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On properties of Bourgeois contact structures
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The Bourgeois construction associates to every contact open book on a manifold V a
contact structure on V �T 2 . We study some of the properties of V that are inherited
by V �T 2 and some that are not.

Giroux has provided recently a better framework to work with contact open books.
In the appendix, we quickly review this formalism, and we work out a few classical
examples of contact open books to illustrate how to use this new language.
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1 Introduction

In his thesis, Bourgeois [5] used a construction based on work by Lutz [24] that
associates to every contact open book on a contact manifold .V; �/ a contact structure
on V �T2 that is invariant under the natural T2–action and that restricts on every
fiber V � f�g to � . Even though all contact structures obtained on V � T2 for a
given .V; �/ are homotopic as almost contact structures independently of the open
book used, Bourgeois proved via contact homology that the resulting contact structures
on V �T2 often do depend on the open book chosen and not only on � itself.

This construction is probably the most interesting explicit method known so far to
produce higher-dimensional closed contact manifolds based on lower-dimensional ones.
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For this reason we consider it an important question to understand which properties
of .V; �/ are passed on to the associated contact structure on V �T2 .

For instance, Presas [32] constructed the first examples of higher-dimensional over-
twisted contact structures by gluing together two Bourgeois structures associated to
overtwisted 3–manifolds. This raised the question of whether the Bourgeois structure
associated to an overtwisted structure is overtwisted or not. We will show here that this
is not always the case.

The list of properties we will be studying are mostly related to the fillability and
tightness of the Bourgeois structures. Note also the recent article by Gironella [17] that
studies questions about Bourgeois structures related to ours. We discuss the relation of
our work to his in Section 2.

Recall that a general contact structure is either overtwisted or tight; see Borman,
Eliashberg and Murphy [4]. Furthermore it is known that overtwisted manifolds are not
even weakly fillable; see Massot, Niederkrüger and Wendl [26] and Niederkrüger [29]
(to drop the semipositivity condition use Pardon [31]). The different types of fillability
can be combined to give the following hierarchy:

subcritically Weinstein fillable +3 Weinstein fillable +3 exact fillable
px

strongly fillable +3 weakly fillable +3 tight

For Bourgeois contact structures, we know from [26] (and work related to it):

Theorem A Let .V; �/ be a closed contact manifold.

(a) If .V; �/ is weakly filled by .W; !/, then independently of the open book
decomposition used in the construction, the associated Bourgeois contact struc-
ture on V � T2 is isotopic to a contact structure that can be weakly filled
by .W �T2; !˚ volT2/.

(b) If .V; �/ admits a Weinstein filling that is a k–fold stabilization, and if .K; #/ is
the canonical open book associated to such a subcritical filling, then the corre-
sponding Bourgeois structure on V �T2 will be .k�1/–subcritically Weinstein
fillable.

We draw the reader’s attention to two different meanings of “stabilization” in this paper.
In the context of Weinstein domains, this refers to taking a product with C (or Ck );
see Section 4 for details. In the context of an (abstract) open book, however, it refers to

Algebraic & Geometric Topology, Volume 19 (2019)



On properties of Bourgeois contact structures 3411

a modification of the open book by attaching a handle to the page and also changing the
monodromy by a suitable Dehn twist. See, for instance, van Koert [22, Section 4.3].

In Section 2 we explain the Bourgeois construction. The proof of Theorem A is in
Section 4.

As already mentioned, the Bourgeois structures do not only depend on the chosen
contact manifold .V; �/ but also on the open book used in the construction; see
Bourgeois [5]. On the other hand, two abstract open books with the same page but
with mutually inverse monodromies, ‰ and ‰�1, lead to two contact manifolds that
are smoothly (orientation-reversing) diffeomorphic to each other but that, in general,
have very different contact properties. For example, from Emmanuel Giroux [19], a
contact manifold is Stein/Weinstein fillable if and only if it admits an open book whose
monodromy ‰ can be expressed as a product of positive Dehn twists. By contrast,
changing the monodromy of an abstract open book to ‰�1 often yields an overtwisted
contact structure. Nonetheless we obtain the following unexpected result in Section 3.

Theorem B Let .V; �C/ and .V; ��/ be closed contact manifolds supported by ab-
stract Liouville open books that have the same page but inverse monodromy. Then the
two corresponding Bourgeois structures on V �T2 are contactomorphic.

This statement shows that the Bourgeois construction is not injective, and combining
this result with Theorem A, we also obtain the following corollary.

Corollary 1.1 There exist examples in every dimension of closed overtwisted contact
manifolds .V; �/ for which at least one of the corresponding Bourgeois structures
on V �T2 is tight.

In fact, no example of an overtwisted Bourgeois structure is known to us. Note also
that Gironella [17] has recently shown that every contact 3–manifold with nontrivial
fundamental group admits an open book whose Bourgeois structure is (hyper)tight.
This leads to the following questions.

Question 1.2 (a) Can a Bourgeois contact structure ever be overtwisted?

(b) Are there Bourgeois contact structures that are not weakly fillable?

In both cases, it is an immediate consequence of Theorem B that candidates can only be
constructed from open books where both the monodromy and the inverse monodromy
lead to overtwisted or not weakly fillable contact structures, respectively. Furthermore,
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note that Bowden, Gironella and Moreno [8] have shown recently that every Bourgeois
contact structure of dimension 5 is tight.

In Section 5, we show that most Bourgeois structures are not subcritically Weinstein
fillable. Subcritically fillable contact manifolds are extremely rare — in dimension 3

the only examples are the standard sphere and connected sums of copies of S1 �S2

with the tight contact structure.

In high dimensions, a general topological characterization of Stein manifolds was
obtained by Cieliebak and Eliashberg [13; 11]; based on this, Bowden, Crowley
and Stipsicz [7] worked out the formal topological requirements for Stein fillability.
Let .V; „V ; !„/ be an almost contact manifold; that is, V is an oriented manifold
with a hyperplane field „V , and !„ is a symplectic structure on „V . An almost Stein
filling .W;J / of .V; „V ; !„/ is an almost complex manifold such that

� V is the oriented boundary of W ;
� J restricts to „V , and J j„V

is tamed by !„ ;
� W admits a handle decomposition with all handles of dimension no more

than 1
2

dim W .

In particular, [7, Proposition 7.1] specializes in our situation to the following.

Theorem 1.3 Let .V; „V ; !„/ be an almost contact structure, and let dvol be a
volume form on T2 . If .V � T2; „V ˚ T T2; !„ ˚ dvol/ admits an almost Stein
filling, it follows that .V; „V ; !„/ also admits one.

Conversely, if the almost contact structure .V; „V ; !„/ admits a subcritical almost
Stein filling, then .V �T2; „V ˚ T T2; !„˚ dvol/ admits an almost Stein filling.
Compare this also to part (b) of Theorem A. If .V; �V / is only Stein fillable, however,
the situation is significantly more involved. For example, T3 with the standard contact
structure has the Stein filling T �T2 , but no contact structure on T3 �T2 D T5 can
ever be Stein fillable by part (2) of [7, Proposition 6.2].

We give below a few examples of Bourgeois structures that admit subcritical almost
Stein fillings but no genuine subcritical fillings. This is based on obstructions to
Weinstein fillability that can easily be deduced from Gromov’s 1985 article [21].

Theorem C A closed contact manifold containing a weakly exact pre-Lagrangian P

is not subcritically Weinstein fillable.

If the dimension of the contact manifold is at least 5 and if P is displaceable then the
contact manifold is not even Weinstein fillable.
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A limitation of this theorem is that pre-Lagrangians can only be weakly exact in
manifolds with a sufficiently large fundamental group (see Lemma 5.2), thus excluding
many examples. We believe that the weakly exact condition can be relaxed by using
some type of Floer theory, but we refrain from doing so here, to keep this note simple.

Note also that with work of Barth, Geiges and Zehmisch [1] and Oancea and Viterbo [30]
one can formulate obstructions to subcritical fillability that depend more on the global
topology of the contact manifold.

On the other hand, Theorem C leads to the following observation regarding Bourgeois
structures:

Corollary 1.4 Let .V; �/ be a closed contact manifold and let .K; #/ be a compatible
open book that contains a closed Legendrian in one of its pages. It then follows that the
corresponding Bourgeois structure on V �T2 is not subcritically Weinstein fillable.

This applies in particular to any open book that has been stabilized.

Example 1.5 Consider the contact open book decomposition of the standard contact
sphere .S2n�1; �0/ whose page is a ball and whose monodromy is trivial. If 2n�1¤ 1,
the corresponding Bourgeois structure on S2n�1�T2 is subcritically Weinstein fillable.

If instead we take for example an open book with page the cotangent bundle T �Sn�1

and with monodromy a positive Dehn twist (these examples are classical but they are
also explained in depth in the appendix), then the Bourgeois structure will be homotopic
to the first one as almost contact structures, but it cannot be contactomorphic1 to it,
since it is not subcritically Weinstein fillable.

This way, we see that the fillability of a Bourgeois structure on V �T2 depends not
only on the contact manifold .V; �/ but also on the open book used in the construction.

These results should be significantly improved, and in particular it would be nice to
find an answer to the following question:

Question 1.6 Are the Bourgeois structures on S2n�1�T2 obtained from the standard
contact sphere .S2n�1; �0/ and the open book decomposition whose page is T �Sn�1

(Examples A.6(b) and A.17(b)) strongly fillable?

We know from Theorem A that these are weakly fillable. If they were not strongly
fillable they would provide the first examples of weakly but not strongly fillable contact

1These two examples were explicitly excluded in the contact homology computations in Bourgeois’s
thesis.
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manifolds in all dimensions. (Many such examples exist in dimension 3; see for
instance Giroux [18] and Eliashberg [14]. In dimension 5, the only ones known so far
can be found in Massot, Niederkrüger and Wendl [26]).

Remark 1.7 Example 1.5 generalizes in the following way to toric contact manifolds:
Recall that there is an important difference between contact 5–manifolds that have a
torus action that is free and those where the T3–action is not free; see Lerman [23].

The open book on .S3; �0/ with page diffeomorphic to T �S1 can be obtained by the
map f .z1; z2/ D z2

1
C z2

2
; see Examples A.6(b) and A.17(b). Both �0 and f are

invariant under the free circle action on S3 given by matrix multiplication

eis
� .z1; z2/ WD

�
cos s sin s

�sin s cos s

�
�

�
z1

z2

�
;

which implies that not only the contact structure but also the open book is preserved by
this action.

Restricting the circle action to a cyclic subgroup Zk � S1 , we can quotient S3

and obtain a lens space Lk carrying the natural contact structure, the induced open
book decomposition, and a free circle action. The page of these open books is still
diffeomorphic to T �S1 , and its zero section is a Legendrian submanifold of Lk .

A Bourgeois contact structure on V �T2 is clearly invariant under the obvious T2–
action (see Definition 2.1), and with V D S3 or V D Lk as above, it is easy to
verify that the initial circle action adds up to give a free T3–action on V �T2 . With
some careful considerations, one obtains that all contact toric 5–manifolds with a free
T3–action are either equivariantly contactomorphic to the unit cotangent bundle of T3

or to one of the manifolds above. Thus, according to Corollary 1.4, none of the contact
toric 5–manifolds with a free T3–action is subcritically fillable.

