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On rational homological stability for block automorphisms
of connected sums of products of spheres

MATTHIAS GREY

We show rational homological stability for the classifying spaces of the monoid of ho-
motopy self-equivalences and the block diffeomorphism group of iterated connected
sums of products of spheres. The spheres can have different dimensions, but need to
satisfy a certain connectivity assumption. The main theorems of this paper extend
homological stability results for automorphism spaces of connected sums of products
of spheres of the same dimension by Berglund and Madsen.

55P62, 57S05

1 Introduction

Let M be a compact manifold with boundary with a chosen basepoint on the boundary.
Denote by map�.M;M / the space of pointed maps with the compact-open topology.
Denote by map@.M;M / the subspace of maps fixing the boundary pointwise. We
denote by aut@.M / the submonoid of homotopy self-equivalences fixing the boundary
pointwise.

The first object we study in this paper is the rational homology of the classifying space
Baut@.M /. More precisely, we show that the topological monoid aut@.M / satisfies
rational homological stability for certain families of manifolds, ie that the rational
homology of its classifying space is independent of the manifold in the family in a
certain range. For example, for the g–fold connected sum

Ng D

�
#g.S

p
�Sq/

�
X int.DpCq/; where 3� p < q < 2p� 1;

we show that Hi.Baut@.Ng/IQ/ is independent of g for g > 2i C 2. Moreover we
show that Hi.Baut@.M # Ng/IQ/ is independent of g in the same range, where M

is some other connected sum of products of spheres. To make this statement precise,
we introduce the following notation. Let I be a finite indexing set for pairs of positive
natural numbers pi and qi , and let n be a positive natural number such that 3� pi �

qi < 2pi�1 and piCqi D n for all i 2 I. Note that this implies that necessarily n� 6.
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We define a smooth n–dimensional manifold with boundary diffeomorphic to Sn�1 ,

NI D

�
#i2I .S

pi �Sqi /
�
X int.Dn/;

and we assume a basepoint chosen on the boundary.

For a given p 2N we define the “generalized genus” as

gp D

�1
2

rank.Hp.NI // if 2p D n;

rank.Hp.NI // otherwiseI

ie gp is the number of Sp �Sq summands of NI , where q D n�p . In other words
we see NI as the connected sum

NI D

�
#i2fj2I jpj¤pg.S

pi �Sqi /
�

#
�
#gp

.Sp
�Sq/

�
X intDn:

Write

V p;q
D Sp

�Sq
X int.Dn

1 tDn
2/ for 3� p � q < 2p� 1 and pC q D n:

We define a new manifold

N 0I DNI [@1
V p;q;

by identifying one boundary component of V p;q with @NI . Note that N 0
I

is canonically
diffeomorphic to the manifold NI 0 with I 0 D I [ fi 0g, where pi0 D p and qi0 D q .
Using this, we define the stabilization map

� W aut@.NI /! aut@.NI [@1
V p;q/

Š
�! aut@.NI 0/;

by extending a self-map of NI by the identity on V p;q . In this paper we study the
induced map on homology of the classifying spaces

��W H�.Baut@.NI /IQ/!H�.Baut@.NI 0/IQ/:

Theorem A The map

Hi.Baut@.NI /IQ/!Hi.Baut@.NI 0/IQ/

induced by the stabilization map with respect to V p;q , where 3� p � q < 2p� 1, is
an isomorphism for gp > 2i C 2 when 2p ¤ n and gp > 2i C 4 if 2p D n and an
epimorphism for gp � 2i C 2, respectively gp � 2i C 4, unless nD 2d with d ¤ 3; 7

odd, and gd D 1.
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In an earlier version of this paper the last condition of the theorem was erroneously not
present. The reason the latter is needed is Lemma 3.4, which implies that the rational
cohomology of the homotopy classes of aut@.NI / is trivial. This is not true for Sd�Sd

when d is odd and d ¤ 3; 7. We thank Manuel Krannich for pointing this out to us.

The block diffeomorphism group eDiff@.X / is the realization of the �–group, ie a sim-
plicial group without degeneracies, with k–simplices, face-preserving diffeomorphisms

'W �k
�X !�k

�X

such that ' is the identity on a neighborhood of �k � @X. We map a k–simplex ' to
the k–simplex in eDiff@.NI 0/

�k
� .NI [@1

V p;q/!�k
� .NI [@1

V p;q/

given by ' on �k �NI and the identity on �k � V p;q , where we use the fact that
NI 0 ŠNI [@1

V p;q . This induces the stabilization map B eDiff@.NI /!B eDiff@.NI 0/.
Similarly we can define the classifying spaces of the monoid of block homotopy self-
equivalences Bfaut@.NI /, the group of block homeomorphisms BeTop@.NI / and the
group of block PL–homeomorphisms BfPL@.NI /.

Theorem B The map

Hi.BeDiff@.NI /IQ/!Hi.BeDiff@.NI 0/IQ/

induced by the stabilization map with respect to V p;q , where 3� p � q < 2p� 1, is
an isomorphism for gp > 2i C 2 when 2p ¤ n and gp > 2i C 4 if 2p D n and an
epimorphism for gp � 2i C 2, respectively gp � 2i C 4, unless nD 2d with d ¤ 3; 7

odd, and gd D 1.

Remark 1.1 Since Bfaut@.NI /'Baut@.NI /, Theorem A also holds for the classify-
ing space of block homotopy automorphisms. Moreover note that the classifying spaces
of the universal covers B eDiff@.NI /h1i, BeTop@.NI /h1i and BfPL@.NI /h1i have the
same rational homology groups. This follows from the fact that the spaces G=O, G=PL
and G=Top occurring in the surgery exact sequence to calculate the normal invariants
are rationally homotopy equivalent and that the weak equivalence (15) also holds for
Top and PL. For Theorem B to also hold for block PL–homeomorphisms one would
need a statement about the mapping class groups like Proposition 5.3(2), ie more
knowledge about the PL–isotopy classes of PL–homeomorphisms.
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The argument is based on work of Berglund and Madsen [4; 5], where homological
stability for the (block) automorphism spaces of the manifolds #g.S

d�Sd /Xint.D2d /

is shown. Berglund and Madsen moreover determine the stable cohomology of the
classifying spaces of the monoid of homotopy automorphisms and the block diffeomor-
phism group.

Outline of the argument The main idea of the proof is to consider the universal
covering

Baut@.NI /h1i ! Baut@.NI /

or rather the universal covering spectral sequence with E2–page

Hs

�
�1.Baut@.NI //IHt .Baut@.NI /h1iIQ/

�
)HsCt .Baut@.NI /IQ/:

If we can show that the stabilization map induces isomorphisms for large generalized
genus gp in a range of s and t , then the spectral sequence comparison theorem implies
homological stability for the monoid of homotopy automorphisms. So we have reduced
the problem to showing homological stability for the groups �1.Baut@.NI // with
certain twisted coefficients.

The first step is to determine the group of homotopy classes of homotopy automorphisms
(Section 5), or rather the quotient acting nontrivially on the homology of the universal
covering. More precisely, we determine the image and kernel of the “reduced homology”
map

zH W �0.aut@.NI //! Aut. zH�.NI //

to the automorphisms of the reduced homology as a graded group. For the manifolds NI

the kernel is finite. The connectivity assumption 3� pi � qi < 2pi � 1 is necessary
here to get the isomorphism (6) in the proof of Proposition 5.1. The image which we
call �I � Aut. zH�.NI // is the subgroup respecting the intersection form and when the
dimension of NI is even, a certain tangential invariant. In particular we show that
elements in the kernel of zH� act trivially on Ht .Baut@.NI /h1iIQ/. Thus we only
have to study the groups �I .

In Section 3 we review hyperbolic modules and give a slight generalization in order
to describe the �I as automorphisms of an object with underlying graded Z–module
zH�.NI /.

In Section 4 we use homological stability results by van der Kallen and Charney to
show a homological stability result for the groups �I with certain twisted coefficient
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systems of “finite degree”. In Section 6 we review results of Berglund and Madsen in
order to show that the homology groups Ht .Baut@.NI /h1iIQ/ are in fact a twisted
coefficient system satisfying homological stability for the �I . A crucial tool for showing
twisted homological stability are Schur multifunctors (defined in Section 2), which
we use to determine the degree of the coefficient systems. In fact, developing the
Schur multifunctors as a tool to handle the different degrees coming from the homology
zH�.NI / was one of the main technical obstacles in generalizing Berglund and Madsen’s

result.

To show the homological stability for the block diffeomorphism groups, we consider
the homotopy fibration

aut@.NI /=eDiff@.NI /! BeDiff@.NI /! Baut@.NI /:

We can determine the homology of a component of the homotopy fiber using surgery
theoretic methods applied by Berglund and Madsen, which suffices to show homological
stability using similar arguments as for the monoid of homotopy automorphisms.

Future research The most interesting question is if it is possible to determine the
stable (rational) cohomology of Baut@.NI / and B eDiff@.NI /. The argument by
Berglund and Madsen [5] to calculate the stable cohomology for the manifolds Wg D

#g.S
d � Sd / X int.D2d / relies on Galatius and Randal-Williams [12], where the

stable cohomology of the moduli space of many even-dimensional smooth manifolds
is determined. More precisely Berglund and Madsen show that the universal covering
spectral sequence for the classifying space of the monoid of homotopy automorphisms
collapses at the E2–page

(1) H�
�
�1.Baut@.Wg//IH

�.Baut@.Wg/h1iIQ/
�

in the stable range. Using that �1.Baut@.Wg// is commensurable with a known
arithmetic group �g and results of Borel [6; 7] on the stable real cohomology of
arithmetic groups, they conclude that

H�.Baut@.Wg/IQ/ŠH�.�gIQ/˝H�.Baut@.Wg/h1iIQ//

in the stable range. The cohomology of �g in the stable range was calculated explicitly
by Borel. Berlung and Madsen link H�.Baut@.Wg/h1iIQ// via certain derivation
Lie algebras and Kontsevich’s graph complexes to the cohomology of free groups
using work of Conant and Vogtmann [9]. They use a similar approach to determine
the stable rational cohomology of B eDiff@.Wg/. There is not an analogue of [12]
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for odd-dimensional manifolds yet, but the homological stability results of Galatius
and Randal-Williams [13] have been generalized to odd-dimensional manifolds; see
Perlmutter [22; 23]. One could hope that the calculation of the stable cohomology
in [5] generalizes to other even-dimensional manifolds, such as�

#f .Sd�1
�SdC1/

�
#
�
#g.S

d
�Sd /

�
X int.D2d /;

especially since Borel’s results are also applicable to the mapping class groups con-
sidered in this paper. It is however an open question if the analogue of (1) collapses.
Using [12] to calculate the stable cohomology of the moduli spaces of even-dimensional
manifolds NI explicitly could help in answering this question.

Note that the manifolds NI are highly connected in the sense that they are .m�1/–
connected n–manifolds, where n� 3m�2. In fact every closed highly connected odd-
dimensional manifold M is rationally homotopy equivalent to a manifold NI[Sn�1 Dn

(see Proposition 6.1). This does however not imply homological stability starting with
an arbitrary highly connected odd-dimensional manifold, since we do not have a
twisted homological stability result for their mapping class groups. In general we
do not know the image of zH .�/ in Aut

�
zH�.M X int.D//

�
. This raises the problem

of calculating the (homotopy) mapping class groups for arbitrary highly connected
manifolds. Another possible approach to show homological stability with an arbitrary
starting manifold could be to show twisted versions of the algebraic homological
stability results in [13; 22].

Another problem is to determine the PL–isotopy classes of PL–homeomorphisms for
the manifolds NI . As already pointed out in Remark 1.1 this would yield a version
of Theorem B for BeTop@.NI / and BfPL@.NI /. As above, determining PL–isotopy
classes of PL–homeomorphisms for general highly connected manifolds might lead to
a version of Theorem B with more general starting manifolds.

