j � 
 .
We claim that for 
 D ‡C .K/D �2 �‡2=a.K/D �.K/=a the only Maslov grading
zero generators contained in C
 are x1; : : : ;xn . For this purpose define

E.xi/D 1=a �A.xi/C .1� 1=a/ � j .xi/:

Obviously E.xi/ � 
 if and only if xi is in C
 . A quick computation reveals that
E.xi/D 
 for i D 1; : : : ; n and consequently that x1; : : : ;xn are actually contained
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in the boundary line of C
 . We claim that E.xi/ > 
 for any i > n. For k � 1 we
have that

E.xnCk/DE.xn/�
1

a

kX
iD1

bnCi C

�
1�

1

a

� kX
iD1

rnCi

D 
 C
1

a

�
�

kX
iD1

bnCi C .a� 1/

kX
iD1

rnCi

�
:

On the other hand,

.a� 1/

kX
iD1

rnCi � k � .a� 1/ >

kX
iD1

bnCi ;

proving that E.xnCk/� 
 C 1=a � .something positive/ > 
 , and we are done.

Since the only generators with Maslov grading zero in C
 are x1; : : : ;xn , we conclude
that C
 \fA� xC
 g contains a cycle generating H0.CFK1.K// provided xC
 �

minfA.x1/; : : : ;A.xn/g D g� n.a� 1/. Thus, �C .K/C 
 D g� n.a� 1/. Plugging
in 
 D 1=a � �.K/, g D �.K/ and nD n.S/, the claim follows.

Proof of Theorem 1.1 Using the skein relation at a negative crossing we find that the
symmetrized Alexander polynomial �q.t/ of a P .�2; 3; q/ pretzel knot (q � 7 odd)
is given by �q.t/D .t � 1C t�1/�2;q.t/C .t

1=2� t�1=2/�2;qC3.t/, where �2;p.t/

denotes the Alexander polynomial of the .2;p/ torus link. Since P .�2; 3; q/ is an
L–space knot, this leads to the conclusion that

CFK1.P .�2; 3; q//' S�.1; 2; 1; 1; : : : ; 1; 1; 2; 1/;

from where one computes �.P .�2; 3; q//D 1
2
.qC3/, and �C .P .�2; 3; q//D 1

3
.q�3/

for C D
˚

1
3
�AC 2

3
�j �0

	
. Notice that ‡P.�2;3;q/.t/D�2�‡t .S�.1; 2; 1; : : : ; 1; 2; 1//

has its only singularities at t D 2
3
; 1; 4

3
.

Suppose by contradiction that, for some q � 7 odd, the pretzel knot P .�2; 3; q/ is
concordant to a sum of algebraic knots K1 # � � �# Km . For i D 1; : : : ;m let .Zi ; 0/ be
a plane curve singularity with knot Ki . Denote by Si the semigroup of .Zi ; 0/ and
by ai its Puiseaux exponent. According to Wang [25], the Ozsváth–Stipsicz–Szabó
upsilon invariant ‡K .t/ of an algebraic knot has its first singularity at t D 2=a, where
a denotes its Puiseaux exponent. Since ‡P.�2;3;q/.t/D‡#i Ki

.t/D
P

i ‡Ki
.t/, and

�‡ 0
Ki
.t/� 0, this leads to the conclusion that either ai D 3 or ai D 2.

Notice that, as a consequence of Theorem 7.1, if K D ..Tp;q/p1;q1
: : : /pn;qn

is the
knot of a cuspidal plane curve singularity .Z; 0/ with Puiseaux exponent a then
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aD p � .p1 : : :pn/. Since for every i the Puiseaux exponent of Ki is either 3 or 2,
we conclude that Ki is either a .3;p/ torus knot, or a .2; k/ torus knot.

An argument along the lines of [10, Theorem 6.2] reveals that �C .K1 # � � � # Km/D

�C .K1/C � � �C �C .Km/. A direct computation shows that, for the .2; 2kC 1/ torus
knot, �C D

2
3
� k . Thus, as a consequence of (5) we have that

�C .P .�2; 3; q//D �C .K1 # � � � # Km/D
2

3

X
i

�.Ki/� 2
X

j

n.Sj /;

where the second sum is extended only to the .3;p/ torus knot summands. Plugging inP
i �.Ki/D �.K1 # � � � # Km/D �.P .�2; 3; q//D 1

2
.qC 3/ and �C .P .�2; 3; q//D

1
3
.q�3/, we get that �2D�2

P
j n.Sj / and consequently that K1 # � � �#Km is either

of the form T3;4 # J or T3;5 # J, where J is a sum of .2; n/ torus knots and hence
alternating. This leads to a contradiction since a knot of this form has � D�1

2
� while

for a pretzel knot of the form P .�2; 3; q/ we have 1
2
.qC3/D � ¤�1

2
� D 1

2
.qC1/.
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