In the appendix we review the one-to-one correspondence between contact open book
decompositions and abstract Liouville open books. For this we use the language of
ideal Liouville domains that has been created for this purpose by Giroux [20]. This
language requires an initial investment of effort, but provides a suitable framework for
discussing the uniqueness of the resulting contact structures up to homotopy and also
for addressing problems related to the structure along the binding.
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2 The Bourgeois contact structure

Given a contact manifold .V; �/ and a symplectic manifold .†; !/, one naively obvious
idea of how to construct a contact structure on V � † would be to start with the
hyperplane field �˚T†, which is an almost contact structure, and try to deform it to
a genuine contact structure.

Bourgeois [6] succeeded in carrying this out in the special case of †D T2 , using an
open book decomposition of .V; �/ as the input to the construction. Gironella [17]
put this construction in a more natural geometric framework in which open books
appear organically, generalizing the definition to oriented surfaces †. We will describe
Bourgeois’s construction, reformulating it using the notion of ideal Liouville domains
and comparing with Gironella’s more general framework. The appendix provides
background for a reader who might be unfamiliar with the language of ideal Liouville
domains.

Let .V; �/ be a contact manifold with a contact open book decomposition .K; #/ (see
Definitions A.2 and A.4). From the appendix (see Proposition A.13, we can choose a
contact form ˛V for � and a function f D fxC ify W V !C with # D f=jf j such
that d.˛V =jf j/ defines an ideal Liouville structure (Definition A.7) on every page of
the open book. Clearly, the data ˛V and f encode the contact structure and the open
book. Accordingly, we call such .˛V ; f / a representation of the contact open book.
(See Lemma A.14 for a justification of this definition.)

Here and in the following, it will often be convenient to write f D fxC ify D � ei#.
We will also consider the 1–form d# obtained from a map # W V nK! S1 taking S1

to be the unit circle in C , which we also identify with R=2�Z. Strictly speaking, in

Algebraic & Geometric Topology, Volume 19 (2019)



3416 Samuel Lisi, Aleksandra Marinković and Klaus Niederkrüger

what we write, d# denotes the differential of the argument of # but we hope that this
abuse of notation does not cause any confusion.

Definition 2.1 The Bourgeois contact structure associated to a representation .˛V ; f /

of the contact open book .K; #/ on .V; �/ and the standard orientation d'1 ^ d'2

of T2 is given by the kernel of the 1–form

˛ D ˛V Cfx d'1�fy d'2

on V �T2 , where .'1; '2/ denotes the standard coordinates on T2 .

That a Bourgeois contact structure really is a contact structure will follow directly from
the more general result Lemma 2.4. Notice that for a given open book decomposition,
.K; #/, the space of all choices of possible representations .˛V ; f / is contractible
(this is discussed further in the appendix; see the tabular summary on page 3441 and
subsequent discussion; also see [20]). In particular then, a choice of contact open book
determines an isotopy class of contact structures on V �T2 . It is also easy to convince
oneself that up to contactomorphism the Bourgeois construction does not depend on
the chosen identification of T2 with S1 �S1 .

Gironella [17] has extended this definition of Bourgeois contact structure as a class
of hyperplane fields z�t that are deformations of a flat contact fiber bundle z�0 over †.
The hyperplane fields z�t are contact for t > 0. In this paper, we only consider the
product case V �†!†, where † is a closed oriented surface, and take the initial flat
contact bundle to be z�0D �˚T†. For deformations of these trivial bundles, Gironella
additionally provides a description in more elementary terms, which we repeat here.

Definition 2.2 Let .V; �/ be a contact manifold and † be a closed oriented surface.
A Bourgeois–Gironella contact structure z� on V �† that deforms the flat contact
bundle �˚T† is any contact structure that can be written as z� D ker˛ with

˛ D ˛V Cˇ;

where

(i) ˛V is a contact form on V defining � ;

(ii) ˇ is a 1–form on V � † that vanishes on vectors that are tangent to the
fibers V � fzg for any z 2†;

(iii) for each fixed p 2 V , the restriction of ˛ (or, equivalently, of ˇ ) to the
slice fpg �† is a closed form;
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(iv) the orientation induced on V �† by ˛ is the same one as the product orientation
of V with †.

Conditions (i) and (ii) are from [17, Proposition 7.1] and condition (iii) is from
[17, Claim 7.4]. Note that in the cited reference, this formulation is given in the
case † D T2 . These properties are local in †, however, so they remain applicable
in this seemingly more general case. We do not know of examples of such structures
for †¤ T2 , however.

In contrast to the definition of the Bourgeois structure, the one of Bourgeois–Gironella
structures does not mention open books explicitly; nonetheless, Lemma 2.4 shows that
the two notions are intimately linked.

Remark 2.3 Let dvol denote a volume form on † compatible with the orientation.
The Bourgeois–Gironella structure .ker˛; d˛/ is homotopic to .�˚T†; d˛V Cdvol/
as almost contact structures.

This is verified by introducing an "–factor in the definition of ˛ :

˛" WD ˛V C "ˇ:

This allows us to deform ker˛ to the flat contact bundle ker˛0 D �˚T†. We then
expand:

˛" ^ .d˛"C ı dvol/nC1
D .˛V C "ˇ/^ .d˛V C " dˇC ı dvol/nC1

D ˛" ^ .d˛"/
nC1
C .nC 1/ı˛V ^ .d˛V /

n
^ dvol:

Using that the restriction of dˇ vanishes on every surface slice fpg�†, we check that
the first term reduces to

(1) ˛" ^ .d˛"/
nC1
D "2.nC 1/

�
1
2
n dˇ2

^˛V ^ d˛n�1
V Cˇ^ dˇ^ d˛n

V

�
D "2˛^ .d˛/nC1;

so that if ker˛ is contact, any of the ker˛t for t > 0 will be contactomorphic to it.

Furthermore, using (iv) from Definition 2.2, we obtain that ˛" ^ .d˛"C ı dvol/nC1 is
strictly positive for all "� 0 and ı� 0 as long as " and ı do not vanish simultaneously.
This shows that ker˛ is indeed homotopic to �˚T† as almost contact structures.

In the special case of † D T2 and ˛ a Bourgeois contact form (so that ˇ is T2–
independent), if " < 0, we have an explicit contactomorphism from ˛" to ˛j"j by
applying the orientation-preserving diffeomorphism .pI'1; '2/ 7! .pI �'1;�'2/

to V �T2 .
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Now, essentially as an application of [17, Proposition 6.9], we obtain the following
characterization of Bourgeois–Gironella structures deforming the flat bundle �˚T†.
For the benefit of the reader, we provide a self-contained proof.

Lemma 2.4 Let ˛ D ˛V C ˇ be a 1–form on V � †, where ˛V and ˇ satisfy
conditions (i)–(iv) of Definition 2.2. Suppose also that V is of dimension at least 3.

If U is any positively oriented chart of † with coordinates .'1; '2/, then we can
write ˛ on V �U as

˛jV�U D ˛V Cfx d'1�fy d'2;

where f D fxC ify W V �U !C is a smooth function.

The following two statements are then equivalent:

(a) ˛ is a contact form.

(b) For every chart U of † and every point .'1; '2/2U, the pair .˛V ; f . � ; '1; '2//

with f as above is a representation of a contact open book on .V; �/.

Proof Let 2nC1 be the dimension of V . From (1), we know that the contact condition
of ˛ D ˛V Cˇ is given by

˛^ .d˛/nC1
D .nC 1/

�
1
2
n dˇ2

^˛V ^ d˛n�1
V Cˇ^ dˇ^ d˛n

V

�
¤ 0:

Now replacing ˇ by its representation in a chart, fx d'1 � fy d'2 , and writing
fxC ify D f D � ei#, we obtain in these polar coordinates

ˇ^ dˇ D �2 dV # ^ d'1 ^ d'2 and dˇ2
D 2� dV �^ dV # ^ d'1 ^ d'2;

where dV is the exterior derivative only in the V –direction. It therefore follows that

(2) ˛^ .d˛/nC1
D .nC 1/

�
n dV fx ^ dV fy ^˛V ^ .d˛V /

n�1

C .fx dV fy �fy dV fx/^ .d˛V /
n
�
^ d'1 ^ d'2

D .nC 1/
�
n� dV �^ dV # ^˛V ^ .d˛V /

n�1

C �2 dV # ^ .d˛V /
n
�
^ d'1 ^ d'2:

First, observe that if .˛V ; f . � ; '1; '2// is a representation of a contact open book,
then ˛ is a contact form because the term in brackets agrees with the expansion (3) of
the volume form �V on V in Lemma A.12. Thus as we wanted to show ˛^.d˛/nC1D

.nC 1/�V ^ d'1 ^ d'2 does not vanish.
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To prove the converse, we now suppose instead that ˛ is a contact form. Fix a
point z 2†. We must now prove the following statements:

(i) 0 2C is a regular value of p 7! f .p; z/.

(ii) K WD fp 2 V j f .p; z/D 0g is nonempty.

(iii) # WD f=jf jW V nK! S1 is a fibration.

(iv) d.˛V =jf j/ restricts to each fiber # D #0 as an ideal Liouville structure.

By Remark A.3, the first three properties give that f . � ; z/ defines an open book
decomposition on V . The fourth gives that it is a contact open book (see Lemma A.14
for details).

To prove the first statement, let p 2 V be such that f .p; z/D 0. Since ˛^d˛nC1 is a
volume form by assumption, it follows from the first equality of (2) that dV fx ^dV fy

does not vanish at p , so that 0 is a regular value of p 7! f .p; z/. For the third
statement, we observe that by combining the fact that ˛^d˛nC1 is a volume form with
the second equality of (2), dV # cannot vanish on V nK . Hence, #. � ; z/W V nK!S1

is a submersion.

In order to show that K is nonempty and also to show that d.˛V =jf j/ restricts to the
fibers as an ideal Liouville structure, we compute�

dV

�
1

�
˛V

��n
D

1

�nC2
.�n� dV �^˛V ^ .d˛V /

n�1
C �2 d˛n

V /:

Observe that (2) can be rearranged to obtain

˛^ .d˛/nC1
D .nC1/Œ�n� dV �^˛V ^ .d˛V /

n�1
C�2.d˛V /

n�^dV # ^d'1^d'2

D .nC1/�nC2
�
dV

�
1

�
˛V

��n
^dV # ^d'1^d'2:

This is a volume form by assumption, so it follows that d.˛V =jf j/ is symplectic when
restricted to a fiber # D #0 .

For the sake of contradiction, we suppose that K is empty. In that case, the fiber
fp 2 V j #.p; z/D #0g is a closed submanifold of V of dimension 2n. The restriction
of d.˛V =�/ to this submanifold is symplectic. By Stokes’ theorem, this is only possible
if the dimension of V is 1. Thus, K is nonempty for 2nC 1� 3.