Another direction for future research is to weaken the connectivity assumption in
Theorems A and B. In this situation the kernel of zH W �0.aut@.NI //! Aut. zH�.NI //

might be rationally nontrivial, because we can not identify ŒNI ;NI �� with the endo-
morphisms of zH�.NI / as we do in (6) in the proof of Proposition 5.1. In particular this
kernel might act nontrivially on H�.Baut@.NI /h1iIQ/. This could lower the stability
range or even make it impossible to show homological stability with similar methods,
because we have to replace the isomorphism (14), which is the first step in showing
Theorem A, by the use of a Lyndon spectral sequence.
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2 Polynomial functors and Schur multifunctors

We start by recalling the definition of polynomial functors in the sense of [11, Section 9]
or rather slightly modified as in [10, Section 3]. Let T W A!B be a (not necessarily ad-
ditive) functor between abelian categories. The first cross-effect functor is defined to be

T 1.X /D ker.T .X /! T .0//;

where X! 0 is the natural map to the zero object in A. For k > 1, the k th cross-effect
functor

T k
W Ak

! B

is uniquely defined up to isomorphism given T l for l < k by the properties:

(1) T k.A1; : : : ;Ak/D T .0/ if Ai D 0 for some i .

(2) There is a natural isomorphism

T .A1˚ � � �˚Ak/Š T .0/˚
M
fi1;:::;ir g

T r .Ai1
; : : : ;Air

/;

where the sum runs over all nonempty subsets fi1; : : : ; ir g � f1; : : : ; kg.

Definition 2.1 A functor T is polynomial of degree � k if T l is the constant zero
functor for l > k .

An immediate consequence is that a functor is of degree � 0 if and only if it is constant.

The higher cross-effects can be defined using deviations. We can define an associative
and distributive composition > on the “integral group ring” of T .X / 2 B by extending
a>bD ab�a�b for a; b 2 T .A/. Given a map T .f /W T .A/! T .B/ we get a new
map from T .A/˚T .A/ defined by

.a; b/ 7! T .f /.a> b/D T .f /.ab/�T .f /.a/�T .f /.b/;
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which we call the deviation of T .f /. The k–fold deviation of k maps

T .f1/; : : : ;T .fk/W T .A/! T .B/

is the map
T .f1> � � � >fk/W T .A/! T .B/;

given by

T .f1> � � � >fk/D T .0/˚
M
fi1;:::;ir g

.�1/k�r T .fi1
; : : : ; fir

/;

where the sum runs over all nonempty subsets fi1; : : : ; ir g � f1; : : : ; kg and 0 denotes
the canonical map A!0!B . Setting ADA1˚� � �˚Ak and denoting by �i W A!Ai

the projections and by �i W Ai !A the inclusions, the k th cross-effect functor is given
on objects by

T k.A1; : : : ;Ak/D Image.T .�1 ı�1> � � � > �k ı�k//:

The following properties of polynomial functors follow directly from the definition:

Proposition 2.2 (see eg [10]) (1) An additive functor is of degree � 1.

(2) The composition of functors of degrees � k and � l is a functor of degree � kl .

(3) Let T W A! B and RW C ! B be of degrees � k and � l , respectively. The
levelwise sum

T ˚RW A� C! B

is polynomial of degree �maxfk; lg

Example Let Mod.Z/ be the category of finitely generated Z–modules. An example
of a degree � k functor is the k–fold tensor productO

W Mod.Z/k !Mod.Z/; .A1; : : : ;Ak/ 7!
O

i

Ai :

Schur functors give examples of polynomial functors. Note that the following defini-
tions also make sense for general commutative rings, but we are going to restrict our
presentation to the category of graded rational vector spaces Vect�.Q/. Schur functors
are treated for example in [20]. We could not find any literature on Schur multifunctors
and hence state the facts we need here.

Let M DM .n/ 2Vect�.Q/ for n� 0 be a sequence of QŒ†n�–modules. We refer to
them as †n–modules but implicitly use the QŒ†n�–modules structure; in particular ˝†n

refers to the tensor product over QŒ†n�. The Schur functor given by M is defined to

Algebraic & Geometric Topology, Volume 19 (2019)



On rational homological stability for automorphisms of sums of products of spheres 3367

be the endofunctor of Vect�.Q/ induced by

M .V /D
M

k

M .k/˝†k
V ˝k for all V 2 Vect�.Q/;

where V ˝k is the left †k–module with action induced by the permutation of the factors
by the inverse (with sign according to the Koszul sign convention). Note that M .0/

is just a constant summand. A Schur functor M with M .l/ trivial for l > k is a
polynomial functor of degree � k .

Let � D .n1; : : : ; nl/ with n1; : : : ; nl � 0 be a multiindex. Throughout this article
we will assume all multiindices to have nonnegative entries. We use the following
conventions:

j�j D
Pl

iD1 ni ;

`.�/D l;

�C �D .m1C n1; : : : ;ml C nl/ for �D .m1; : : : ;ml/;

.Vi/
˝�
D V

˝n1

1
˝ � � �˝V

˝nl

l
; where .Vi/ 2 .Vect�.Q//l ;

†� D†n1
� � � � �†nl

:

Consider a sequence of QŒ†��–modules N DN .�/ 2 Vect�.Q/ with `.�/D l . As
before, we refer to them as †�–modules. We define the Schur multifunctor given
by N on objects by

N .V1; : : : ;Vl/D
M
`.�/Dl

N .�/˝†� .Vi/
˝� for all .Vi/ 2 .Vect�.Q//l :

Similarly a Schur multifunctor N is a polynomial of degree � k if N .�/ is trivial
for j�j> k .

Example Consider Schur functors Ni W Vect�.Q/! Vect�.Q/ for i D 1; : : : ; l . The
tensor product O

Ni W Vect�.Q/l ! Vect�.Q/

is a Schur multifunctor with
�N

Ni

�
.�/D

N
Ni.ni/.

We define the tensor product of M DM .�/ and N DN .�/ as

M ˝N .�/ WD
M

�0C�0D�

Ind†�
†�0�†�0

M .�0/˝N .�0/:

The Schur functor defined by this tensor product is indeed (up to natural isomorphism)
the levelwise tensor product of the two functors, as we see by the isomorphisms for
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�0C �0 D � with `.�0/D `.�0/D `.�/:

.Ind†�
†�0�†�0

M .�0/˝N .�0//˝†� .Vi/
˝�

D
�
M .�0/˝N .�0/˝†�0�†�0 QŒ†� �

�
˝†� .Vi/

˝�

Š
�
M .�0/˝N .�0/

�
˝†�0�†�0

�
.Vi/

˝�0
˝ .Vi/

˝�0
�

Š
�
M .�0/˝†�0 .Vi/

˝�0
�
˝
�
N .�0/˝†�0 .Vi/

˝�0
�
:

The tensor powers of an N D N .�/ are (up to natural isomorphism) explicitly
described by

(2) N ˝r .�/D
M

Ind†�
†�1
�����†�r

N .�1/˝ � � �˝N .�r /;

where the sum runs over all r–tuples .�1; : : : ; �r / with `.�i/D l such that
Pr

iD1 �iD� .

Now consider a Schur functor M DM .m/ and a Schur multifunctor N DN .�/.
The composition is a Schur multifunctor isomorphic to the Schur multifunctor given
by

(3) .M ıN /.�/D
M

r

M .r/˝†r

M
Ind†�

†�1
�����†�r

N .�1/˝ � � �˝N .�r /;

where the second sum runs over all r–tuples .�1; : : : ; �r / with `.�i/ D l such thatPr
iD1 �i D � . The action of †r is by permuting the tuples .�1; : : : ; �r / by the inverse.

Indeed as we check using (2):

.M ıN /.Vi/

D

M
r

M .r/˝†r
N .Vi/

˝r
Š

M
r

M .r/˝†r
N ˝r .Vi/

Š

M
r;�

M .r/˝†r

�
N ˝r .�/˝†� .Vi/

˝�
�

Š

M
r;�

M .r/˝†r

� M
Pr

iD1 �iD�

Ind†�
†�1
�����†�r

N .�1/˝ � � �˝N .�r /˝†�.Vi/
˝�

�

Š

M
�

M
r

M .r/˝†r

� M
Pr

iD1 �iD�

Ind†�
†�1
�����†�r

N .�1/˝ � � �˝N .�r /˝†�.Vi/
˝�

�
:

Remark 2.3 We will later use Schur (multi)functors with domain the category of
rational vector spaces — just consider them as graded rational vector spaces concentrated
in degree 0.
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3 Automorphisms of hyperbolic modules over the integers

In this section we review hyperbolic modules in the sense of [1] in the special case
with ground ring the integers. Fix a �2 fC1;�1g. Let ƒ�Z be an additive subgroup,
called the form parameter, such that

(4) fz��z j z 2 Zg �ƒ� fz 2 Z j z D��zg:

Definition 3.1 [1] A ƒ–quadratic module is a pair .M; �/, where M is a Z–module
and � is a bilinear form, ie a homomorphism

�W M ˝M ! Z:

To a ƒ–quadratic module .M; �/ we associate a ƒ–quadratic form

q�W M ! Z=ƒ; q�.x/D Œ�.x;x/�;

and a �–symmetric bilinear form

h�;�i�W M ˝M ! Z;

defined by hx;yi� D �.x;y/C ��.y;x/. (Such �–symmetric bilinear forms are
called even.) We call a finitely generated projective ƒ–quadratic module .M; �/

nondegenerate if the map

M !M �; x 7! hx;�i�;

is an isomorphism.

Denote by Q�.Z; ƒ/ the category of nondegenerate ƒ–quadratic modules with mor-
phisms linear maps respecting the associated �–symmetric bilinear form and the
associated ƒ–quadratic form.

Given a finitely generated Z–module M, we define a nondegenerate ƒ–quadratic
module H.M /D .M˚M �; �M /, where �M ..x; f /; .y;g//Df .y/. We call H.M /

the hyperbolic module on M. A ƒ–quadratic module is called hyperbolic if it is
isomorphic to H.N / for some finitely generated Z–module N. Let feig be the
standard basis for Zg and ffig the dual basis of .Zg/� . Using this basis we consider
the automorphisms of the ƒ–quadratic module H.Zg/ as a subgroup of Gl2g.Z/. The
subgroups can be described as follows:
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Proposition 3.2 [1, Corollary 3.2] The automorphisms of H.Zg/ in Q�.Z; ƒ/ are
isomorphic to the subgroup of Gl2g.Z/ consisting of matrices

�
A
C

B
D

�
such that

DT AC�BT C D 1;

DT BC�BT D D 0;

AtC C�C T AD 0;

C T A and DT B have diagonal entries in ƒ.

Note that if �D 1 we necessarily have ƒD 0. When �D�1, condition (4) implies
that 2Z�ƒ� Z, and thus we have the two cases ƒD Z and ƒD 2Z. Thus we can
list the automorphisms of hyperbolic modules:

(1) If �D 1 and ƒD 0, then Aut.H.Zg//DOg;g.Z/ in Q1.Z; 0/.

(2) If �D�1 and ƒD Z, then Aut.H.Zg//D Sp2g.Z/ in Q�1.Z;Z/.

(3) If � D �1 and ƒ D 2Z, then Aut.H.Zg// in Q�1.Z; 2Z/ is the subgroup
of Sp2g.Z/ described as��

A

C

B

D

�
2 Sp2g.Z/

ˇ̌̌
C T A and DT B have even entries on the diagonal

�
:

Let N be a .d�1/–connected 2d–manifold. Wall [29] has shown that the automor-
phisms of the homology realized by diffeomorphisms are the automorphisms of a
ƒ–quadratic module with underlying Z–module Hd .N /. Later we show a similar
statement for connected sums of products of spheres. For this we need a slight variation
of ƒ–quadratic modules.

Let nD 2d 2N be even and ƒ� Z be an additive subgroup such that

fz� .�1/dz j z 2 Zg �ƒ� fz 2 Z j z D�.�1/dzg:

When n 2 N is odd we set ƒ to be the trivial group. It does not play a role in the
following definition, but we keep the notion for convenience.