Having established that K is nonempty, it follows that d.˛V =�/ is an ideal Liouville
domain structure on the closure of #�1.#0/. This then shows that .˛V ; f / is a
representation of a contact open book on V , as required.
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It follows in particular from this lemma that Bourgeois contact structures as given
by Definition 2.1 really are contact structures. In fact, Bourgeois structures are the
special Bourgeois–Gironella contact structures on V �T2 that are invariant under the
canonical torus action.

Gironella shows the nonobvious fact [17, Proposition 6.11] that the T2–average of
any Bourgeois–Gironella contact form ˛V Cˇ is also a contact form. This averaging
process gives us a canonical map from Bourgeois–Gironella structures to Bourgeois
structures. We do not know of any example of a Bourgeois–Gironella contact form that
is not isotopic through Bourgeois–Gironella forms to its T2–average.

3 The Bourgeois structure for open books with inverted
monodromy

In this section we will prove Theorem B. To achieve this aim, we first describe an
explicit modification of a given contact structure supported by a contact open book. The
result of this construction will be a new contact structure that is supported by an open
book with identical pages and binding as the first one, but with opposite coorientation.
We then show that the monodromies of the two open books are the inverse of each other,
and we conclude by studying how this modification affects the Bourgeois construction.

Lemma 3.1 Let .V; �C/ be a contact manifold with a compatible open book decom-
position .K; #/, and let ˛C be any contact form that is supported by this open book.

The space of functions f D fx C ify W V !C (writing jf j2 d# D fx dfy � fy dfx )
that satisfy the properties below is convex and nonempty:

(i) .˛C; f / is a representation of a Liouville open book on .K; #/ in the sense of
Definition A.11.

(ii) The 1–form
˛� WD ˛C�C jf j2 d#

is a contact form for every sufficiently large constant C � 1.

The contact forms ˛C and ˛� induce opposite orientations on V , the contact form ˛�

is adapted to the open book decomposition .K; x#/, and while its restriction to the
binding and pages does not differ from the one of ˛C , the coorientation of pages and
binding is reversed.
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Proof Let f D fx C ify and g D gx C igy be two functions that satisfy the two
properties stated above. We know from the appendix that the set of functions F such
that .˛C;F / is a representation forms a nonempty convex set, so let us concentrate on
property (ii).

Define for a sufficiently large C�1 (more precisely there is a suitable constant Cf �1

for f and Cg � 1 for g and we take C to be larger than maxfCf ;Cgg) the two
contact forms

˛� WD ˛C�C jf j2 d# and ˇ� WD ˛C�C jgj2 d#:

We need to show that the interpolation

˛s WD .1� s/˛�C sˇ�

satisfies for all s 2 Œ0; 1� the contact property.

Writing ˛s as
˛s WD ˛C�C..1� s/jf j2C sjgj2/ d#;

it is obvious that all terms of ˛s ^ .d˛s/
n contain at most one d#–factor, and in

particular jf j2– and jgj2–terms will never mix. The contact condition simplifies to

˛s ^ .d˛s/
n
D .1� s/˛� ^ .d˛�/

n
C sˇ� ^ .ˇ�/

n
¤ 0;

which is true by assumption, thus proving the desired convexity property. We still need
to show that it is not empty.

Let f DfxCify W V !C be a function defining the open book, and write for simplicity
�D jf j, so that fx dfy�fy dfx D �

2 d# . The condition that d.˛C=jf j/D d.˛C=�/

is a Liouville form on each page can be verified by computing

�nC2 d# ^ .d.˛C=�//
n
D �2 d# ^ .d˛C/

n
C n� d�^ d# ^˛C ^ .d˛C/

n�1
¤ 0;

and the condition that ˛� is a contact form is verified by computing

˛� ^ d˛n
� D ˛C ^ .d˛C/

n
�C Œ�2 d# ^ .d˛C/

n
C 2n� d�^ d# ^˛C ^ .d˛C/

n�1�:

In both cases, the term �2 d# ^ .d˛C/
n is never negative and only vanishes along the

binding. The second term � d�^ d# ^˛C ^ .d˛C/
n�1 can be understood as follows:

Along the binding the term is positive, since � d�^ d# is an area form on the disk
and because the restriction of ˛C to the binding is by assumption a positive contact
form. If � is a function that increases linearly in radial direction at the binding K
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and that is constant outside a sufficiently small neighborhood of K , then it follows
that � d�^ d# is positive along the binding and everywhere else is nonnegative. This
shows that the function � can be chosen in such a way that .˛C; f / is a representation
and such that ˛� will be for any sufficiently large C a contact form.

It remains to show that ��D ker˛� is supported by .K; x#/. For this, note that .K; x#/
and .K; #/ have the same pages and binding. The restrictions of ˛� and ˛C agree on
both subsets, since the additional term vanishes when restricted to either. The contact
forms ˛C and ˛� induce opposite orientations on V , which is compatible with the
choice of coorientations given by # and x# respectively.

Lemma 3.2 Assume we are in the setup of the previous lemma. The abstract Liouville
open books corresponding to ˛� and .K; x#/ and to ˛C and .K; #/ have identical
ideal Liouville domains as pages, but their monodromies are the inverse of each other.

Proof Let f D fx C ify be the function used in the previous lemma. It is easy to
check that xf D fx � ify is a function defining .K; x#/ and since the restrictions of ˛C
and ˛� agree on all pages, it is clear that ˛�=j xf j D ˛C=jf j defines on every page the
same ideal Liouville structure as the initial open book. This shows that the pages of
the abstract open book corresponding to .K; #/ with contact form ˛C and the ones
corresponding to .K; x#/ with contact form ˛� are identical as ideal Liouville domains.

We set �C WD ˛C=jf j, and �� WD ˛�=jf j. Recall that we recover the monodromy of
the Liouville open book .K; #; d�C/ by following the flow of a spinning vector field
from an initial page back to itself. By Lemma A.16, we can specify a unique spinning
vector field YC by the equations

d#.YC/D 2� and �YCd�C D 0:

We claim that Y� D �YC is a spinning vector field for the Liouville open book
.K; x#; d��/. Clearly Y� vanishes along the binding and d x#.Y�/ D C2� . It only
remains to show that the flow of Y� preserves the ideal Liouville structure on every page.

For this simply compute

LY�d��D�LYC

�
d�C�C d

�
�2

jf j

�
^d#

�
DCLYC.d�^d#/DC.LYCd�/^d#:

Since d# vanishes on every page, we see that Y� is indeed a spinning vector field
for d�� .
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The time-1 flow of Y� is obviously the inverse of the time-1 flow of YC , and thus we
have shown that the corresponding abstract open books have the same page and that
the monodromies are the inverse of each other.

We now show that inverting the monodromy of an open book has no influence on the
Bourgeois construction.

Theorem B Let .V; �C/ and .V; ��/ be closed contact manifolds supported by ab-
stract Liouville open books that have the same page but inverse monodromy. Then the
two corresponding Bourgeois structures on V �T2 are contactomorphic.

This is a corollary of Lemma 3.2 combined with the following result.

Lemma 3.3 Assume we are in the setup of Lemma 3.1, so that .V; �C/ is a con-
tact manifold with a compatible open book decomposition .K; #/ that is represented
by .˛C; f /, and �� D ker.˛�/ with ˛� D ˛C�C jf j2 d# for sufficiently large C is
a contact structure on V that is supported by the open book .K; x#/.

Then, any Bourgeois contact structure on V �T2 associated to the contact open book
.�C;K; #/ and the standard orientation of T2 is isotopic through contact structures to
the Bourgeois contact structure on V �T2 associated to .��;K; x#/ and the reversed
orientation on T2 .

Proof With the notation as in Lemma 3.1, it follows that .˛�; xf / is a representation
of the open book .��;K; x#/, where xf D fx � ify denotes the complex conjugate.

From Definition 2.1, the Bourgeois contact structure associated to .˛C; f / (and the
standard orientation on T2 ) is given by

˛CCfx d'1�fy d'2:

Consider now the parametric family of 1–forms given by

˛� D ˛CCfx d'1�fy d'2� �C jf j2 d# for 0� � � 1:

A direct computation shows that ˛� ^ .d˛� /nC1 D ˛0 ^ .d˛0/
nC1, and thus these are

all contact forms. Very explicitly, we observe that ˛� Dˆ��˛0 , with ˆ� given by

ˆ� W V �T2
! V �T2; .pI'1; '2/ 7! .pI'1� �Cfy ; '2� �Cfx/:

Now, observe that ˛1 D ˛� C fx d'1 � fy d'2 , which is the Bourgeois form on
V � T2 associated to the representation .˛�; xf / and the orientation on T2 given
by .@'1

;�@'2
/.
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Finally we obtain the desired contactomorphism for Theorem B by composing the
isotopy from the previous lemma with the diffeomorphism .pI'1; '2/ 7! .pI'1;�'2/

on V �T2 .

4 Explicit constructions of fillings

In this section, we will prove Theorem A from the introduction.

Let .V; �/ be a contact manifold, and let ˛V be a contact form for � . A symplectic
manifold .W; !/ is called a weak filling of .V; �/ (see [26]) if W is compact with
(oriented) boundary @W D V , and if for every T 2 Œ0;1/,

˛V ^ .T d˛V C!/
n > 0;

where dim V D 2nC 1. In particular, this gives that the volume form ˛V ^ d˛n
V

must
induce the same orientation on V as the boundary orientation on V D @W .

The following argument was inspired by a 3–dimensional proof in [18], and has been
sketched in [26, Example 1.1]. A proof mostly identical to ours has recently appeared
in [17], but since the argument is relatively short we prefer to restate it here for
completeness of our presentation.

Theorem A(a) Let .V; �/ be a contact manifold that is weakly filled by .W; !/, and
let .K; #/ be any open book that is compatible with � . Then the associated Bourgeois
contact structure on V �T2 is isotopic to a contact structure that can be weakly filled
by .W �T2; !˚ volT2/.

Proof First, we verify that the orientation induced by ˛ on V � T2 matches the
boundary orientation induced on V �T2 D @.W �T2/. Observe that the boundary
orientation on V �T2 is the orientation induced by ˛V ^ d˛n

V
^ dvolT2 because V

is weakly filled by W . The claim then follows from (iv) in Definition 2.2.

Recall the modified Bourgeois contact form ˛" from Remark 2.3:

˛" WD ˛V C "ˇ:

Then, define the following family of polynomials:

P".T / WD ˛" ^ .T d˛"C!C volT2/nC1:

These have degree at most nC1 in T with coefficients in �2nC1.V �T2/ that depend
smoothly on ".
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We will show that if " > 0 is chosen sufficiently small, then P".T / will be positive for
every T 2 Œ0;1/, so that .W �T2; !˚ volT2/ is a weak filling of ker˛" , which by
Remark 2.3 is isotopic to ker˛ .

First note from (1) that the leading term of P" is "2˛ ^ d˛nC1T nC1. Its coefficient
vanishes for "D 0, but is strictly positive for "¤ 0. For "D 0, we compute

P0.T /D ˛V ^ .T d˛V C!C volT2/nC1
D .nC 1/˛V ^ .T d˛V C!/

n
^ volT2 :

This form is strictly positive for all T 2 Œ0;1/ by the assumption that .W; !/ is a
weak filling of .V; �/. Furthermore we see that P0.T / is of degree n in T with a
strictly positive coefficient for the leading term. Any small perturbation of P0 inside
the polynomials of degree n will also be strictly positive on T 2 Œ0;1/: If we choose
a sufficiently large T0 , the leading term of P0.T / dominates the remaining terms of
the polynomial for T > T0 . Thus none of the polynomials of degree n that are close
to P0 will vanish for T > T0 . On the other hand, if we only consider a compact
interval Œ0;T0�, it follows by continuity that a small perturbation of P0 (even in the
space of continuous functions) cannot vanish on Œ0;T0� either.

Combining this with the positivity of the coefficient for T nC1–term in P" we obtain
the desired result.

Before proving part (b) of Theorem A, we will briefly recall the basic definitions on
Weinstein manifolds.

A Weinstein manifold .W; !;X; f / is a symplectic manifold .W; !/ without boundary,
together with

(i) a complete vector field X such that LX! D ! , a so-called complete Liouville
vector field, and

(ii) a proper Morse function f W W ! Œ0;1/ that is a Lyapunov function for X,
meaning that there is a positive constant ı such that df .X /� ı �.kXk2Ckdf k2/

with respect to some Riemannian metric.

Other definitions may not require f to be a Morse function, but we follow [11] and
just note that a given Weinstein manifold is symplectomorphic to one whose Lyapunov
function is Morse.

The topology of a Weinstein manifold .W; !;X; f / is relatively restricted, because
the index of every critical point of f is less than or equal to half the dimension
of W . If f has only critical points of index strictly less than 1

2
dim W , then we say
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that .W; !;X; f / is a subcritical Weinstein manifold; and if f has only critical points
of index not more than 1

2
dim W � k , then we say that .W; !;X; f / is k–subcritical.

The complex plane with the standard symplectic form !0 D dx ^ dy , Liouville vector
field X0 D

1
2
.x@xCy@y/, and Morse function f0.xC iy/D x2Cy2 is a Weinstein

manifold. The stabilization of a Weinstein manifold .W; !;X; f / is the product
Weinstein manifold .W �C; !˚!0;X ˚X0; f Cf0/.

The stabilization of any Weinstein manifold is subcritical, and according to the following
result by Cieliebak [10; 11, Section 14.4], subcritical Weinstein manifolds are essentially
stabilizations.

Theorem 4.1 (Cieliebak) Every subcritical Weinstein manifold of dimension 2n is
symplectomorphic to the stabilization of a Weinstein manifold of dimension 2n� 2.

Note that we only use this theorem to obtain that any compact Lagrangian in a sub-
critical Weinstein domain is Hamiltonian displaceable. This simpler result is given
by [2, Lemma 3.2].

A regular level set Mc D f �1.c/ of a Weinstein manifold .W; !;X; f / carries a
natural contact structure given by the kernel of the 1–form ˛c WD!.X; � /jTMc

. We say
that a contact manifold .V; �/ is (subcritically) Weinstein fillable if it is contactomorphic
to a regular level set .Mc ; ker˛c/ of a (subcritical) Weinstein manifold .W; !;X; f /

such that all critical values of f are strictly smaller than c .

Let .V; �/ be a contact manifold that is subcritically filled by a stabilized Weinstein
manifold .W � C; ! ˚ !0;X ˚ X0; f C f0/. A computation shows that .V; �/
is supported by the open book with binding K0 D V \ .W � f0g/ and fibration
#0W V nK0! S1 given by .p; z/ 7! z=jzj. The corresponding abstract open book has
page W and trivial monodromy. The details of this are carried out in Example A.19.

The following proposition finishes the proof of Theorem A. It shows that certain
Bourgeois contact structures are Weinstein fillable.

Theorem A(b) Let .V; �/ be a closed contact manifold that is subcritically filled
by the Weinstein manifold .W �C; !˚!0;X ˚X0; f C f0/. Let .K0; #0/ be the
associated open book with trivial monodromy.

The Bourgeois contact structure on V � T2 obtained by using the contact open
book .K0; #0/ can be filled by the Weinstein manifold

.W �T �T2; !˚ d�can;X ˚XT2 ; zf /;
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where the cotangent bundle of T2 is written with coordinates .q1; q2Ip1;p2/ 2

T2 �R2 , the vector field XT2 equals p1@p1
Cp2@p2

, and zf is a small perturbation
of f CfT2 , where fT2 D p2

1
Cp2

2
, as described in [11, Example 11.12(2)].

The perturbation of zf is necessary to convert the Morse–Bott function to a Morse
function.

Proof Identify .V; �/ with the regular level set Mc in .W �C;J˚i/. The Bourgeois
structure on Mc �T2 is given by the contact form

˛ D �W Cx dy �y dxCx d'1�y d'2;

where �W is the Liouville form �X! on W , z D xC iy are the coordinates on C ,
and .'1; '2/ are the coordinates on the torus.

The diffeomorphism from W �C � T2 to W � T �T2 that sends .x;yI'1; '2/ 2

C � T2 to .q1; q2Ip1;p2/ D .�'1 � y; '2 C xIx;y/ 2 T �T2 and keeps the W –
factor unchanged is the desired contactomorphism. Note in particular that it pulls back
f CfT2 to f Cf0 .

5 Obstructions to subcritical fillings

The aim of this section is to show that most Bourgeois structures are not subcritically
fillable. We will first introduce the necessary preliminaries to prove Theorem C.

Let .V; �/ be a contact manifold.

Definition 5.1 A submanifold P of a contact manifold .V; �/ is called pre-Lagrangian

� if dim P D 1
2
.dim V C 1/, and

� if there exists a contact form ˛ for � such that d˛jTP D 0.

It is easy to see that � induces a regular Legendrian foliation on such a P.

The symplectization .SV; d�can/ of .V; �/ is the submanifold

SV WD f.p; �p/ 2 T �V j ker �p D �p and �p agrees with the coorientation of �pg

of the cotangent bundle of V , where �can denotes the restriction of the canonical Liou-
ville 1–form of T �V . We denote by �V W SV !V the projection �V .p; �p/Dp . The
choice of a contact form ˛ for � allows us to identify .SV; d�can/ with .R�V; d.et˛//

via the map .t;p/ 2 R� V 7! et
p̨ 2 SV , making use of the tautological property

ˇ��can D ˇ for ˇ 2�1.V /.
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An equivalent definition of P � V being pre-Lagrangian is to say that the symplectiza-
tion contains a Lagrangian L� SV such that the projection �V W SV ! V restricts to
a diffeomorphism �V jLW L! P (see [15, Proposition 2.2.2]). Every such Lagrangian
is called a Lagrangian lift of P . These lifts are related to the choice of a contact form ˛

with d˛jTP D 0 by LD ˛.P /, where ˛ is regarded as a section V ! SV .

Gromov [21, 2.3.B3 ] calls a Lagrangian L in a symplectic manifold .W; !/ weakly
exact if

R
D2 u�! vanishes for every smooth map

uW .D2; @D2/! .W;L/:

In the spirit of [25] we use the same notion for pre-Lagrangians: a pre-Lagrangian P

in a contact manifold .V; �/ is called weakly exact if for every contact form ˛ with
d˛jTP D 0 and for every smooth map uW .D2; @D2/! .V;P /, the integral

R
D2 u�d˛

vanishes. In fact, if this integral is zero for one such form, then it is zero for every ˛0

for which d˛0jTP D 0.

In contrast to the Lagrangian case where weak exactness is a rather subtle symplectic
property, the weak exactness for pre-Lagrangians reduces to the following topological
observation:

Lemma 5.2 A closed pre-Lagrangian P � .V; �/ is weakly exact if and only if every
smooth loop in P that is positively transverse to the foliation F WD �\TP is nontrivial
in �1.V /.

Remark 5.3 In dimension 3, the only type of closed pre-Lagrangian is an embedded
torus whose characteristic foliation is linear. In this case, Lemma 5.2 states that weak
exactness is equivalent to the incompressibility of the torus, because the transverse
loops generate the full fundamental group of the torus.

Tight contact manifolds with positive Giroux torsion contain “many” incompressible
pre-Lagrangians and are at the same time not even strongly fillable. Theorem C requires
the existence of only one incompressible pre-Lagrangian, but this weaker condition
only contradicts a more specific type of filling.

Proof of Lemma 5.2 Let ˛ be a contact form on V such that d˛jTP D 0.

Assume that P is weakly exact and that  � P is a smooth loop that is positively
transverse to F. If Œ � were trivial in �1.V /, we could choose a (smooth) map
uW .D2; @D2/! .V;P / with uj@D2 D  , so that by Stokes’ theorem,Z

u

d˛ D

Z


˛:
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Since P is weakly exact, the left integral had to be 0, while the right integral has to
be strictly positive, because ˛. 0/ > 0 everywhere. Thus it follows that  cannot be
contractible in V .

For the opposite direction, assume now that every smooth loop in P that is positively
transverse to the foliation is nontrivial in �1.V /. To show that P is weakly exact, we
have to prove that for any smooth map uW .D2; @D2/! .V;P / the integral

R
D2 u�d˛DR

@D2 u�˛ is 0.

We show below that every loop  in P with
R
 ˛ > 0 can be homotoped to one that

is positively transverse to F. Our starting assumption then implies that none of the
loops  � P with

R
 ˛ ¤ 0 can be contractible in V , and since the boundary of a

disk u clearly is contractible, we obtain
R
@D2 u�˛ D 0 as we wanted to show.

It remains to prove that every smooth loop  W S1! P satisfying
R
 ˛ > 0 is isotopic

to a smooth loop z W S1! P that is everywhere positively transverse to F.

By assumption, C D
R
 ˛ is positive, and we define g.t/D ˛. 0.t//, so thatZ 2�

0

g.t/ dt D

Z


˛ D C:

Set

f .t/D
C t

2�
�

Z t

0

g.s/ ds;

and observe that f .0/D 0D f .2�/ and that f 0.t/D C=.2�/�g.t/.

Choose any vector field Y on P such that ˛.Y /D 1, and let ˆt .x/Dˆ
Y
t .x/ denote

its time-t flow. Note that ˆt preserves ˛jTP .

For every � 2 Œ0; 1�, the map
t 7!ˆ�f .t/. .t//

provides a smooth loop S1! P, and for � D 1 we obtain

˛
�

d

dt
Œ f̂ .t/. .t//�

�
D ˛.f 0.t/Y C f̂ .t/�

0.t//D f 0.t/Cg.t/D
C

2�
> 0:

This thus constructs the desired isotopy.

The link between weakly exact pre-Lagrangians and weakly exact Lagrangians is estab-
lished by the following lemma whose proof is an easy exercise using the tautological
property and Stokes’ theorem (see also [25, Lemma 2.2]).