Definition 3.3 A graded ƒ–quadratic module is a pair .M; �/, where M is a graded
Z–module and � a bilinear n–pairing, ie a degree 0 homomorphism

�W M ˝M ! ZŒn�:
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We associate to .M; �/ a symmetric bilinear n–pairing

h�;�i�W M ˝M ! ZŒn�;

defined by hx;yi� D �.x;y/C .�1/jxjjyj�.y;x/. When n D 2d , we associate a
ƒ–quadratic form

q�W Md ! Z=ƒ; q�.x/D Œ�.x;x/�:

We call a finitely generated projective graded ƒ–quadratic module .M; �/ nondegen-
erate if the map

M ! Hom.M;ZŒn�/; x 7! hx;�i�;

is an isomorphism.

For n even, we define Qn
�.Z; ƒ/ to be the category whose objects are nondegenerate

graded ƒ–quadratic modules .M; �/, where .M; �/ is finitely generated as a Z–
module and the morphisms respect q� and h�;�i� .

For n odd, we define Qn
�.Z; ƒ/ to be the category whose objects are nondegenerate

graded ƒ–quadratic modules .M; �/, where .M; �/ is finitely generated as a Z–
module and the morphisms respect h�;�i� .

Let Qn
C.Z; ƒ/ be the full subcategory with objects concentrated in positive degrees

and hence necessarily concentrated in degrees 1; : : : ; n� 1.

For 0< pi � qi with i 2 I such that pi C qi D n and jI j finite, we define a graded
ƒ–quadratic module HI by

Zg1Œ1�˚� � �˚Zgbn=2c

hj
n

2

ki
˚HomZ

�
Zgbn=2c

hj
n

2

ki
;ZŒn�

�̊
� � �˚HomZ.Z

g1Œ1�;ZŒn�/;

where
gk D jfi 2 I W pi D kgj:

Denote by faig the standard basis for Zg1 Œ1�˚ � � �˚Zgbn=2c Œbn=2c� and by fbig the
dual basis. The pairing �HI

D �I is then given by

�I .ai ; bj /D bj .ai/D ıi;j and �I .ai ; aj /D �I .bi ; bj /D 0:

Denote Aut.HI / in Qn
C.Z; ƒ/ by �I . We get the following cases:

(1) When n is odd we get

�I Š

bn=2cY
kD1

Glgk
.Z/:
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(2) When nD 2d and d is even we necessarily have ƒD 0 and

�I ŠOgd ;gd
.Z/�

n=2�1Y
kD1

Glgk
.Z/:

(3) Similarly for n D 2d with d odd the only cases are ƒ D Z; 2Z and we just
get a product of general linear groups and Sp2gd

.Z/, respectively the subgroup
described in the list of automorphism groups in item (3) on page 3370.

Berglund and Madsen call a group G rationally perfect if H 1.GIV / D 0 for any
finite-dimensional rational G–representation V . We later need that the automorphism
groups of graded hyperbolic modules are rationally perfect.

Lemma 3.4 The groups �I are rationally perfect, unless they have a summand iso-
morphic to Aut.H.Z// in Q�1.Z; 2Z/.

Remark 3.5 The condition comes from the fact that the rational cohomology of
Aut.H.Z// in Q�1.Z; 2Z/ is nontrivial. As described in .3/ above this is only the
case when nD 2d with d odd, �D�1, ƒD 2Z and gd D 1.

Proof We begin by observing that being rationally perfect is stable under group
extensions; ie if in a group extension

0!K!G! C ! 0

K and C are rationally perfect, then so is G. This follows from the Lyndon spectral
sequence, since H 1.C IH 0.KIV // and H 0.C IH 1.KIV // are trivial for any finite-
dimensional rational G–representation V . In particular products of rationally perfect
groups are rationally perfect. Moreover we observe that finite groups are rationally
perfect.

It follows from Borel’s work on the cohomology of arithmetic groups that the auto-
morphism groups Aut.H.Zg// of the hyperbolic modules H.Zg/ in Q�.Z; ƒ/ are
rationally perfect for g � 2 (see eg [5, Theorem A.1]).

In [2] it is shown that Slg.Z/ is rationally perfect for g � 3. Since Slg.Z/ is an
index-two normal subgroup of Glg.Z/, this now also implies that Glg.Z/ is rationally
perfect for g � 3.

Recall that the �I are products of Aut.H.Zk// and instances of Gll.Z/. Since Gl1.Z/
is finite and hence rationally perfect, to finish the proof we have to show that Aut.H.Z//
and Gl2.Z/ are rationally perfect.
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The group Sl2.Z/ is an extension

0! C2! Sl2.Z/! C2 �C3! 0;

and C2 �C3 can be seen to be rationally perfect using a Mayer–Vietoris argument.
Hence Sl2.Z/ and also Gl2.Z/ are rationally perfect.

The group Aut.H.Z// in Q�1.Z;Z/ is Sp2.Z/, which is isomorphic to Sl2.Z/.

Recall that for �D1, we necessarily have ƒD0 and Aut.H.Z//ŠO1;1.Z/ŠC2�C2

and hence we are done.

4 Van der Kallen’s and Charney’s homological stability
results

In this section we recall van der Kallen’s homological stability for general linear
groups and Charney’s homological stability for automorphisms of hyperbolic quadratic
modules. We combine them to homological stability for the �I defined above with
certain coefficient systems induced by polynomial functors.

Remark 4.1 Charney’s results hold for Dedekind domains with involutions and van
der Kallen’s for associative rings with finite stable range, but we restrict our presentation
to Z (with trivial involution).

We begin by reviewing the notion of coefficient systems as discussed in [10]. A coef-
ficient system for fGlg.Z/gg�1 is a sequence of Glg.Z/–modules f�ggg�1 together
with Glg.Z/–maps FgW �g ! I�.�gC1/, where I� denotes the restriction via the
upper inclusion I W Glg.Z/ ,! GlgC1.Z/. We denote the system by � and call the
maps Fg structure maps. A map of coefficient systems � and �0 is a collection
of Glg.Z/–maps f�ggg�1 such that they commute with the structure maps. The
levelwise kernels and cokernels are again coefficient systems with the obvious structure
maps. Denote by J W Glg.Z/! GlgC1.Z/ the lower inclusion map. For a coefficient
system � we define the shifted system †� by †�g WD J�.�gC1/ with structure
maps †Fg WD J�FgC1W J

�.�gC1/ ! I�J�.�gC2/. Denote by sg 2 Glg.Z/ the
element permuting the last two standard basis elements. We call a coefficient system
central if sgC2 acts trivially on the image of FgC1FgW �g ! �gC2 . Denote by
eg�1;g 2 Glg.Z/ the element sending all but the gth standard basis element to itself
and the gth , eg , to eg�1C eg . We call a central coefficient system strongly central
if egC1;gC2 acts trivially on the image of FgC1FgW �g! �gC2 .
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Let cg 2 Glg.Z/ .g > 1/ be the element sending the i th standard basis element to the
.iC1/st and the gth to the first.

Denote by �.cg/ the multiplication from the left by cg . Then the following holds:

Lemma 4.2 [10, Lemma 2.1] Let � be a central coefficient system. Then we have a
map of coefficient systems � W �!†� , defined by

�gW �g
Fg
�! I�.�gC1/

�.cgC2/
����! J�.�gC1/D†�g:

We say that a central coefficient system � splits if †� is isomorphic to �˚ coker.�/
via � . We then denote coker.�/ by �� . We now define the notion of degree of a
strongly central coefficient system � inductively. We say it has degree k < 0 if it is
constant, and for k � 0 we say that it has degree � k if †� splits and �� is a strongly
central coefficient system of degree k � 1.

Theorem 4.3 (van der Kallen [15, page 291]) Let � be a strongly central coefficient
system of degree � k . Then

Hi.Glg.Z/; �g/!Hi.GlgC1.Z/; �gC1/

is an isomorphism for g > 2i C kC 2 and an epimorphism for g � 2i C kC 2.

Denote by �g the standard representation of Glg.Z/ on Zg and by x�g the action by
the inverse transpose on Zg . Let A be an abelian category. Given a functor

T W Mod.Z/�Mod.Z/!A;

we define a coefficient system fT .�g; x�g/gg�1 with structure maps induced by the
standard inclusions and actions induced by �g and x�g .

Lemma 4.4 (compare [15, 5.5] and [10, Lemma 3.1]) If

T W Mod.Z/�Mod.Z/!A

is a polynomial functor of degree � k , then fT .�g; x�g/gg�1 is a strongly central
coefficient system of degree � k .

Denote now by Gg the automorphism group of H.Zg/ in Q�.Z; ƒ/. And denote
by e1; : : : ; eg the standard basis for Zg and by f1; : : : ; fg the dual basis of .Zg/� .
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We see Gg as a subgroup of Gl2g.Z/, by considering the elements of Gg as 2g�2g–
matrices acting on H.Zg/Š Z2g . We define the upper inclusion

I W Gg!GgC1;

�
A B

C D

�
7!

0BB@
A 0 B 0

0 1 0 1

C 0 D 0

0 1 0 1

1CCA ;
and similarly the lower inclusion J W Gg ! GgC1 . The definition of a coefficient
system is very similar to the one for Glg.Z/ and we only briefly summarize it. A
coefficient system for fGggg�1 is a sequence of Gg–modules f�ggg�1 together with
Gg–maps FgW �g ! I�.�gC1/. We denote a coefficient system again by � and let
maps of coefficient systems be as above. The shifted coefficient system †� is the
restriction via the lower inclusion as above. A coefficient system is called central
if cgC2 ı c2gC4 acts trivially on the image of FgC1FgW �g ! �gC2 . For a central
coefficient system we define the map of coefficient systems � W �!†� , by

�gW �g
Fg
�! I�.�gC1/

�.cgC2ıc2gC4/
���������! J�.�gC1/D†�g:

We call a central coefficient system � split if � is injective and †�Š �.�/˚ coker.�/.
For a central coefficient system we define the degree inductively: we say it has degree
k < 0 if it is constant, and for k � 0 we say that it has degree � k if †� splits and
��D coker.�/ is a strongly central coefficient system of degree � k � 1.

Theorem 4.5 (Charney [8, Theorem 4.3]) Let � be a central coefficient system of
degree � k . Then

Hi.Gg; �g/!Hi.GgC1; �gC1/

is an isomorphism for g > 2i C kC 4 and an epimorphism for g � 2i C kC 4.

Again we get a central coefficient system of degree � k by considering the standard
Gg–action �g;g on H.Zg/ŠZ2g induced by the inclusion Gg �Gl2g.Z/. Let A be
an abelian category. If

T W Mod.Z/!A

is a polynomial functor of degree � k , then fT .�g;g/gg�1 is a central coefficient
system of degree � k for fGggg�1 .

Now we combine the homological stability results above to a result for the groups �I

defined in the previous section.
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Denote by �I the standard representation of �I on .Zg1 ; : : : ;Z2gn=2 ; : : : ;Zgn�1/

when n is even and on .Zg1 ; : : : ;Zgn�1/ when n is odd induced by the inclusion
�I �

Qbn=2c
iD1

Glri
.Z/ with

rk D

�
2gk if k D 1

2
n;

gk if k < 1
2
n;

where gk D jfi 2 I W pi D kgj:

More explicitly, we assume that an automorphism

AD .A1; : : : ;Abn=2c/ 2 �I �

bn=2cY
iD1

Glri
.Z/;

acts by matrix multiplication of Ai on Zri for i � n=2 and by multiplication by the
inverse transpose of Ai on Zrn�i for i > n=2.

Given a functor to an abelian category T W Mod.Z/n�1 ! A, we get a �I –module
T .Zr1 ; : : : ;Zrn�1/ with the induced action. We denote this �I –module by T .�I /. For
a fixed p 2N such that 0< p � n=2, denote by �I 0 the automorphism group of HI 0 ,
where I 0 D I [fi 0g with pi0 D p and qi0 D n�p . We define the stabilization map

�p;n�pW Hi.�I ;T .�I //!Hi.�I 0 ;T .�I 0//

to be the map induced by the obvious upper inclusion Ip;qW �I ! �I 0 and T .Ip;q/.