Lemma 5.4 A pre-Lagrangian P � .V; �/ is weakly exact if and only if its Lagrangian
lifts are weakly exact in the symplectization .SV; d�can/.
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Recall that a Lagrangian L is called displaceable if there is a compactly supported
Hamiltonian isotopy �t such that �1.L/\LD∅. Accordingly, a pre-Lagrangian P

is called displaceable if there is a contact isotopy �t such that �1.P /\P D∅.

The proof of Theorem C uses the following result by Gromov as an essential ingredient:

Theorem 5.5 Let .W; d�/ be an exact symplectic manifold, convex at infinity.

(a) There are no closed, weakly exact Lagrangians in .W �C; d�˚ dz ^ dxz/; see
[21, Section 2.3.B3 ].

(b) There are no closed, displaceable weakly exact Lagrangians in .W; d�/; see
[21, Section 2.3.B0

3
].

With this we are ready to prove Theorem C, which simply translates the statements above
to certain pre-Lagrangians to give obstructions to (subcritical) Weinstein fillability.

Let .V; �/ be a regular level set f �1.c/ of a Weinstein manifold .W; !;X; f / such
that all critical values of f are smaller than c . Using that the flow ˆX

t of the Liouville
field is by assumption complete, we construct a symplectic embedding j W SV ,!W of
the symplectization of V in W . The image j .SV / is dense in W , and its complement
consists only of the Lagrangian skeleton of W ; that is, W n j .SV / is the union of the
stable manifolds of the critical points of X. These are all of dimension n� 1

2
dim W

and of dimension n < 1
2

dim W if W is subcritical. Also the image of a closed
Lagrangian L� SV is clearly a closed Lagrangian j .L/ in W .

By Lemma 5.4, a weakly exact pre-Lagrangian in V gives rise to a weakly exact
Lagrangian in the symplectization SV . In the context of Weinstein fillings, we have
the following stronger result (see also the proof of [3, Proposition 5.1]):

Lemma 5.6 Let .W; !;X; h/ be the Weinstein filling of a contact manifold .V; �/,
and let P � .V; �/ be a pre-Lagrangian with Lagrangian lift L� .SV; d�/. Assume
either that dim W � 6 or that W is subcritical and dim W D 4.

The pre-Lagrangian P is weakly exact if and only if j .L/�W is weakly exact in W .

Proof Since every map vW .D2; @D2/! .SV;L/ can be viewed as a map into W ,
the weak exactness of j .L/�W implies directly the one of L� SV . By Lemma 5.4
it then follows that P is also weakly exact.

Assume now that L � SV is a weakly exact Lagrangian and let uW .D2; @D2/!

.W; j .L// be a smooth map. Since the skeleton of W is only n–dimensional, and
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since dim W D 2n� 6, we see that nC2< 2n, so that the image of u will generically
not intersect the skeleton of W . After a homotopy, we may assume that the image of u

lies in the complement of the Lagrangian skeleton and thus in j .SV /, and we may
apply the weak exactness assumption of L in SV .

If dim W D 4, but if W is subcritical, then we arrive to the same conclusion because
the skeleton of W is only 1–dimensional.

Theorem C A closed contact manifold containing a weakly exact pre-Lagrangian P

is not subcritically Weinstein fillable.

If the dimension of the contact manifold is at least 5 and if P is displaceable then it
follows that the contact manifold is not even Weinstein fillable.

Proof Combining Theorem 4.1 by Cieliebak with Theorem 5.5(a) by Gromov, we see
that subcritical Weinstein manifolds do not contain any weakly exact Lagrangians. As a
consequence of Lemma 5.6, it then follows that contact manifolds that are subcritically
fillable may not contain weakly exact pre-Lagrangians. This proves the first statement
of the theorem.

According to [25, Lemma 2.4] a contact isotopy that displaces a pre-Lagrangian lifts to
a Hamiltonian isotopy with compact support in the symplectization that displaces a
Lagrangian lift of the pre-Lagrangian. Using Theorem 5.5(b) combined with Lemma 5.6
we then see that a Weinstein fillable contact manifold of dimension at least 5 may not
contain any displaceable weakly exact pre-Lagrangians.

Example 5.7 Let .W; !/ be a closed manifold with an integral symplectic form,
so that we can find a principal circle bundle � W V ! W with Euler class Œ!�. The
prequantization .V; ˛/ is a contact manifold where we choose a contact form ˛ such
that d˛ D ��! and ˛.Z/D 1 for Z the infinitesimal generator of the circle action
(this implies that ˛ is invariant under the circle action and Z is its associated Reeb
vector field).

Any Lagrangian L in W is covered by a pre-Lagrangian P D ��1.L/ in V , because
˛jTP is not singular and d˛jTP D ��.!jTL/ D 0; see [15]. Furthermore if L is
weakly exact so is P, because if uW .D2; @D2/! .V;P / is any smooth map, then we
obtain with a simple calculationZ

D2

u�d˛ D

Z
D2

u���! D

Z
D2

.� ıu/�! D 0;

using that � ıu is a smooth map in W with boundary in L.
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A prequantization over a symplectic manifold containing a weakly exact Lagrangian is
thus not subcritically Weinstein fillable.

Lemma 5.8 Let .V; �/ be a contact manifold with compatible open book .K; #/, and
equip V �T2 with the Bourgeois structure corresponding to this open book. We have
the following two constructions of pre-Lagrangians:

(a) If there is a closed Legendrian L � V contained in one page of .K; #/ then
L�T2 � V �T2 is a weakly exact pre-Lagrangian.

(b) Any closed pre-Lagrangian P � K in the binding .K; � \ TK/ yields a pre-
Lagrangian P �T2 in the Bourgeois manifold. This pre-Lagrangian is weakly
exact if and only if every loop in P that is positively transverse to the character-
istic foliation is noncontractible in V .

Part (b) also applies directly to more general Bourgeois–Gironella structures on V �†.

Proof (a) We will first show that L�T2 is a pre-Lagrangian. Let ˛V be a contact
form for � that is supported by the open book .K; #/. The Bourgeois structure
on V � T2 is given as the kernel of the form ˛ D ˛V C fx d'1 � fy d'2 , where
.˛V ; fxCify/ is a representation of .K; #/ and � . If L is Legendrian, then ˛V jTLD0.

Since L is contained in the interior of one of the pages, either fx or fy does not
vanish anywhere on L. Suppose it is fx , then we extend fxjL to a nowhere-vanishing
function yfx on V �T2 that we use to rescale ˛ . For this new contact form, we have
˛jT .L�T2/ D d'1 � c d'2 , where c is a constant fy=fx D tan#jL . This implies
that L�T2 is pre-Lagrangian.

To see that L�T2 is weakly exact choose any loop  that is positively transverse to the
foliation of L�T2 given by ker˛ . According to Lemma 5.2, L�T2 is weakly exact
if  is not contractible in V �T2 , ie nontrivial in �1.V �T2/D �1.V /��1.T

2/.
Since the characteristic foliation on L�T2 is the lift of the linear foliation on T2 , it
follows that  projects to a nontrivial loop in �1.T

2/.

(b) Let P be a pre-Lagrangian in the binding K . Notice that both functions fx and fy

vanish along K�T2 so in particular along P �T2 . Notice also that P �T2 is of the
correct dimension. It follows therefore that P �T2 is pre-Lagrangian. The statement
about weak exactness follows immediately from Lemma 5.2, and that �1.V �T2/

decomposes as a product.
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Corollary 1.4 from the introduction now follows immediately from Theorem C and
Lemma 5.8(a). As an application of Theorem C we are able to show that even though
some Bourgeois contact structures are subcritically fillable, most are not. In particular,
we see that changing the open book for a given contact structure may destroy the
subcritical fillability of the resulting Bourgeois structure.

Appendix Contact open books and ideal Liouville domains

The aim of this appendix is to give a short overview on the ideal Liouville domains
introduced by Giroux [20] and illustrate their use by working out a few classical
examples of contact open books.

Even though the relation between contact open books and abstract open books is by
now well known and has been discussed in several sources (eg [19; 16; 22]), the ideal
Liouville domain machinery of Giroux [20] encapsulates the fussy technical details
(such as smoothing corners and modifying monodromy maps near the boundary of the
page), thus leading to a significantly cleaner exposition.

An abstract Liouville open book consists of an ideal Liouville domain together with a
monodromy map (see Definition A.7).

Theorem A.1 [20, Propositions 17 and 21] Given a contact manifold .V; �/ with
contact open book .K; #/ that carries the contact structure, we may construct an abstract
open book .F; !; �/, where .F; !/ is an ideal Liouville domain and � 2 Diff@.F; !/.

This construction is well defined up to homotopy of the pair .!; �/ through ideal
Liouville structures on F and symplectomorphisms relative to the boundary.

Two contact structures on V homotopic through contact structures carried by .K; #/
induce the same .F; !; �/ likewise up to homotopy of the pair .!; �/.

Furthermore, given an abstract open book .F; !; �/, there exists a .V;K; #/, well-
defined up to diffeomorphism and a contact structure � carried by .K; #/ and unique
up to homotopy of carried contact structures, whose associated abstract open book
is .F; !; �/.

Note that two contact structures on V homotopic through contact structures carried
by .K; #/ are clearly contactomorphic, but there may not exist a contactomorphism
preserving the open book .K; #/.

In the next three sections, we explain the formalism introduced by Giroux and illustrate
it by applying it to the two most elementary open books on the standard contact sphere.
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We also verify that an open book with trivial monodromy is explicitly fillable by the
Weinstein manifold obtained by stabilizing the page (in the sense of Weinstein domains;
see Section 4).

A.1 Contact open books

Definition A.2 Let V be a closed manifold. An open book on V is a pair .K; #/, where

� K � V is a nonempty codimension-2 submanifold with trivial normal bundle;
� # W V nK ! S1 is a fibration that agrees in a tubular neighborhood K �D2

of K DK � f0g with a normal angular coordinate.

We call K the binding of the open book, and we call the closure F' WD #
�1.ei'/[K

of every fiber a page of the open book.

Note that the pages are smooth compact submanifolds with boundary K .

Remark A.3 It is easy to see that an open book can equivalently be specified by a
smooth function hW V !C for which 0 is a regular value such that Kh WD h�1.0/ is
not empty, and such that

#hW V nKh! S1; p 7!
h.p/

jh.p/j
;

is a submersion. The set of smooth functions defining a given open book is a nonempty
convex subset of C1.V;C/.

If V is an oriented manifold, the coorientations specified by # orient both the pages
and the binding. From a practical viewpoint it is helpful to formulate these orientations
using volume forms.

� A vector R 2 TpV at a point p 2 V nK is positively transverse to a page if
and only if d#.R/ > 0. Given a positive volume form �V on V , it follows
that �R�V determines the positive orientation for the page. A volume form �F

on a page F' is thus positive if and only if d# ^�F is positive on T V jInt F' .
� Identify the neighborhood of K with K�D2 such that the angular coordinate '

agrees with # and such that the disk has the canonical orientation with coordi-
nates .x;y/2D2 . Then it follows that for a positive volume form �V on V the
restriction of �@y

�@x
�V is a positive volume form on the binding. Conversely, a

volume form �K on K is positive if and only if dx^dy^�K D r dr^d'^�K

is a positive volume element on T V jK .