Proposition 4.6 Let A be some abelian category, and let T W Mod.Z/n�1! A be a
polynomial functor of degree � k . The stabilization map

�p;n�pW Hi.�I ;T .�I //!Hi.�I 0 ;T .�I 0//

induces an isomorphism for gp > 2i C kC 2 when 2p ¤ n and gp > 2i C kC 4 if
2pD n and an epimorphism for gp � 2iCkC2, respectively gp � 2iCkC4, unless
nD 2d with d odd, �D�1, ƒD 2Z and gd D 1.

Proof Denote by �gp
the summand of �I �

Qbn=2c
iD1

Glri
.Z/ that sits in Glrp

.Z/.
Let � D Aut.HI /, where I D I X fi 2 I j pi D pg. Note that � � �gp

D �I and
�I 0 D �gpC1 �� , where �gpC1 is defined analogously to �gp

. Consider the functor

Ip;n�pW

�
Mod.Z/!Mod.Z/n�1 if 2p D n;

Mod.Z/�Mod.Z/!Mod.Z/n�1 otherwise;

defined by sending a module M to .Zg1 ; : : : ;M; : : : ;Zgn�1/, where the M sits at
the .n=2/th summand, and a pair .M;N / to .Zg1 ; : : : ;M; : : : ;N; : : : ;Zgn�1/, where
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the M sits at the pth summand and the N sits at the .n�p/th summand. This functor is
clearly additive and hence of degree � 1. This implies that the composition T ıIp;n�p

is of degree � k and we get a (strongly) central coefficient system of degree � k for

�gp
D

�
Ggp

if 2p D n;

Glgp
.Z/ otherwise:

This implies that the stabilization maps

Hi.�gp
;T ı In=2;n=2.�gp;gp

//!Hi.�gpC1;T ı In=2;n=2.�gpC1;gpC1//;

respectively

Hi.�gp
;T ı Ip;n�p.�gp

; x�gp
//!Hi.�gpC1;T ı Ip;n�p.�gpC1; x�gpC1//;

are isomorphisms, respectively epimorphisms, in the ranges in the statement of the
proposition. Observing that the T ıIn=2;n=2.�gp;gp

/, respectively T ıIp;n�p.�gp
; x�gp

/,
are precisely the restrictions of the �I –representation to the subgroup �gp

and using
the Lyndon spectral sequence

Hk

�
�I ;Hl.�gp

;T .�I //
�
)Hi.�I ;T .�I //;

the results follows by comparing spectral sequences.

5 On mapping class groups

Write
N DNI D

�
#i2I .S

pi �Sqi /
�
X int.Dn/;

where jI j<1, 3� pi � qi < 2pi � 1 and pi C qi D n for i 2 I.

Denote by Aut. zH�.NI // the automorphisms of the graded group zH�.NI /. In this
section we study the map

H�W �0 aut@.NI /! Aut. zH�.NI //:

In particular we are going to determine its image and show that the kernel is finite.

Denote by inclW @N ,! N the inclusion of the boundary. We observe that VI DW
i2I .S

pi _Sqi /�N is a deformation retract and denote by

j̨ W S
pj ,!

_
i2I

.Spi _Sqi / and ǰ W S
qj ,!

_
i2I

.Spi _Sqi /
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the inclusions. We consider incl as an element of �n�1

�W
i2I .S

pi _Sqi /
�

and we
observe that it is given by the sum of Whitehead products

P
i2I Œ˛i ; ˇi �. Denote by

h�;�iW H�.N /˝Hn��.N /! Z; x˝y 7! .PD�1.x/[PD�1.y//.ŒN; @N �/;

the intersection form, where PD�1
W H�.N /! H n��.N; @N / denotes the Poincaré

duality isomorphisms and we evaluate on the fundamental class ŒN; @N �. The f˛ig

and fˇig define a basis for zH�.N / via the Hurewicz homomorphism, which we denote
by faig, respectively fbig. Note that bi is dual to ai .

In the case nD 2d is even we need to recall a further piece of structure from Wall’s
classification of highly connected even-dimensional manifolds [29]. The elements
x 2 Hd .N / can be represented by embedded Sd . Denote by �x 2 �d�1.SO.d//
the clutching function of the normal bundle of this embedding. It is independent of
the choice of embedding, since homotopic embeddings are isotopic in this case. This
defines a function

qW Hd .N /! �d�1.SO.d//; x 7! Œ�x �:

Denote by �d the class of the identity in �d .S
d / and by

@W �d .S
d /! �d�1.SO.d//

the boundary map in the fibration SO.d/! SO.dC1/!Sd . The function q satisfies

hx;xi DHJq.x/ and q.xCy/D q.x/C q.y/Chx;yi@�d ;

where �d�1.SO.d// J
�! �2d�1.S

d / H
�! Z denote the J–homomorphism and the

Hopf invariant. There is also a purely homotopy theoretic description of Jq in
[16, Section 8].

Note that for ai ; bj 2 Hd .N /, we have q.ai/ D q.bj / D 0. Hence Image.q/ is
contained in the subgroup h@�d i generated by @�d . The J–homomorphism restricts to
an isomorphism

J jh@�d iW h@�d i ! J.h@�d i/Š

8̂<̂
:
hŒ�d ; �d �i

Š

H
�! 2Z if d is even;

0 if d D 1; 3; 7;

hŒ�d ; �d �i Š Z=2Z if d is odd and not 1; 3 or 7,

where the second isomorphism is induced by the Hopf invariant. Let

Aut. zH�.N /; h�;�i;Jq/ and Aut. zH�.N /; h�;�i; q/
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be the automorphisms of the reduced homology respecting the intersection form and
the function Jq (respectively q ). Note that

hx;yi D �.x;y/C .�1/jxjjyj�.y;x/;

where �.�;�/ is determined by

�.ai ; bj /D ıi;j and �.bi ; aj /D �.ai ; aj /D �.bi ; bj /D 0:

Now let

ƒD

8<:
0 if nD 2d and d is even,
Z if nD 2d and d is 3 or 7,
2Z if nD 2d and d is odd and not 3 or 7.

Moreover Jq D q� , where q� is the ƒ–quadratic form associated to �, where we
identify hŒ�d ; �d �i with Z and Z=2Z respectively. It suffices to check this for the
elements ai C bi , and for these Jq.ai C bi/D Œ�d ; �d � and q�.ai C bi/D 1. By the
discussion above we see that

Aut. zH�.N /; h�;�i; q/ŠAut. zH�.N /; h�;�i;Jq/Š �I DAut.HI / in Qn
�.Z; ƒ/:

For a representative f of Œf � 2 �0.aut@.N // it is clear that zH�.f / 2 �I . We are now
going to show that all elements of �I can be realized by a homotopy self-equivalence,
fixing the boundary pointwise.

Proposition 5.1 The group homomorphism

�0.aut@.N //
zH�
�! Aut. zH�.N /; h�;�i;Jq/

is surjective and has finite kernel.

Proof Compare [4, Proof of Theorem 2.10]. The cofibration inclW @N ,!N induces
a fibration

map@.N;N /!map�.N;N /!map�.@N;N /;

where map@.N;N / is the fiber over incl. Let map@.N;N / and map�.N;N / be based
at the identity. Restricting the total space to invertible elements, we also get the fibration

aut@.N /! aut�.N /!map�.@N;N /:
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We are going to analyze the long exact homotopy sequences

(5)

� � � // �1.map�.@N;N /; incl/ // �0.aut@.N // //

� _

��

�0.aut�.N // //

� _

��

Œ@N;N ��

� � � // �1.map�.@N;N /; incl/ // ŒN;N �@ // ŒN;N �� // Œ@N;N ��

We consider the monoid homomorphism

zH�W ŒN;N ��! End. zH�.N //

and show that it is onto and with finite kernel. Using the relative Hurewicz isomorphism,
it is easy to see that VI ,!

Q
i2I .S

pi � Sqi / is .2mini2I fpig�1/–connected and
hence more than maxi2I fqig–connected (note that we use the connectivity assumption
pi � qi < 2pi � 1 here). Thus we get a bijection

(6) ŒN;N �� Š ŒVI ;VI �� Š

�
VI ;

Y
i2I

.Spi �Sqi /

�
�

Š

Y
ŒSpi ;Spj �� �

Y
ŒSqi ;Sqj �� �

Y
ŒSqi ;Spj �� �

Y
ŒSpi ;Sqj ��;

where the products in the last line are over .i; j / 2 I � I . We write I D
S

l Il , where
Il D fi j pi D lg. The only nonfinite factors of the product above are

(7)
Y

l

Y
.i;j/2Il�Il

.ŒSpi ;Spj �� � ŒS
qi ;Sqj ��/:

We make the identification End. zH�.N // Š
Q

Matrl
.Z/, where rl D rank.Hl.N //,

using the basis faig [ fbig. Note that for l D n=2, a bi becomes a .rl=2Ci/th

basis element. Denote by ˛l
1
; : : : ; ˛l

rl
and ˇl

1
; : : : ; ˇl

rl
the inclusions S l ,! VI and

Sn�l ,! VI respectively. There is a multiplicative section of zH� ,

(8)
Y

Matrl
.Z/! ŒN;N ��; .M l/D .ml

i;j / 7! f.M l / D

bn=2c_
lD1

fM l ;

where fM l W
W

i2Il
Spi _Sqi ! VI is given by

fM l D

8̂̂<̂
:̂
Wrl

iD1

�Prl

jD1
ml

i;j˛
l
j _

Prl

jD1
mn�l

i;j ˇ
l
j

�
if l ¤ 1

2
n;Wrl =2

iD1

�Prl =2
jD1

ml
i;j˛

l
j C

Prl

jDrl =2C1
ml

i;jˇ
l
.j�rl =2/

�
_
Wrl

iDrl =2C1

�Prl =2
jD1

ml
i;j˛

l
j C

Prl

jDrl =2C1
ml

i;jˇ
l
.j�rl =2/

�
if l D 1

2
n:
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We observe that the image of this section is precisely the submonoid of ŒN;N �� corre-
sponding to the nonfinite factors (7). Hence we get that zH�W ŒN;N ��! End. zH�.N //

is surjective and has finite kernel. Restricting to the submonoids of invertible elements
this implies upon using the section (8) that �0.aut�.N //! Aut. zH�.N // is surjective
with finite kernel. The image of �0.aut@.N //! �0.aut�.N // consists of the elements
Œf � 2 �0.aut�.N // such that f ı incl' incl (we assume all homotopy equivalences in
this proof to be pointed). Since (8) restricts to a section Aut. zH�.N //! �0.aut�.N //

we get that the image of

zH�W �0.aut@.N //! Aut. zH�.N //

is given by the .M l/ such that f.M l / ı incl' incl. Using the Hilton–Milnor theorem
we make the identification

(9) �n�1.N /Š � ˚
M

l

�n�1

� _
i2Il

.Spi _Sqi /

�
;

where � is some subgroup of �n�1.N /. We observe that

f.M l / ı incl'
X
i2I

Œf.M l / ı˛i ; f.M l / ıˇi �'

bn=2cX
lD1

X
i2Il

ŒfM l ı˛l
i ; fM l ıˇl

i �;

ie that the action of f.M l / respects the summands of the identification (9). Thus it
suffices to check that fM l ı

P
i2Il

Œ˛l
i ; ˇ

l
i � '

P
i2Il

Œ˛l
i ; ˇ

l
i � for all l . We use that

left homotopy composition is distributive for suspensions [32, page 126], ie that
.xCy/ ı†z ' x ı†zCy ı†z . For l ¤ n=2 we calculate

fM l ı

rlX
iD1

Œ˛l
i ; ˇ

l
i �'

rlX
iD1

ŒfM l ı˛l
i ; fM l ıˇl

i �'
X
i;j ;k

Œml
i;j˛

l
j ;m

n�l
i;k ˇ

l
k �

'

X
i;j ;k

ml
i;j mn�l

i;k Œ˛
l
j ; ˇ

l
k �'

X
j ;k

..M l/T M n�l/j ;k Œ˛
l
j ; ˇ

l
k �:

This expression is homotopic to
Prl

iD1
Œ˛l

i ; ˇ
l
i � if

(10) .M l/T M n�l
D idMatrl

.Z/:

For l D n=2 we write

M l
D

�
Al Bl

C l Dl

�
:
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We calculate

fM l ı

rl =2X
iD1

Œ˛l
i ; ˇ

l
i �'

rl =2X
iD1

ŒfM l ı˛l
i ; fM l ıˇl

i �

'

rl =2X
iD1

� rl =2X
jD1

.al
i;j˛

l
j C bl

i;jˇ
l
j /;

rl =2X
kD1

.cl
i;k˛

l
k C d l

i;kˇ
l
k/

�

'

rl =2X
iD1

rl =2X
jD1

rl =2X
kD1

al
i;j d l

i;k Œ˛
l
j ; ˇ

l
k �C

rl =2X
iD1

rl =2X
jD1

rl =2X
kD1

bl
i;j cl

i;k Œˇ
l
j ; ˛

l
k �

C

rl =2X
iD1

rl =2X
jD1

rl =2X
kD1

al
i;j cl

i;k Œ˛
l
j ; ˛

l
k �C

rl =2X
iD1

rl =2X
jD1

rl =2X
kD1

bl
i;j d l

i;k Œˇ
l
j ; ˇ

l
k �

'

rl =2X
jD1

rl =2X
kD1

�
.Al/TDl

C .�1/n=2..C l/TBl/
�
j ;k
Œ˛l

j ; ˇ
l
k �

C

rl =2X
jD1

rl =2X
kD1

..Al/TC l/j ;k Œ˛
l
j ; ˛

l
k �C

rl =2X
jD1

rl =2X
kD1

..Bl/TDl/j ;k Œˇ
l
j ; ˇ

l
k �:

This expression is homotopic to
Prl =2

iD1
Œ˛l

i ; ˇ
l
i � if

.Al/T Dl
C .�1/n=2.C l/T Bl

D 1;

.Al/T C l
C .�1/n=2.C l/T Al

D 0;

.Bl/T Dl
C .�1/n=2.Dl/T Bl

D 0;

.Al/T C l and .Bl/T Dl have diagonal entries in ƒ,

where

ƒD

8<:
2Z if nD 2d and d is odd and not 3 or 7,
Z if nD 2d and d is 3 or 7,
0 if nD 2d and d is even.

The diagonal entries of .Al/T C l and .Bl/T Dl have to be in ƒ to kill the elements
Œ˛l

i ; ˛
l
i � and Œˇl

i ; ˇ
l
i �. These are exactly the conditions to be an automorphism of

H.Zgn=2/ in Q.�1/n=2

.Z; ƒ/. Combining this with the condition in (10) we see that
the image of zH� in Aut. zH�.N // is given by

�I �

bn=2cY
kD1

Glrk
.Z/:
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Thus we proved that

zH�W �0.aut@.N //! Aut. zH�.N /; h�;�i;Jq/

is surjective. To show that the kernel is finite it suffices to check that �0.aut@.N //!

�0.aut�.N // has finite kernel. This follows from the fact that

�1.incl�/W �1.aut�.N /; idN /˝Q! �1.map�.@N;N /; incl/˝Q

is surjective for the manifolds NI with 3 � pi � qi < 2pi � 1, as we will see in
Remark 6.7.

In fact it suffices to know �I for our purposes, since the action of elements of the
kernel of zH� by conjugation is trivial up to homotopy.

Lemma 5.2 Let f represent an element of the kernel of

zH�W �0.aut@.NI //! �I :

Then f �1 ıg ıf ' g for all g 2 aut@.NI /.

Proof Note that if Œf � is in the kernel of zH� then by exactness of (5) it is given by
an element @˛ , where ˛ 2 �1.map�.@NI ;NI /; incl/Š �n.NI /. We represent ˛ as a
map

˛.x; t/W @NI � I !NI such that ˛.x; 0/D ˛.x; 1/D id@NI
:

Choosing a collar neighborhood of @NI allows us to make the identification

NI
Š
�!NI [id@NI

@NI � I:

Now we represent f by the composite

NI
Š
�!NI [id@NI

@NI � I
idNI
[˛

����!NI :

We represent f �1 similarly using �˛ . If we now represent f �1 ı g ı f by the
composition

NI
Š
�!NI [id@NI

@NI � I
idNI
[˛

����!NI
Š
�!NI [id@NI

@NI � I

g[id@NI�I
�������!NI [id@NI

@NI � I
idNI
[�˛

�����!NI ;

ie consider ˛ and �˛ as having domain two iteratively attached closed cylinders and
see that it is homotopic to

NI
Š
�!NI [id@NI

@NI � I [id@NI
@NI � I

g[˛[�˛
�����!NI :
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This is homotopic (rel @NI ) to g , since

@NI � I [id@NI
@NI � I

˛[�˛
����!NI

is homotopic to the inclusion of @NI � I [id@NI
@NI � I as a collar.

Denote by Diff@.N / the group of self-diffeomorphisms of N fixing a collar neighbor-
hood of the boundary pointwise with the Whitney C1–topology. Let J W Diff@.N /!

aut@.N / be the inclusion. To show homological stability for the block diffeomorphism
group the following fact about the mapping class group suffices.

Proposition 5.3 .1/ The map zH�W �0.Diff@.N //!Aut. zH�.N /; h�;�i; q/ is sur-
jective.

.2/ The image of �0.J /W �0.Diff@.N //! �0.aut@.N // has finite index.

Proof The first part follows from [18] and [30, Lemma 17]. Kreck shows that all
elements of Aut. zHn=2.N /; h�;�i; q/ can be realized as self-diffeomorphisms of�

#gn=2
.Sn=2

�Sn=2/
�
X int.Dn/

fixing the boundary pointwise. Wall shows that for manifolds \g
.DqC1�Sp/, where

3 � p � q and \g
denotes the g–fold boundary connected sum, all automorphisms

of the homology are realized by diffeomorphisms. Hence it follows for manifolds
#gi

.Spi �Sqi /. Since we can assume that a diffeomorphism fixes a disk up to isotopy,
we get it in particular for

�
#gi

.Spi �Sqi /
�
X int.Dn/. Using the diffeomorphisms

above and extending them by the identity on the complement of the manifolds above
the claim follows. The second part follows from the commutative diagram

0 // �0.S Diff@.N // //

��

�0.Diff@.N //
zH�
//

�0.J /
��

Aut. zH�.N /; h�;�i; q/ //

Š
��

0

0 // �0.S aut@.N // // �0.aut@.N //
zH�
// Aut. zH�.N /; h�;�i;Jq/ // 0

where �0.S Diff@.N // and �0.S aut@.N // denote the kernels of the maps zH� and the
fact that �0.S aut@.N // is finite by Proposition 5.1.

Remark 5.4 There is much literature on the groups of components of mapping
spaces of closed manifolds in different categories. Highly connected even-dimensional
manifolds are for example studied in [18] and [14]. Products of spheres are studied
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in [19; 26; 28]. Homotopy self-equivalences of manifolds and in particular of connected
sums of products of spheres are treated in [3].

For later use we need the following lemma.

Lemma 5.5 The groups �0aut@.NI / and Image.�0.J // are rationally perfect, unless
nD 2d with d ¤ 3; 7 odd, and gd D 1.

Proof This follows from Lemma 3.4 and the fact that the groups are finite extensions
of �I .

6 On the rational homotopy type of homotopy
automorphisms

In the last section we determined the group

�I D �1.Baut@.NI /; idNI
/Š �0.aut@.NI //

up to finite extensions. It acts on the simply connected covering XI D Baut@.NI /h1i

by deck transformations. This section has two goals:

(1) Describe the �I –modules H�.XI IQ/ algebraically (Proposition 6.9).

(2) Make sure the algebraic model is appropriate for showing homological stability
using the results in Section 4 (Proposition 6.3).

All results in this section are either contained in [5] or straightforward generalizations.

We assume some familiarity with Quillen’s approach to rational homotopy theory [24],
ie the functor

�W Top1! dgL0

from the category of simply connected based topological spaces to the category of
reduced differential graded (dg) Lie algebras. It induces an equivalence of homotopy
categories, where the weak equivalences in Top1 are isomorphisms in rational homotopy
groups and in dgL0 quasi-isomorphisms. The homology of �.X / allows us to recover
the rational homotopy groups of X. More precisely, there is an isomorphism of graded
Lie algebras

H�.�.X //Š ��.�X /˝Q;

where the Lie bracket on the right-hand side is given by the Samelson product. The
rational homology of X is given by the Chevalley–Eilenberg homology of �.X /, which
we will explain later.
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For a given simply connected space X the value �.X / is in general very complicated
and one considers dg Lie models instead. A dg Lie model for a simply connected
topological space X is a free differential graded Lie algebra .L.V /; @/, together with
a quasi-isomorphism

.L.V /; @/
'
�! �.X /:

When ��.�X /˝Q is quasi-isomorphic to �.X /, the space X is called coformal.

6.1 On a dg Lie model for the simply connected covering of the homotopy
automorphisms

Since NI '
W

i2I .S
pi _ Sqi /, the free Lie algebra L.s�1 zH�.NI ;Q// with trivial

differential is a dg Lie model for NI , where s�1 denotes the desuspension. We are
going to write

LI D L.s�1 zH�.NI ;Q//:

Recall that we denoted the homology classes represented by the inclusions

˛i W S
pi ,!NI and ˇi W S

qi ,!NI ;

by ai , respectively bi . Write

!I D

X
i2I

�.�1/jai jŒs�1ai ; s
�1bi �:

We model the inclusion of the boundary inclW @NI !NI by

L. /! LI ;  7! !I ;

where L. / is generated by a single generator of degree n� 2.

Note that the manifolds NI are highly connected in the sense that they are .m�1/–
connected n–manifolds, where n� 3m� 2. In fact we can obtain every closed highly
connected odd-dimensional manifold up to rational homotopy equivalence by attaching
a disk to NI .

Proposition 6.1 Let M be a closed .m�1/–connected .2nC1/–manifold, where
n� 1

2
.3m� 3/. Then there exists an NI such that

M 'Q NI [S2n Dn:

Proof There is a differential graded Lie model of M generated by the desuspended
reduced rational homology s�1 zH�.M;Q/ and a differential @. For degree reasons
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the differential can only be nonzero on the desuspension of the fundamental class.
Moreover it can be chosen to be of the form

@.s�1ŒM �/D
1

2

X
˙Œs�1ei ; s

�1.e#
i /�;

for some basis feig of zH�.M X f�g;Q/ because of Poincaré duality, where # denotes
the dual with respect to the intersection pairing (see [27, Theorem 2]). This however is
the differential graded Lie model of a manifold NI[S2n D2nC1 for some I, where S2n

is included as the boundary in NI and D2nC1 .

Let f W L!K be a map of differential graded Lie algebras. We say that a degree n

linear map � 2 Homn.L;K/ is an f –derivation of degree n if

�Œx;y�D Œ�.x/; f .y/�C .�1/njxjŒf .x/; �.y/� for all x;y 2L:

The f –derivations form a differential graded vector space Derf .L;K/, with differential
given by

D.�/D dK ı � � .�1/j� j� ı dL:

The derivations of a differential graded Lie algebra L are the special case

Der.L/D DeridL
.L;L/:

We define a bracket for �; � 2 Der.L/, by

Œ�; ��D � ı �� .�1/j� jj�j� ı �;

which makes Der.L/ into a differential graded Lie algebra.

Denote by Der!.LI / the derivation Lie algebra annihilating !I , ie the kernel of the
evaluation map ev!I

W Der.LI /! LI at !I . The positive truncation LC of a dg Lie
algebra L is given by

LCi D

8<:
Li for i � 2;

ker.dLW L1!L0/ for i D 1;

0 for i � 0

with its obvious differential and Lie bracket.

Proposition 6.2 (special case of [5, Corollary 3.11]) The simply connected covering
Baut@.NI /h1i is coformal and there is an isomorphism of graded Lie algebras

��.�Baut@.NI /h1i/˝QŠ DerC! .LI /:
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Proof The manifolds NI are formal (in the sense of Sullivan’s rational homotopy
theory) and have trivial reduced rational cohomology rings since they are homotopy
equivalent to wedges of spheres. Thus we can apply [5, Corollary 3.11].

6.2 Derivations and the cyclic Lie operad

In this section we collect the results from [5, Sections 6.1 and 6.2]. Let V be a graded
finite-dimensional rational vector space. By an inner product of degree m we mean a
degree �m morphism

h�;�iW V ˝V !Q

that is nondegenerate in the sense that the adjoint

V ! Hom.V;Q/; v 7! hx;�i;

is an isomorphism of graded vector spaces. The inner product is graded antisymmetric if

hx;yi D �.�1/jxjjyjhy;xi for all x;y 2 V:

Denote by Spm the category with objects graded finite-dimensional rational vector
spaces V together with a graded antisymmetric inner product h�;�iV of degree m.
The morphisms in Spm are linear maps that respect the inner product. For a morphism
f W V !W , there is a unique linear map f ! such that

hx; f !.y/iV D hf .x/;yiW for all x 2 V and y 2W:

Since f !f D idV we get that morphisms in Spm are injective.

Given a object V of Spm , consider the inner product h�;�iV as an element of
Hom.V ˝2;Q/. We make the identification V ˝2 Š Hom.V ˝2;Q/ using the inner
product on V ˝2 defined by

hx˝y;x0˝y0i D .�1/jx
0jjyj
hx;x0ihy;y0i:

Thus h�;�iV gives rise to an element !V 2V ˝2 . The antisymmetry of h�;�i implies
that we can consider !V as an element !V 2 L.V /. If we choose a graded basis
�1; : : : ; �r with dual basis �#

1
; : : : ; �#r for V , then

!V D˙
1

2

X
i

Œ�#i ; �i �:

Example We consider s�1HI ˝Q as an element of Sp.n�2/ . Then !s�1HI˝Q is
equal to !I up to sign.
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A Spm–module in a category V is a functor Spm
! V . Our goal in this section is

to show that we can describe Der!.L.�// as a Spm–module in a category of graded
Lie algebras gL. Moreover we are going to see that this functor is in fact naturally
equivalent to a Schur functor.

It is clear that L.�/W Spm
! gL defines a functor. Moreover using the adjoint f ! of a

morphism f W V !W in Spm , it follows that we can consider Der.L.�//W Spm
!gL

as a functor, where Der.L.f //.�/ for � 2Der.L.V // is given by the unique derivation
defined by

Der.L.f //.�/.x/D L.f /�.f !.x// for x 2W:

(see [5, Proposition 6.1], where it is also shown that Der.L.f //.�/ is injective).
Proposition 6.2 in [5] now states that for a morphism f W V !W in Spm , the diagram

Der.L.V //
ev!V

//

Der.L.f //
��

L.V /

L.f /
��

Der.L.W //
ev!W

// L.W /

commutes. This implies, in particular, that we get a functor

Der!.L.�//W Spm
! gL;

given by the kernel Der!.L.V // of the evaluation map ev!V
W Der.L.V //! L.V /

for V 2 Spm .

We identify the Spm–module Der.L.�// with the Spm–module L.V /˝V , upon using
the map

��;�W L.V /˝V ! Der.L.�//; ��;x.y/D �hx;yi for x 2 V and � 2 L.V /

(see [5, Proposition 6.3]). Under this identification the evaluation map becomes the
map induced by the Lie bracket; ie the diagram

L.V /˝V
Œ�;��

//

��;�
��

L.V /

Der.L.V //
ev!V

// L.V /

commutes. Denote by g.V / the kernel of Œ�;��, and observing that Œ�;�� surjects
onto the graded Lie subalgebra L�2.V / of elements of bracket length � 2, we get the
commutative diagram of Spm–modules (11) at the top of the next page.
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(11)

0 // g.V / //

Š

��

L.V /˝V
Œ�;��

//

��;�

��

L�2.V / // 0

0 // Der!.L.V // // Der.L.V //
ev!V

// L�2.V / // 0

Note that in the top row we do not use the inner product, and thus it defines in fact a
functor g from the category of graded vector spaces.

Denote by L ieD fL ie.n/gn�0 the graded Lie operad and by L ie..n// the cyclic Lie
operad. Denote by t D .1 2 3 � � � n/ 2 †n the cyclic permutation and denote by t � �

the action of t on � 2L ie..n//. There are short exact sequences of †n–modules

0!L ie..n// �
�!QŒ†n�˝†n�1

L ie.n� 1/
�
�!L ie.n/! 0;

where �.�/D
P

i t i ˝ t�i � � and �.� ˝ �/D �Œ�;xn� (see [5, Proposition 6.4]).

Using the exact sequence we identify the rows of (11) with

s�m
M
n�2

L ie..n//˝†n
V ˝n

! s�m
M
n�2

L ie.n/˝†n
V ˝n

!

M
n�2

L ie.n/˝†n
V ˝n:

Motivated by this we define

L ie..V //D s�m
M
n�2

L ie..n//˝†n
V ˝n:

The Lie algebra structure on L ie..V // can in fact be explicitly described using the
cyclic operad structure of L ie..n// and the one on V ˝n given by contractions, but we
are not going to need it. We summarize the above as:

Proposition 6.3 [5, Proposition 6.6] There is an isomorphism of Spm–modules
in gLie,

L ie..�//Š Der!.L.�//:

Remark 6.4 As a composition of the Schur functors s�m and the one given by the
†–module fL ie..n//gn�1 , we see that L ie..�// is also a Schur functor.

6.3 The action of the homotopy mapping class group

To identify the action induced by deck transformations on DerC! .LI / we begin by
noting that the Lie algebras (both with Samelson product) ��.�Baut@.NI //˝Q and
��.aut@.NI //˝Q are naturally isomorphic since aut@.NI / is a group-like monoid.
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Moreover the deck transformation action can be described in terms of the Samel-
son product; ie when we make the identification ��.Baut@.NI //Š ���1.aut@.NI //,
the deck transformation action of �1.Baut@.NI /h1i/ corresponds to the action of
�0.aut@.NI // on ���1.aut@.NI //˝Q given by conjugation. The main tool to identify
the action is the following theorem.

Theorem 6.5 ([21]; stated as in [5, Theorem 3.6]) Let f W X ! Y be a map of
simply connected CW–complexes with X finite and �f W LX ! LY a Quillen model.
There are natural bijections

�k.map�.X;Y /; f /˝QŠHk.Der�f .LX ;LY // for k � 1;

which are vector space isomorphisms for k > 1. In the case X D Y and f DidX ,
there are isomorphisms of vector spaces

�k.aut�.X /; idX /˝QŠHk.Der.LX // for k � 1;

and the Samelson product corresponds to the Lie bracket.

Proposition 6.6 (compare [5, Proposition 5.5]) There is a �0.aut@.NI //–equivariant
isomorphism of graded Lie algebras

�C� .aut@.NI //˝QŠ DerC! .LI /;

where the action on the right-hand side is through the canonical action of �I on HI .

Proof We are going to study the long exact sequence of rational homotopy groups of
the fibration

aut@.NI /! aut�.NI /!map�.@NI ;NI /:

Denote by 'W L.!/! LI the inclusion of the graded Lie subalgebra of LI generated
by !I . Using Theorem 6.5 we see that the map

�k.aut�.NI //˝Q! �k.map�.@NI ;NI //˝Q

is given by

Der.LI /k
'�

k
�! Der'.L.!I /;LI /k ;

where '�
k

is the restriction to L.!I /. Note that Der'.L.!I /;LI /Š s.n�2/LI . Under
this identification the map '� becomes the evaluation map, which is surjective as
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discussed for the diagram (11). Hence the long exact sequence of rational homotopy
groups splits as

0! Der!.LI /�! Der.LI /�
'�

k
�! Der'.L.!I /;LI /�! 0;

where we use that Der!.LI / is the kernel of the evaluation map. The resulting
isomorphism

�C� .aut@.NI /; idNI
/˝QŠ DerC! .LI /

is in fact an isomorphism of graded Lie algebras. Indeed, since the inclusion aut@.NI /!

aut�.NI / is a map of topological monoids, the induced maps on rational homotopy
groups respect the Samelson product and DerC.LI /Š�

C
� .aut.NI //˝Q is an isomor-

phism of Lie algebras. Hence we can calculate the Samelson product of �C� .aut@.NI //

in DerC.LI /.

Now let f;g 2 aut�.NI /. The action of Œf � 2 �0.aut�.NI // on �k.aut�.NI // is
induced by pointwise conjugation g 7!fgf �1 , where f �1 is some choice of homotopy
inverse. Let �f be a Quillen model for f and � 2 Der.LI /k . The action of Œf � on
Der.LI /k is given by

� 7! �f ı � ı�
�1
f ;

by the naturality of the identification �k.aut�.NI //˝Q Š Der.LI /k . For a homo-
topy self-equivalence f consider the induced map f� 2 Aut. zH�.NI //. The map
L.s�1.f�˝Q// is in fact a Lie model for f , which shows that we can identify the
conjugation action with the induced action of Aut. zH�.NI // on Der.LI /k .

Using that DerC! .LI /k !DerC.LI /k is injective, we calculate the conjugation action
of �0.aut@.NI // on �k.aut@.NI /; idNI

/ in terms of Der!.LI /k . Let f be an element
of aut@.NI /; it is in particular also an element of aut�.NI / and we know that its
homotopy class Œf � in �0.aut�.NI // gives us an element in �I . Considering � 2
Der!.LI /k as an element in Der.LI /k we see that Œf � acts by the action induced by
f� 2 �I on zH�.NI /.

Remark 6.7 Observe that we discussed in the proof that the map

�1.aut�.NI //˝Q! �1.map�.@NI ;NI //˝Q

is surjective, and hence the kernel of �0.aut@.NI //! �I is finite.

We need to identify the maps induced by the stabilization map on rational homotopy
groups. Given an element of � 2 DerC! .LI / we define an element � 0 2 DerC! .LI 0/ by
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letting � 0 D � on generators �i and �i , where i 2 I and �.�i0/D �.�i0/D 0. Using
that LI 0 is free we get a derivation � 0, which is indeed an element of DerC! .LI 0/, since
!I 0 D !I C .�1/j�i0 jŒ�i0 ; �i0 �. We refer to this map again as the stabilization map.

Proposition 6.8 The isomorphism

��.aut@.NI /h1i/˝QŠ DerC! .LI /

is compatible with the stabilization maps.

Proof This works exactly as in [5, Proposition 7.7].

Ultimately we describe the rational homology H�.Baut@.NI /h1i;Q/ as �I –modules.
The link between a dg Lie model and the rational homology of a space is given by
the Chevalley–Eilenberg homology. The Chevalley–Eilenberg complex of a dg Lie
algebra L with differential dL is the chain complex C CE

� .L/Dƒ�sL with differential
ıCED ıCE

0
CıCE

1
, where s denotes the suspension and ƒ� the free graded commutative

algebra. The differentials are given by

ıCE
0 .sx1 ^ � � � ^ sxn/D�

X
1�i�n

.�1/ni sx1 ^ � � � ^ sdLxi ^ � � � ^ sxn;

ıCE
1 .sx1 ^ � � � ^ sxn/

D

X
1�i<j�n

.�1/jsx1jC�i;j sŒxi ;xj �^ sx1 ^ � � � ^csxi ^ � � � ^csxi ^ � � � ^ sxn;

where ni D
P

j<i jsxj j and �i;j is such that

sx1 ^ � � � ^ sxn D .�1/�i;j sxi ^ sxj ^ sx1 ^ � � � ^csxi ^ � � � ^csxi ^ � � � ^ sxn:

Quillen showed that for a dg Lie model LX of a space X the Chevalley–Eilenberg
homology gives the rational homology groups of X, ie that H CE

� .LX /ŠH�.X IQ/.