Note that with these orientations the binding is oriented as the boundary of the pages.
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Definition A.4 [19] Let .V; �/ be a closed contact manifold. We say that � is
supported by an open book decomposition .K; #/ of V if � admits a contact form ˛

such that

(i) the binding K is a contact submanifold with positive contact form ˛K WD ˛jTK ;

(ii) the restriction of d˛ to the interior Int F' of every page is a positive symplectic
form.

In both cases, “positive” refers to the orientation induced on K and the pages by the
open book decomposition. We call a contact form ˛ as above, adapted to the open
book, and we call .�;K; #/ a contact open book decomposition.

The following remark is in a way an extension of Remark A.3 to the contact category.

Remark A.5 Let V be a closed manifold, let ˛ be a contact form with Reeb field R˛ ,
and let hD hxC ihy W V !C be a smooth function.

To show that Kh WD h�1.0/ and #h D h=jhj define an open book .Kh; #h/ and that ˛
is adapted to it, it suffices to verify that

(i) Kh is nonempty and ˛^ .d˛/n�1 ^ dhx ^ dhy is positive along Kh ;

(ii) 1
2
i.h d xh.R˛/� xh dh.R˛//D hx dhy.R˛/�hy dhx.R˛/ > 0 on all of V nKh .

(Here, as above, xhD hx � ihy denotes the complex conjugate.)

Proof By condition (i), 0 is a regular value of h. Recall that

d#h D
i

2jhj2
.h d xh� xh dh/D

1

jhj2
.hx dhy � hy dhx/I

thus condition (ii) simply implies that d#h.R˛/ > 0, and it follows that #h is a
submersion. Thus h defines an open book by Remark A.3. Let us now show that ˛ is
adapted to the open book .Kh; #h/.

Since ˛ ^ .d˛/n is a volume form, �R˛˛ ^ .d˛/
n D .d˛/n cannot be degenerate on

any hyperplane transverse to R˛ . In particular, because d#h.R˛/ > 0, the Reeb
field is positively transverse to the interior of the pages, and d˛ restricts to a positive
symplectic form on them.

Because TKh lies in the kernel of the 2–form d.jhj2 d#h/D 2 dhx^dhy , condition (i)
implies then that ˛ restricts to a contact form on Kh . Furthermore, d.jhj2 d#h/ defines
the positive coorientation for the binding, and thus ˛jTKh

is by (i) positive.
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We now describe two elementary examples of contact open book decompositions of the
standard sphere that we will study in detail in the next two sections of this appendix
using the language of [20].

Example A.6 We assume that the unit sphere S2n�1 � Cn is equipped with the
standard contact structure �0 , which is the hyperplane field of complex tangencies.
Equivalently, this is given as the kernel of the 1–form

˛0 D
1

2

nX
jD1

.xj dyj �yj dxj /;

where we write the coordinates of Cn as zD .z1; : : : ; zn/D .x1C iy1; : : : ;xnC iyn/.

Every holomorphic function gW Cn ! C with an isolated singularity at the origin
induces a contact open book decomposition of the standard sphere (after possibly
shrinking the radius of the sphere; see [28] for the topological and [9] for the contact
case). For the concrete applications we have in mind here, we will not appeal to this
general result, and instead study the following two very explicit situations.

(a) Let g1.z1; : : : ; zn/ D z1 . Then the binding is the submanifold K D fz1 D 0g

and the fibration is # W .z1; : : : ; zn/ 7! z1=jz1j. The binding K is just the standard
contact sphere and the Reeb vector field R0 D .iz1; : : : ; izn/ for ˛0 generates the
Hopf fibration which is transverse to the (the interior) of every page F' Dfarg z1D 'g,
so that d˛0 will restrict to a symplectic form defining the correct orientation on every
page. Furthermore, since the binding K is connected, it follows from Stokes’ theorem
that ˛ induces the boundary orientation of the pages on K . It follows that .K; #/ is a
contact open book decomposition.

(b) Let us now study the case of g2.z1; : : : ; zn/ D z2
1
C � � � C z2

n . The complex
hypersurface Vg2

D g�1
2
.0/ is everywhere smooth except at the origin and since it is

invariant under linear scaling ��.z1; : : : ; zn/D .��z1; : : : ; ��zn/ with �2RC , it follows
that Vg2

is transverse to S2n�1, so that the binding K D g�1
2
.0/\S2n�1 is a smooth

codimension 2 submanifold of the standard sphere. To check the contact condition note
that the restriction of a plurisubharmonic function to a complex submanifold preserves
this property. In our case, the restriction of z 7! kzk2 to Vg2

is such a function, and K

is one of its regular level sets, so that K is a contact submanifold.

For the pages, notice that the Reeb field R0 increases the argument of g2 everywhere g2

does not vanish. This implies that R0 is positively transverse to the pages, and in
particular d˛0 defines a symplectic structure on them.
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It is well known from the “classical” treatment that the page in the first example is a
ball with the standard symplectic structure and that its monodromy is the identity. In
the second example, the page is the cotangent bundle of the sphere and the monodromy
is a generalized Dehn twist. In Examples A.10 and A.17 we will work out the abstract
open books in these two cases using the formalism of ideal Liouville domains.

A.2 Ideal Liouville domains

As we already mentioned above, the pages of an abstract open book will be described
by an ideal Liouville domain.

Definition A.7 Let F be a compact manifold with boundary K WD @F, and let ! be
an exact symplectic form on the interior Int F D F nK .

The pair .F; !/ is an ideal Liouville domain if there exists a primitive � 2�1.Int F /

for ! such that for any smooth function uW F ! Œ0;1/ with regular level set K D

u�1.0/, the 1–form u� extends to a smooth 1–form �u on all of F whose restriction
to K is a (positive) contact form. Every such primitive � is called a Liouville form
of .F; !/.

The intuitive picture of an ideal Liouville domain is that of a classical Liouville domain
that has been completed by attaching a cylindrical end and has then been compactified
by fixing a certain asymptotic information at “infinity” that is captured in the boundary
of the ideal Liouville domain. Below we give a formal description of this completion
process.

For the many properties shared by these objects, we refer to [20]. In particular
we point out that the contact structure induced on the boundary is, as observed by
Courte [12, Proposition 2.4], already determined by .F; !/ itself and does not depend
on the auxiliary Liouville form chosen [20, Proposition 2]. We denote the space of all
diffeomorphisms of F that keep the boundary pointwise fixed and that preserve ! on
the interior by Diff@.F; !/.

Definition A.8 An abstract Liouville open book consists of an ideal Liouville do-
main .F; !/ and a diffeomorphism � 2 Diff@.F; !/.

We will now describe the completion of classical Liouville domains allowing us to
do the transition from classical to ideal Liouville domains. Recall that a “classical”
Liouville domain .F; �c/ is a compact manifold with boundary K such that

� !c WD d�c is a symplectic form;
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� the Liouville vector field X� defined by the equation �X�!cD�c points along K

transversely out of the domain F.

In particular it follows that �c restricts on K (oriented as the boundary of .F; !c/) to
a positive contact form.

Following [20, Example 9], we will convert .F; �c/ into an ideal Liouville domain
.F; !/, keeping the smooth manifold F unchanged, but modifying d�c to a new
symplectic form ! on Int F (that will be related to but different from !c !).

Lemma A.9 The space of all functions uW F ! Œ0;1/ satisfying

� u�1.0/DK is a regular level set;

� X�.ln u/ < 1 on Int F (or equivalently du.X�/ < u on all of F )

is convex and nonempty.

Proof Convexity is a basic calculation; for the existence use a collar neighborhood
.�"; 0��K with coordinates .t;x/ defined by the flow of X� , and let u.t;x/ be a
function that agrees with �t close to t D 0, and flattens out to be constant on a slightly
larger neighborhood of K .

With a function u as in the previous lemma, we claim that ! WD d.�c=u/ is an ideal
Liouville structure on F. Firstly, ! is symplectic on Int F : At points where �c D 0

we have ! D .1=u/!c ; to check the nondegeneracy of ! at the remaining points note
first that �c vanishes if and only if X� does, then compute

!n
D

�
1

u
d�c �

1

u2
du^�c

�n
D

1

un
.!n

c � n d.ln u/^�c ^!
n�1
c /:

Plugging X� into !n and using that �X�!c D �c and �X��c D 0, we see that

�X�!
n
D

n

un
.1�X�.ln u//�c ^!

n�1
c D

1

un
.1�X�.ln u//�X�!

n
c ;

which is nondegenerate.

This implies now that .F; !/ is an ideal Liouville domain, because � WD .1=u/�c is
a primitive of ! for which u� clearly restricts to a contact form on K . The contact
structure on the boundary of .F; !/ is equal to the initial contact structure.

As explained in [20, Example 9], one can equivalently obtain .F; !/ by attaching an
infinite cylindrical end to the boundary and then compactifying the result. Also note
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that by the convexity of the admissible choices for u the completion is unique up to
isotopy.

The completion of a classical Liouville domain to an ideal Liouville domain is par-
ticularly straightforward when applied to a Weinstein domain, or equivalently for
our purposes, a Weinstein manifold .W; !;X; f / of finite type. In this case, choose
a regular value C such that F WD ff � C g is a nonempty domain with smooth
boundary. In particular, .F; �/ with the Liouville form � WD �X! is a classical
Liouville domain, the function u WD C � f is nonnegative on F and has the bound-
ary K D @F as regular level set, and since f is a Lyapunov function for X, we check
that X.ln u/D �.1=u/X.f / � 0 is always smaller than 1. The interior of the ideal
Liouville domain F is symplectomorphic to cutting off the part ff >C g from W and
replacing it by the cylindrical end of the level set ff DC g. By choosing C sufficiently
large, this then recovers the Weinstein manifold of finite type W .

We will now illustrate the notion of an ideal Liouville domain with two basic examples
obtained via this completion procedure. As we will see in the next section, these two
examples correspond to the pages of the open books from Example A.6.

Example A.10 (a) Let D2n be the closed unit disk in .Cn; !0 D d�0/ with coordi-
nates zD xC iy D .x1C iy1; : : : ;xnC iyn/ and let �0 D

1
2

Pn
jD1.xj dyj �yj dxj /

be the standard Liouville form. We could of course use the fact that Cn is a Weinstein
manifold with Liouville vector field X� D

1
2

Pn
jD1.xj .@=@xj / C yj .@=@yj // and

Lyapunov function f .z/D kzk2 to apply the remark we just made.

Instead we will perform the completion procedure using the function

uW D2n
! Œ0;1/; z 7! 1�kzk4:

The reason we make this unexpected choice for u is to recover the page of the abstract
open book in Example A.17. Recall that up to symplectomorphism, the ideal Liouville
domain does not depend on the particular choice of the function satisfying the properties
of Lemma A.9.