Grade the Chevalley–Eilenberg chains by word length; ie let .ƒp.L//q be the elements
of word length p and degree q . Denote by H CE

p;q.L/ the homology of the chain complex

� � � ! .ƒpC1.L//q
ı1
�! .ƒp.L//q

ı1
�! .ƒp�1.L//q! � � � :

The Quillen spectral sequence is the spectral sequence coming from the filtration by
word length. In case that the dg Lie algebra LX is a model for a space X, we can
identify the E2–page with

E2.L/p;q DH CE
p;q.LX /ŠH CE

p;q.��.�X /˝Q/)H CE
� .LX /ŠH�.X IQ/:
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The Quillen spectral sequence collapses on the E2–page for coformal spaces, and
hence we get isomorphisms

(12) Hr .Baut@.NI /h1i;Q/Š
M

pCqDr

H CE
p;q

�
��.�Baut@.NI /h1i/˝Q

�
:

The Quillen spectral sequence is in fact natural with respect to unbased maps of simply
connected spaces [5, Proposition 2.1]. Since �I is rationally perfect (see Lemma 5.5),
we do not have any extension problems, and hence the isomorphism above is in fact an
isomorphism of �I –modules (see [5, Proposition 2.3]).

Proposition 6.9 There are isomorphisms of �I –modules

H CE
r .Der!.LI //ŠHr .Baut@.NI /h1iIQ/

compatible with the stabilization maps

Proof We use the isomorphism of �I –modules (12). By Proposition 6.6, we make
the identification

H CE
p;q

�
��.�Baut@.NI /h1i/˝Q

�
ŠH CE

p;q.Der!.LI //

as �I –modules. This in turn gives the isomorphism in the claim.

The compatibility with the stabilization maps follows from Proposition 6.8.

7 Homological stability

7.1 An algebraic homological stability result

Recall the graded hyperbolic modules HI Š
zH�.NI / from Section 3, which have

the groups �I as their automorphism groups. Recall that we denoted by �I the
�I –module HI with standard action which we considered as an object

..HI /1; : : : ; .HI /n�1/ 2Mod.Z/n�1:

Moreover recall that we defined

gp D

�
rank..HI /p/ if 2p < n;

rank 1
2
..HI /p/ if 2p D n;

gI D DerC! .LI /D DerC! .L.s
�1HI ˝Q//:

For a fixed p � bn=2c we set

HI 0 DHI ˚ZŒp�˚Hom.ZŒp�;ZŒn�/
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with the pairing induced by evaluation, where the ZŒp� indicates the graded abelian
group with a Z concentrated in degree p . This corresponds to the reduced homology
zH�.NI #.Sp�Sn�p// with the intersection pairing. Denote by �I 0 the automorphisms

of the graded hyperbolic module HI 0 . Recall that we denoted by Ip;n�pW HI !HI 0

the upper inclusion.

Proposition 7.1 Let n> 3. For all l � 0 there are polynomial functors

Cl W Mod.Z/n�1
! Vect.Q/

of degree � l=2 and isomorphisms of �I –modules

Cl.�I /Š C CE
l .gI /

compatible with the maps induced by inclusions.

Proof In Proposition 6.3 we described the derivations Der!.LI / as a Schur functor

L ie..�//W Spn�2
! gLie; V 7! s�nC2

M
k�2

L ie..k//˝†k
V ˝k ;

that extended to the category of graded vector spaces Vect�.Q/. Consider the inclusion

IW
n�2Y
iD0

Vect.Q/! Vect�.Q/; .Vi/
n�2
iD0 7!

n�2M
iD0

Vi Œi �:

The composition L ie..�// ı I is a Schur multifunctor, which we are denoting by �U ,
with �U .�/D sŒ1m1C2m2C���C.n�2/mn�2�nC2�L ie..j�j//;

where � D .m0;m1; : : : ;mn�2/, given the †�–module structure induced by the
inclusion †� � †j�j . Thus the positive-degree derivations are given by the Schur
multifunctor

U W
n�2Y
iD0

Vect.Q/! gLie;

where U .�/D �U .�/, when

1m1C 2m2C � � �C .n� 2/mn�2� nC 2� 1 ()

n�2X
iD1

mi
i

n� 1
� 1;

and 0 otherwise. The Chevalley–Eilenberg chains are given by the Schur functor ƒ with
ƒ.r/ the trivial †r –module concentrated in degree r . The composition �C Dƒ ıU
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is now given by (using (3))�Cr .�/Š
M

r

ƒ.r/˝†r

M
Ind†�

†�1
�����†�r

U .�1/˝ � � �˝U .�r /;

where the second sum runs over all r–tuples .�1; : : : ; �r / such that
Pr

iD1 �i D �,
and the action of †r is by permuting the r–tuples by the inverse. For a fixed r we
get that the summand corresponding to .�1; : : : ; �r /, where �s D .m1;s; : : : ;mr;s/,
is only nonzero if

Pn�2
iD1

�
mi;s.i=.n� 1//

�
� 1 for all s D 1; : : : ; r . That implies that

(13)
n�2X
iD1

mi
i

n� 1
D

rX
sD1

� n�2X
iD1

mi;s
i

n� 1

�
� r:

If the summand is nonzero it is of degree

r C

rX
sD1

�� n�2X
iD1

mi;si

�
� nC 2

�
D r C

� n�2X
iD1

mii

�
� nr C 2r

D

� n�2X
iD1

mii

�
C r.3� n/

�

� n�2X
iD1

mii

�
C

� n�2X
iD1

mi
i

n� 1

�
.3� n/

D
2

n� 1

� n�2X
iD1

mii

�
;

where we used that 3� n is negative and (13). This implies now that the Chevalley–
Eilenberg l–chains are a Schur multifunctor �Cl , where �Cl.�/ vanishes for

l <
2

n� 1

� n�2X
iD1

mii

�
� 2

n�2X
iD1

mi D 2j�j:

Hence it is of degree � l=2. The functor Cl in the statement is given by the precom-
position with the additive functor

�˝QW Mod.Z/n�1
!

n�2Y
iD0

Vect.Q/:

The compatibility with the action follows from the fact the functor lifts to

Qn
C.Z; ƒ/! Sp.n�2/; M 7! s�1.M ˝Q/:

As an immediate consequence of Propositions 7.1 and 4.6 we get:
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Corollary 7.2 The stabilization map

Hk.�I ;C
CE
l .gI /!Hk.�I 0 ;C

CE
l .gI 0//

is an isomorphism for gp > 2kC l C 2 when 2p ¤ n and gp > 2kC l C 4 if 2p D n

and an epimorphism for gp � 2kC lC2, respectively gp � 2kC lC4, unless nD 2d

with d ¤ 3; 7 odd, and gd D 1.

Before we proof the main proposition of this section, ie deduce homological stability
for the Chevalley–Eilenberg homology from the stability for the chains, we need the
following observation about the Chevalley–Eilenberg chains.

Lemma 7.3 There exists a chain homotopy equivalences C CE
� .gI /

'
�! H CE

� .gI /

sending cycles z 7! Œz� such that

C CE
� .gI /

��
//

'

��

C CE
� .gI 0/

'

��

H CE
� .gI /

��
// H CE
� .gI 0/

commutes up to chain homotopy of QŒ�I �–chain complexes.

Proof This is true for all degreewise finite-dimensional QŒG�–chain complexes for G

rationally perfect groups by [5, Lemma B.1] and [5, Proposition B.5]. The groups �I are
rationally perfect (see Lemma 3.4) and the C CE

� .gI / are degreewise finite-dimensional,
since the gI are.

Proposition 7.4 The stabilization map

Hk.�I ;H
CE
l .gI //!Hk.�I 0 ;H

CE
l .gI 0//

is an isomorphism for gp > 2kC2lC2 when 2p¤ n and gp > 2kC2lC4 if 2pD n

and an epimorphism for gp � 2k C 2l C 2, respectively gp � 2k C 2l C 4, unless
nD 2d with d ¤ 3; 7 odd, and gd D 1.

Proof Consider the first hyperhomology spectral sequence with E1–page

E1
k;l.I/DHl

�
.�I IC

CE
k .gI //

�
)HkCl.�I IC

CE
� .gI //:

By Corollary 7.2, E1
k;l
.I/!E1

k;l
.I 0/ is an isomorphism for

gp >

�
2kC 2l C 4� kC 2l C 4 if p D 1

2
n;

2kC 2l C 2� kC 2l C 2 otherwise;
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and an epimorphism for �. By the spectral sequence comparison theorem we get that
the map

Hi.�I ;C
CE
� .gI //!Hi.�I 0 ;C

CE
� .gI 0//

induced by the stabilization map is an isomorphism for gp > 2iC2 when 2p¤ n and
gp > 2i C 4 if 2p D n and an epimorphism for �. Upon using Lemma 7.3 and the
chain homotopy invariance of hyperhomology we get that the map

Hi.�I ;C
CE
� .gI //!Hi.�I 0 ;C

CE
� .gI 0//

induced by the stabilization map is an isomorphism and epimorphism in the same
range as above. Ultimately we use the natural splitting for hyperhomology groups with
coefficients in a chain complex with trivial differential,

Hi.�I IH
CE
� .gI //

�i
//

Š

��

Hi.�I 0 IH
CE
� .gI 0//

Š

��L
kClDi Hk.�I IH

CE
l
.gI //

�k;l
//
L

kClDi Hk.�I 0 IH
CE
l
.gI 0//

Hence we see that the maps �k;l are isomorphisms and epimorphisms in the range in
the statement of Proposition 7.4.

7.2 Homological stability for monoid of homotopy automorphisms

The first main result of this article now easily follows from the previous results.

Theorem A The map

Hi.Baut@.NI /IQ/!Hi.Baut@.NI 0/IQ/

induced by the stabilization map is an isomorphism for gp > 2i C 2 when 2p ¤ n and
gp > 2iC4 if 2pD n and an epimorphism for gp � 2iC2, respectively gp � 2iC4,
unless nD 2d with d ¤ 3; 7 odd, and gd D 1.

Proof We begin by observing that

(14) Hk.�I ;H
CE
l .gI //ŠHk.�I ;H

CE
l .gI //;

because the action of �I is through zH W �I ! �I and the kernel of zH� is finite
(Propositions 5.1 and 6.6). The result now follows from Proposition 7.4 combined with
Proposition 6.9 upon using the spectral sequence comparison theorem.
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7.3 Homological stability for the block diffeomorphism group

Denote by faut@.X / the �–monoid of block homotopy equivalences, with k–simplices
face-preserving homotopy equivalences

'W �k
�X !�k

�X;

such that 'j�k�@X is the identity. The block diffeomorphism group eDiff@.X / is the
�–subgroup with k–simplices, face-preserving diffeomorphisms

'W �k
�X !�k

�X;

such that ' is the identity on a neighborhood of �k � @X. We do not distinguish
between �–objects and their realizations. Denote the inclusion eDiff@.X / ,! faut@.X /
by zJ. The inclusion

aut@.X / ,!faut@.X /

is a homotopy equivalence and hence we are going to consider them as identified.
The block diffeomorphism group eDiff@.X / and the diffeomorphism group Diff@.X /
with the Whitney C1–topology on the other hand are not homotopy equivalent —
the difference is related to algebraic K–theory (see [31]). The homogeneous spacefaut@.X /=eDiff@.X / is by definition the homotopy fiber of the map zJ W B eDiff@.X /!
Bfaut@.X /. It is related to surgery theory as we explain now.

Let X be a smooth manifold of dimension � 5 with boundary @X. Quinn [25] shows
that there is a quasifibration of Kan �–sets

SG=O

@
.X /!map�.X=@X;G=O/! L.X /

and that its homotopy exact sequence is the surgery exact sequence. The space SG=O

@
.X /

is the realization of a �–set with k–simplices pairs .W; f /, where W is a smooth
.kC3/–ad (see eg [25, Section 2]) and f W W !�k�X is a face-preserving homotopy
equivalence such that f restricts to a diffeomorphism f j@kC1W W @kC1W !�k � @X.
There is a map faut@.X /=eDiff@.X /! SG=O

@
.X /;

which by the h–cobordism theorem induces a weak homotopy equivalence

(15) faut@.X /=eDiff@.X /.1/ 'w:e: S
G=O

@
.X /.1/

of the identity components (see [4, Section 3.2]). Now assume X is simply connected.
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Since
G=O 'Q BO'Q

Y
i�1

K.Q; 4i/;

we understand the rational homotopy groups:

�i.map�.X=@X;G=O//˝QŠ
M

k

H k.X; @X IQ/˝�kCi.G=O/:

Note that if X is simply connected,

�i.L.X //˝QŠLdim.X /Ci.X /Š

�
Q if dim.X /C i � 0 mod 4;

0 otherwise.