Note first that the boundary of the closed disk is a regular level set of u since u

factors as u.z/D .1�kzk/.1Ckzk/.1Ckzk2/. Furthermore, X�.kzk
4/� 0, so that

X�.ln.1�kzk4//� 0.

Setting � D �0=.1� kzk
4/, we obtain that .D2n; d�/ is the desired completion of

.D2n; �0/ to an ideal Liouville domain.
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The interior of the ideal Liouville domain
�
D2n; d�/ is symplectomorphic to

.Cn; !0 D d�0/I

simply use the diffeomorphism

D2n
!Cn; z 7!

1p
1�kzk4

z;

to pull back �0 .

(b) Let us now see how to associate an ideal Liouville domain to a unit cotangent bundle.
For this, let .L;g/ be a closed Riemannian manifold, and let �can be the canonical
1–form on T �L. It is well known that .T �L; d�can;X�; f / with X� D p � @p and
f .q;p/D kpk2 is a Weinstein manifold.

As described above we can apply the completion using the function u D 1 � f ,
so that the (closed) unit disk bundle D.T �L/ D f.q;p/ 2 T �L j kpk � 1g is an
ideal Liouville domain with the symplectic structure given by d� where we have set
�D �can=.1�kpk

2/.

In this case, we can identify the interior of .D.T �L/; d�/ with .T �L; d�can/ using
the map D.T �L/! T �L given by .q;p/ 7! .q;p=.1�kpk2//.

A.3 From contact open book decompositions to abstract Liouville open
books and back

The link between abstract Liouville open books and contact open books is established
by the following intermediate object.

Definition A.11 A Liouville open book .K; #; !t / on a closed manifold V is an open
book .K; #/, each of whose pages Ft is equipped with a (positive) ideal Liouville
structure !t 2�

2.Int Ft /. To guarantee a certain compatibility between the !t , we
require that there be

� a global smooth 1–form ˇ on V called a binding form and

� a function f W V !C defining the open book (as in Remark A.3)

such that ˇ=jf j restricts on the interior of each page Int Ft D Ft nK to a Liouville
form of !t .

We say that the pair .ˇ; f / is a representation of the Liouville open book.

Note in particular that a binding form induces a positive contact form on the binding,
since ˇ restricts on the boundary of each page to a contact form.

Algebraic & Geometric Topology, Volume 19 (2019)



On properties of Bourgeois contact structures 3441

We often make use of the following technical lemma.

Lemma A.12 Let .K; #; !t / be a Liouville open book on a manifold V . Choose
a representation .ˇ; f / such that � WD ˇ=jf j restricts on the interior of each page
Int Ft D Ft nK to a Liouville form of !t jInt Ft

.

Then it follows that
�V WD jf j

nC2 d# ^ .d�/n

extends to a well-defined volume form on all of V .

Furthermore, writing f D � ei#, we have

(3) �V D n� d�^ d# ^ˇ^ .dˇ/n�1
C �2 d# ^ .dˇ/n:

Proof It is clear that �V is a volume form on V nK , so it only remains to analyze its
behavior along the binding. Writing f in polar coordinates, and replacing � by ˇ=� ,
we obtain (3), whose right-hand side is defined on all of V . Its second term vanishes
along the binding while the first one is positive, since the binding itself is a positive
contact submanifold of .V; �/. This proves that �V is a volume form.

Here is a tabular summary of the three notions introduced so far and their relationships:

abstract Liouville
open book Liouville open book contact open book

ideal Liouville
domain .F; !/

$ open book .K; #/ on V $ open book .K; #/ on V

� 2 Diff@.F; !/ $
ideal Liouville structure !t

on each page Ft
$

contact structure � on V

carried by .K; #/

The connection between contact open books and Liouville open books is the following:
a contact structure is said to be symplectically supported by a Liouville open book if it
admits a contact form that is a binding form.

Proposition A.13 [20, Proposition 18] If .K; #/ is a contact open book on V sup-
porting the contact structure � , and f W V !C is any defining function, then there exists
a contact form ˛ such that d.˛=jf j/ restricts to each page as an ideal Liouville structure.
Furthermore, for fixed f , the set of such forms ˛ is a nonempty convex cone.

In other words, for each defining function f , there is a contact form ˛ such that .˛; f /
is the representation of a Liouville open book on V . (Notice also that the space of
defining functions for a given open book is also convex and nonempty, so the space of
pairs is contractible.)

Algebraic & Geometric Topology, Volume 19 (2019)



3442 Samuel Lisi, Aleksandra Marinković and Klaus Niederkrüger

We also have a converse:

Lemma A.14 [20, page 19] If the contact structure � on V is symplectically sup-
ported by a Liouville open book, then � is supported (in the sense of Definition A.4)
by the underlying smooth open book.

These two facts justify our earlier definition that a pair .˛; f / is a representation
of a contact open book decomposition when ˛ is a contact form and .˛; f / is a
representation of a Liouville open book with defining function f .

Additionally, from [20, Proposition 21], the symplectically supported contact structures
form a nonempty and weakly contractible subset in the space of all hyperplane fields.

To describe now the connection between Liouville open books and abstract Liouville
open books, we need the following notion.

Definition A.15 Let .K; #; !t / be a Liouville open book on V . A smooth vector
field X on V is called a spinning vector field if it satisfies the following properties:

� X vanishes along the binding K , and d#.X /D 2� on V nK .

� The flow of X preserves the ideal Liouville structure on every page.

The monodromy of the Liouville open book is a diffeomorphism �W F0!F0 obtained
by restricting the time-1 flow of a spinning vector field X to the page F0 . Clearly, �
is an element of Diff@.F0; !0/.

Lemma A.16 Let .K; #; !t / be a Liouville open book with a representation .ˇ; f /
such that �D ˇ=jf j restricts to a Liouville form on the interior of each page.

There exists a unique vector field Y satisfying the two equations

d#.Y /D 2� and �Y d�D 0:

This field is a spinning vector field of the Liouville open book.

Proof It is clear that Y is defined on V nK and that its flow preserves the Liouville
structure on the pages, but the properties of Y along the binding are less obvious.
Plug Y into the volume form �V from Lemma A.12:

�Y�V D 2�jf jnC2 .d�/n D 2�jf j2 .dˇ/n��n d.jf j2/^ˇ^ .dˇ/n�1:

Since the right-hand side is defined on all of V , and since �V is a volume form, we
have found a defining equation for Y that shows that Y is everywhere smooth and
vanishes along K .
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One can easily obtain an abstract open book from a proper Liouville open book by
keeping only one of its pages and choosing the monodromy with respect to any spinning
vector field. All pages are isomorphic, and spinning vector fields form a convex subset,
so that all choices will lead to homotopic abstract Liouville open books.

Starting from an abstract Liouville open book .F; !/ with diffeomorphism � 2

Diff@.F; !/, Giroux constructs first a mapping torus and then blows down its boundary
to obtain the binding, producing this way a Liouville open book, and thus the desired
bijection.

Example A.17 Let us now come back to the contact open book decompositions
introduced in Example A.6 and illustrate how to recover their abstract Liouville open
books by applying the formalism explained above.

(a) Recall that the function g1.z1; : : : ; zn/Dz1 determines a contact open book .K; #/
on the standard sphere. We will see that the page of the corresponding abstract open
book is the ideal Liouville domain given by Example A.10(a) and that the monodromy
is the identity. This is then a special case of the more general Example A.19. We
present this example first because of its concreteness.

Every page Ft D farg z1 D tg[K is diffeomorphic to the closed unit disk D2n�2 D

f.q1 C ip1; : : : ; qn�1 C ipn�1/ 2 Cn�1 j kq C ipk � 1g, which can be embedded
into S2n�1 using the inverse of the stereographic projection2

�t W .qC ip/ 7!
1

1CkqCipk2
..1�kqC ipk2/eit

I 2.qC ip//:

The 1–form ˇ WD˛0=jg1j is the binding form for the Liouville open book .K; #; dˇjFt
/.

That this really defines a Liouville structure on the pages can be verified by pulling
back ˇ with �t to D2n�2. We obtain

jz1 ı �t j D
1�kqC ipk2

1CkqC ipk2
and ��t ˛0 D

2

.1CkqC ipk2/2
�0;

so that
��t ˇ D

�0

1�kqCipk4
:

This is precisely the Liouville form on the unit disk given in Example A.10(a). It follows
that the page of the abstract open book is .D2n�2; !/, just as we wanted to show.

2A map of the type .x;y/ 7! .x;y;
p

1� .x2Cy2// , the most “obvious” candidate for such an
embedding, fails to be smooth along the boundary and is thus not suitable for our purposes!
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Consider now the vector field

Y D 2�.x1@y1
�y1@x1

/

on S2n�1. Clearly, Y vanishes along KDfx1Dy1D 0g, and it satisfies d#.Y /D 2� .
Furthermore LY ˇD 0, so that its flow preserves the Liouville structures induced by dˇ

on each page. We obtain that Y is a spinning vector field and since its time-1 flow is
the identity on all of S2n�1, it follows in particular that the monodromy of the Liouville
open book is trivial.

(b) The second open book decomposition .K; #/ of the sphere is determined by the
function g2.z/D z2

1
C � � �C z2

n .

Remember that in Example A.10(b) we described ideal Liouville domains on the closed
unit disk cotangent bundles D.T �L/ with Liouville form �can=.1�kpk

2/. For the
special case L D Sn�1 we can significantly simplify these manifolds by using the
identification D.T �Sn�1/ WD f.q;p/ 2 Rn �Rn j kqk D 1; q ? p; kpk � 1g with
Liouville form �.1=.1�kpk2//

Pn
jD1 pj dqj .

We will now show that this ideal Liouville domain is the page of the abstract open
book corresponding to .K; #/. We embed the unit disk bundle into S2n�1 via

�t W .q;p/ 7!
.qC ip/eit=2p

1Ckpk2
:

The image of each such map is one of the pages.

Pulling back ˛0 , we obtain ��t ˛0 D
�
1=.2.1Ckpk2//

�Pn�1
jD1.qj dpj �pj dqj /. This

can be simplified using that the differential of hq;piD0 is
Pn�1

jD1.qj dpjCpj dqj /D0,
so that ��t ˛0 D�.1=.1Ckpk

2//
Pn�1

jD1 pj dqj .

We claim that ˇ WD ˛0=jg2j is the binding form for a Liouville open book. Note that
jg2 ı �t j D .1 � kpk2/=.1C kpk2/, so that ��t ˇ D �.1=.1 � kpk

2//
Pn�1

jD1 pj dqj ,
which is the Liouville form given on the domain above. This shows that the page of
the abstract open book is indeed .D.T �Sn�1/; !/.

It remains to show that the monodromy is a generalized Dehn twist as we had already
claimed in Example A.6. Recall first that a Dehn twist on T �Sn�1 can be written as
follows: Identify the cotangent bundle of Sn�1 with the submanifold of Rn�RnDCn

consisting of pairs of points .q;p/ such that kqk D 1 and p ? q . The canonical
1–form �can on T �Sn�1 is simply the restriction of the 1–form �

Pn
jD1 pj dqj
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to T �Sn�1. Then we can write down the following type of symplectomorphisms
with compact support:

ˆW T �Sn�1
! T �Sn�1;

�
q

p

�
7!