We now specialize to NI .

Lemma 7.5 [4, Lemma 3.5] The surgery obstruction map induces an isomorphism

H n.NI ; @NI IQ/˝�nCk.G=O/!LnCk.Z/˝Q

for nC k � 0 mod 4.

Proof Consider the smooth and topological surgery exact sequences

� � � // N
G=O

@
.NI �Dk/˝Q

��

// LnCk.Z/˝Q // � � �

� � � // N
G=Top
@

.NI �Dk/˝Q // LnCk.Z/˝Q // � � �

The left-hand vertical map is an isomorphism since �i.Top=O/ is finite (see eg [17]).
Milnor’s plumbing construction ensures that for k C n even there is an element in
N

G=Top
@

.NI �Dk/ with nontrivial surgery obstruction. Since

N
G=Top
@

.NI �Dk/Š �k.map�.NI=@NI ;G=Top//
and

�k.map�.NI=@NI ;G=O//˝Q

ŠH n.NI ; @NI IQ/˝�nCk.G=O/ for nC k � 0 mod 4;

the claim follows because both sides are just one-dimensional rational vector spaces.

This now implies that we have a natural isomorphism

(16) �k.S
G=O

@
.NI //˝QŠ

M
i

H i.NI IQ/˝�iCk.G=O/ for k > 0

(compare [5, Corollary 4.6]).
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Recall that J0�0.Diff@.NI // has finite index in �0.aut@.NI // (Proposition 5.3). By
Cerf’s pseudoisotopy theorem thus also zJ1�1.B eDiff@.NI // in �1.Baut@.NI //. De-
note by Baut@.NI / the finite cover corresponding to Image. zJ1/. Note that it has
the same (higher) rational homotopy groups. By construction zJ lifts to a map
B eDiff@.NI /! Baut@.NI /. Instead of faut@.NI /=eDiff@.NI / we consider

FI D hofib.BeDiff@.NI /! Baut@.NI //:

We reduced the problem of showing rational homological stability for the block dif-
feomorphisms to the study of the Serre spectral sequence of the homotopy fibration
above. The only missing ingredient is now to understand the rational homology groups
of FI as x�I D �1.Baut@.NI //–modules. Observe that by Proposition 5.3 there is a
surjection

�1.Baut@.NI //! �I

induced by zH� .

Denote by �W SG=O

@
.X /! �0map�.X=@X;G=O/ the normal invariant, and denote by

� W �0map�.X=@X;G=O/!Ldim.X /.X / the surgery obstruction. Using the surgery
exact sequence, we see that for n odd �1.FI / is abelian, since it is a subgroup of the
abelian group Œ†.NI=@NI /;G=O �� . For n even it is a finite extension of the abelian
group Œ†.NI=@NI /;G=O �� by a finite cyclic group (in case LnC2.Z/Š Z, the proof
of Lemma 7.5 makes sure that the map to LnC2.Z/ is nonzero and hence the kernel
of � is a finite cyclic group). Write

�ab
k .FI /D

�
�1.FI /= Image.LnC2.Z/! �1.FI // if k D 1;

�k.FI / if k > 1:

Proposition 7.6 There are isomorphisms of x�I –modules compatible with the stabi-
lization maps

(1) �ab
k
.FI /˝QŠ . zH�.NI ;Q/˝��.G=O//k , where ja˝˛jD j˛j�jaj and k� 1,

(2) H�.FI ;Q/Šƒ.�
ab
� .FI /˝Q/,

where the actions on the left-hand side are induced by the standard actions of �I

on zH�.NI /.

Proof Compare [4, page 26 and Theorem 3.6] and [5, Proposition 7.15]. Observe that
the rationalization .FI /Q has rational homotopy groups �ab

k
.FI /˝Q. Consider the

splitting of the homotopy exact sequence of the surgery fibration as

0!LnCkC1.Z/= Image.�/! �k.S
G=O

@
.NI //! Image.�/! 0:
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By Lemma 7.5 we get

LnCkC1.Z/= Image.�/˝QŠ0 and Image.�/˝QŠ . zH�.NI ;Q/˝��.G=O//k :

Using the isomorphism

zH�.NI IQ/Š HomQ. zH�.NI IQ/IQ/Š zH
�.NI IQ/

we get the isomorphism .1/. We see that the action on the right-hand side is induced
by the standard action of �I as follows: Use the identification

�k.S
G=O

@
.X //Š S

G=O

@
.NI �Dk/:

An element of S
G=O

@
.NI �Dk/ is represented by a manifold .X; @X / together with

a homotopy equivalence f W X !NI �Dk such that f j@X W @X ! @.NI �Dk/ is a
diffeomorphism. The action of a

Œ�� 2 �1.Bfaut@.NI //Š Image. zJ1/Š Image.J0/� �0.aut@.NI //

on f is given by the composition

X
f
�!NI �Dk ��id

Dk
����!NI �Dk ;

where � is a diffeomorphism representing Œ�� considered as an element of Image.J0/.
[4, Lemma 3.3] now implies that

�..� � idDk / ıf /D ..� � idDk /�/�1.�.f //C �.idDk /D ..� � idDk /�/�1.�.f //;

using that the normal invariant of a diffeomorphism is trivial. This implies that Œ�� acts
on zH�.N IQ/˝��.G=O/k via .��1/�˝ id��.G=O/ . But this exactly corresponds to
the standard action under the isomorphism

zH�.NI IQ/Š HomQ. zH�.NI IQ/IQ/Š zH�.NI IQ/:

If � lies in the kernel of the map

�1.Baut@.NI //! �I ;

then it is in the kernel of zH� and a similar argument as before shows that it acts trivially
on �ab

k
.FI / (compare Lemma 5.2). The compatibility with the stabilization maps

follows from the fact that the isomorphisms (16) are natural.

The statement for (2) follows from that for (1) by using the fact that G=O and hence also
the mapping-space map�.NI=@NI ;G=O/ are infinite loop spaces. Thus all rational
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k–invariants vanish for map�.NI=@NI ;G=O/. Equivalently, for each element ˛ 2
�k.map�.NI=@NI ;G=O//˝Q there is an element c 2H k.map�.NI=@NI ;G=O/IQ/

such that c.h.˛//¤ 0, where h denotes the rational Hurewicz homomorphism. Since

�k..FI /Q/˝Q! �k.map�.NI=@NI ;G=O//˝Q

is injective, it follows that all rational k–invariants also vanish for .FI /Q . This shows
that .FI /Q is a product of Eilenberg–Mac Lane spaces and hence its homology is
given by the free graded commutative algebra on its homotopy groups. Moreover the
�1.Baut@.NI //–action is induced by the standard action.

We use the previous proposition to give a Schur multifunctor description of Hr .FI IQ/.
For a multiindex � with `.�/D n� 1, consider the †�–modules ….�/ given by

….0; : : : ; 1; : : : ; 0/D s�i��.G=O/˝Q;

where the 1 sits in the i th position and all other entries are 0. The corresponding Schur
multifunctor

…W Mod.Z/n�1
! Vect�.Q/;

has the property that there is an isomorphism of the induced �I –modules

….HI /Š . zH�.NI ;Q/˝��.G=O//
C:

It follows now that we get an isomorphism of �I –modules

ƒ ı….HI /Šƒ.. zH�.NI ;Q/˝��.G=O/
C//ŠH�.FI ;Q/;

where the left-hand ƒ denotes the free graded commutative algebra endofunctor of
Vect�.Q/. Recall that ƒ is given as the Schur functor with ƒ.n/DQŒn� and trivial
†n–action. Now setting Hr Dƒr ı… and observing that ƒr is of degree � r and …
additive, we get the following:

Proposition 7.7 There is an isomorphism of �I –modules

Hr .FI IQ/Š
M

`.�/Dn�1

Hr .�/˝†�H
˝�

I
;

compatible with the stabilization maps, where the Hr .�/ are zero for multiindexes �
such that j�j> r .

Now we prove the second main theorem of this paper.
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Theorem B The stabilization map

Hi.BeDiff@.NI /IQ/!Hi.BeDiff@.NI 0/IQ/

is an isomorphism for gp > 2i C 2 when 2p ¤ n and gp > 2i C 4 if 2p D n and an
epimorphism for gp � 2i C 2, respectively gp � 2i C 4, unless nD 2d with d ¤ 3; 7

odd, and gd D 1.

Proof Write YI D B eDiff@.NI / and XI D Bfaut@.NI /. Consider the Serre spectral
sequences of the homotopy fibration

FI ! YI !XI

and the analogue for I 0. The stabilization map induces maps on the E2–pages

��W Hk.XI IHl.FI IQ//!Hk.XI 0 IHl.FI 0 IQ//:

The theorem follows upon showing that these are isomorphisms for gp > 2kC 2l C 2

(C 4 if p D n=2) and epimorphisms for gp � 2kC 2lC 2 (C 4 if p D n=2). For this
we consider the universal covering spectral sequence

Hr

�
�1.XI /IHs.XI h1iIHl.FI IQ//

�
)HrCs.XI IHl.FI ;Q//:

The condition above would follow upon showing that the maps induced by the stabiliza-
tion map on the E2–page are isomorphisms for gp > 2r C2sC2lC2 (4 if pD n=2)
and epimorphisms for gp � 2rC2sC2lC2 (C4 if pDn=2). To show this we observe
that there are isomorphism of �I –modules compatible with the stabilization maps,

Hs.XI h1iIHl.FI IQ//ŠHs.XI h1i/˝Hl.FI IQ/ŠH CE
s .gI /˝Hl.FI IQ/;

where �I acts on the 2nd and 3rd terms diagonally. Note that XI and XI have the
same universal cover, which is moreover homotopy equivalent to Baut@.NI /h1i. The
stability for

(17) Hr .�1.XI /IH
CE
s .gI /˝Hl.FI IQ//

follows from stability for

Hr .�1.XI /IC
CE
s .gI /˝Hl.FI IQ//;

exactly as in Proposition 7.4 upon using the two hyperhomology spectral sequences
and that x�I is rationally perfect (Lemma 5.5). Hence we are left with showing that the
stabilization maps

Hr .�1.XI /IC
CE
s .gI /˝Hl.FI IQ//!Hr .�1.XI 0/IC

CE
s .gI 0/˝Hl.FI 0 IQ//
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are isomorphisms for gp > 2r C 2sC 2l C 2 (C 4 if p D n=2) and epimorphisms for
gp � 2r C 2sC 2l C 2 (C 4 if p D n=2). The Lyndon spectral sequence reduces this
to the corresponding statement for

Hr .�I IC
CE
s .gI /˝Hl.FI IQ//!Hr .�I 0 IC

CE
s .gI 0/˝Hl.FI 0 IQ//:

Propositions 7.7 and 6.8 give us isomorphisms of �I –modules compatible with the
stabilization map C CE

s .gI /˝Hl.FI IQ// Š Cs.HI /˝Hl.HI /. The functor Cs is
polynomial of degree � s=2 and the functor Hl is polynomial of degree � l . The
tensor product (in the sense of Schur multifunctors) Cs˝Hl is of degree � s=2C l .
By Proposition 4.6 the stabilization maps

Hr .�I ICs˝Hl.HI //!Hr .�I 0 ICs˝Hl.HI 0//

are isomorphisms for gp > 2r C s=2C l C 2 (C 4 if p D n=2) and epimorphisms for
gp � 2r C s=2C l C 2 (C 4 if p D n=2), which finishes the proof.
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