�
q cos �C .p=kpk/ sin �
�kpkq sin �Cp cos �

�
;

where �.q;p/ WD �.kpk/ is any smooth function that is 0 for very large values of kpk
and is equal to �� on a neighborhood of 0. Dividing by kpk in the definition of ˆ
is not problematic, because sin � vanishes close to the zero section of T �Sn�1.

A direct verification shows that ˆ preserves the length kpk and that it has compact
support, and pulling back the canonical 1–form using that dkqk2 D d1D 0 and thatP

j pj dqj D�
P

j qj dpj , we obtain

ˆ��can D �can�kpk d�;

which implies that ˆ is indeed a symplectomorphism, because � only depends on kpk.

Next, let us pull back the generalized Dehn twist to the ideal Liouville domain
.D.T �Sn�1/; !/. As in Example A.10(b), we stretch out the interior of the unit disk
bundle to cover the full cotangent bundle using the map .q;p/ 7! .q;p=.1�kpk2//.
The inverse of this map is

.q;p/ 7!

�
q;

p
4kpk2C 1� 1

2 kpk2
p

�
:

We pull back the Dehn twist to the ideal Liouville domain and find that it still is of
the same form as on T �Sn�1, only that the function �.kpk/ needs to be replaced
by �.kpk=.1�kpk2//.

Since the monodromy map of an abstract Liouville open book needs to be the identity
only on the boundary of the domain, we weaken our definition by requiring that � vanish
for kpkD 1, but not necessarily also on a neighborhood of 1. Also instead of imposing
that �D�� on a small neighborhood of the zero section, it is sufficient for us that this
condition be met on the zero section itself (being careful to preserve the smoothness
of ˆ). We thank the referee for providing us with the following concise definition:

Definition A.18 Choose any smooth function gW Œ0; 1�!R such that g.1/D � . A
Dehn twist on the ideal Liouville domain .D.T �Sn�1/; !/ is a map of the form

ˆW D.T �Sn�1/!D.T �Sn�1/;

�
q

p

�
7!

�
q cos �C .p=kpk/ sin �
�kpkq sin �Cp cos �

�
;

where �.q;p/ WD �.kpk/ can be written as �.r/D rg.r2/�� .
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To show that this more general definition is suitable, we must verify that ˆ is smooth
along the zero section of T �Sn�1. For this, observe that if f W R! R is a smooth
even function, the composition p 7! f .kpk/ will also be smooth.

Expand the trigonometric functions to see that

sin �.r/D�sin.rg.r2// and cos �.r/D�cos.rg.r2//:

The second function is clearly even. For the first one, notice that �sin.rg.r2// is
odd and vanishes at r D 0. We may therefore write it as rh.r/ for a smooth h that
necessarily needs to be even. This then implies that both .1=r/ sin �.r/D h.r/ and
r sin �.r/D r2h.r/ are well defined and even, and thus ˆ is everywhere smooth.

From this, every Dehn twist lies in Diff@.D.T �Sn�1/; !/, and the space of Dehn
twists is contractible.

Recall that the monodromy of the open book is obtained as the restriction to a page
of the time-1 flow of a spinning vector field. A long but straightforward computation
shows that the vector field Y specified by Lemma A.16 is

Y D � Re.g2/

nX
jD1

�
yj

@

@xj
Cxj

@

@yj

�
C� Im.g2/

nX
jD1

�
yj

@

@yj
�xj

@

@xj

�
;

or equivalently using the Wirtinger formalism, we can write Y as

Y D � ig2 �

nX
jD1

xzj
@

@zj
�� i xg2 �

nX
jD1

zj
@

@xzj
;

where we have used that @=@zj WD
1
2
.@=@xj � i.@=@yj //. The arguments explained

in [27, Exercise 6.20], allow us to find the flow ˆY
t of this vector field: Combining

# D g2=jg2j with the normalization of Y we obtain the equation

g2.ˆ
Y
t .z//

jg2.ˆ
Y
t .z//j

D e2� it :

We also see easily that the flow of Y preserves jg2j, because LY jg2j
2 D 0.

Let z.t/ be the trajectory of Y starting at a point z.0/. To simplify the notation write g0

instead of jg2

�
z.0/

�
j. Then z.t/ is the solution to the ordinary differential equation

Pz.t/D � ig2.z.t// � xz.t/D � ie2�itg0 � xz.t/:
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Defining u.t/ WD e��itz.t/, we compute

Pu.t/D�� iu.t/C e��it
Pz.t/D�� iu.t/C� ig0 � xu.t/:

Splitting u into real and imaginary parts as uD uxC iuy , the previous equation can
be written as Pux.t/D �.1Cg0/uy.t/ and Puy.t/D��.1�g0/ux.t/, which combine
back to

Ru.t/D��2.1�g2
0/u.t/:

The general solution of this equation is u.t/DACe� ictCA�e��ict with c WD
p

1�g2
0

,
so that

z.t/DACe�i.cC1/t
CA�e��i.c�1/t ;

where AC;A� 2Cn are complex vectors. The coefficients are

A˙ D
1

2

�
1�

s
1�g0

1Cg0

�
x.0/C

i

2

�
1�

s
1Cg0

1�g0

�
y.0/;

so that we find

z.1/D�z.0/ cos�
p

1�g2
0C i

�s
1�g0

1Cg0

x.0/C i

s
1Cg0

1�g0

y.0/

�
sin�

p
1�g2

0:

To recover the monodromy of the abstract open book, restrict the time-1 flow of Y

to the 0–page of the contact open book, and pull back the diffeomorphism obtained
this way to the abstract page via the embedding �0 . Recall first that g2.�0.qC ip//D

.1�kpk2/=.1Ckpk2/. Then we get

��1
0 ıˆ

Y
1 ı �0.qC ip/D�

�
q cos

2�kpk

1Ckpk2
C

p

kpk
sin

2�kpk

1Ckpk2

�
� i

�
�kpkq sin

2�kpk

1Ckpk2
Cp cos

2�kpk

1Ckpk2

�
:

This is just a Dehn twist as in Definition A.18 with the function

�.q;p/ WD
2�kpk

1Ckpk2
�� D kpkg.kpk2/��;

where g.r/D 2�=.1C r/. Clearly g.1/D 2�=2D � , as desired.

Example A.19 We will now consider the case of a contact open book with trivial
monodromy, and show that this manifold is symplectically filled by the stabilization of
one of its pages. Using Theorem A.1, we will argue in the opposite direction, namely
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we take the stabilization of an arbitrary Liouville domain, and show that it contains a
contact-type hypersurface that is supported by an open book with trivial monodromy
and whose pages are isomorphic to the initial Liouville domain. We conclude by using
that any contact manifold with an open book decomposition with trivial monodromy
can be obtained via this construction.

Let .F; dˇ/ be a (classical) Liouville domain with boundary @F D K and with
associated Liouville vector field XL , so that dˇ.XL; � / D ˇ . Choose a function
uW F ! Œ0;1/ as in Lemma A.9; that is, 0 is a regular value, u�1.0/ D K , and
du.XL/ < u. In the case that .F; dˇ/ is a Weinstein domain with a Lyapunov
function f for XL with f �1.C /D @F, we can simply set u WD C �f .

Let now V � F �C be the hypersurface defined by

V D f.p; z/ 2 F �C j u.p/� jzj2 D 0g:

From our hypothesis on u it follows that 0 is a regular value of u.p/�jzj2 , so that V

is a closed embedded submanifold (touching the boundary of F �C from the inside).

The manifold F�C has an exact symplectic structure given by d.ˇC 1
2
.x dy�y dx//,

where z D xC iy denotes the coordinate on C . The corresponding Liouville field is
XLC

1
2
.x@xCy@y/. This vector field is transverse to V , because

du.XL/� jzj
2
D du.XL/�u< 0;

by the properties in Lemma A.9, and it follows that the restriction of ˇC 1
2
.x dy�y dx/

to V defines a contact form ˛ on V .

The open book we consider is obtained by taking the binding to be KDK�f.0; 0/g �

F �C and the defining map f W V ! C by f .p; z/ D z . It is not very difficult to
check that f really defines a smooth open book decomposition on V , so that we will
only show that the pair .˛; f / is a representation of a contact open book.

The closure of any page is diffeomorphic to F, since it is then the set of points
f.p; r ei#/2V j r �0;p2Fg. This admits an “obvious” identification with F, given by

p 7! .p;
p

u.p/ ei#/;

but unfortunately this map fails to be smooth up to the boundary (compare to the
footnote of Example A.17). Instead, we will need to precompose it with a homeomor-
phism 'W F ! F that is a diffeomorphism on the interior, and that maps the collar
neighborhood .�"; 0� �K ! .�"; 0� �K by .s;x/ 7! .g.s/;x/, where g.s/ D s2
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for s near 0, g.s/D s for s near �" and g0.s/ > 0 for s < 0 (this then extends as the
identity of F away from the collar neighborhood). We denote the composition

p
u ı'

by zu, and observe that

ˆW F ,! V �C; p 7! .p; zu.p/ ei#/;

is a smooth embedding of F into V . Equivalently, we could have treated this as a
change of smooth structure at the boundary of F. (This is related to the discussion of
smoothness immediately preceding Proposition 21 in [20].)

The resulting ideal Liouville form on the page is given by the restriction of ˛=jzj,
which pulls back to the 1–form

� WDˆ�
�

1

jzj
˛

�
D

1

zu
ˇ

on Int F. We now claim this gives .F; d�/ an ideal Liouville structure. This requires
that v � extend to a contact form on K for any smooth function vW F ! Œ0;1/ for
which K D v�1.0/ is a regular level set. The function zu introduced above is such a
function, and clearly zu� agrees with the 1–form ˇ that is a contact form on K .

To verify that d� is indeed symplectic on F n@F, write r D jzj D
p

u and compute in
the interior of F :

rnC2
h
d
�

1

r
ˇ
�in
D r2 .dˇ/n�

1

2
n d.r2/^ˇ^.dˇ/n�1

Du .dˇ/n�
1

2
n du^ˇ^.dˇ/n�1:

Now, contracting XL with 0D du^ .dˇ/n , we obtain the identity

0D du.XL/ .dˇ/
n
� n du^ˇ^ .dˇ/n�1:

It now follows that

rnC2
h
d
�

1

r
ˇ
�in
D

1

2
.2u� du.XL// .dˇ/

n

is a positive volume form on F, because u satisfies the assumptions in Lemma A.9,
and we have that u� du.XL/ > 0.

This shows that .F; d�/ is symplectomorphic to the completion of .F; dˇ/. Finally,
to compute the monodromy, we notice that by our construction, ˇ itself is a binding
form on V , and thus 2�@# is a spinning vector field. Its monodromy is indeed the
identity map.

Any Liouville page F can be used as the starting point for this construction. If,
additionally, F is a Weinstein domain, we obtain V as the boundary of an explicit
subcritical filling.
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