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On Kauffman bracket skein modules of marked 3–manifolds
and the Chebyshev–Frobenius homomorphism

THANG T Q LÊ

JONATHAN PAPROCKI

We study the skein algebras of marked surfaces and the skein modules of marked
3–manifolds. Muller showed that skein algebras of totally marked surfaces may
be embedded in easy-to-study algebras known as quantum tori. We first extend
Muller’s result to permit marked surfaces with unmarked boundary components.
The addition of unmarked components allows us to develop a surgery theory which
enables us to extend the Chebyshev homomorphism of Bonahon and Wong between
skein algebras of unmarked surfaces to a “Chebyshev–Frobenius homomorphism”
between skein modules of marked 3–manifolds. We show that the image of the
Chebyshev–Frobenius homomorphism is either transparent or skew-transparent. In
addition, we make use of the Muller algebra method to calculate the center of the
skein algebra of a marked surface when the quantum parameter is not a root of unity.
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1 Introduction

1.1 Skein modules of 3–manifolds

In this paper we study the skein modules of marked 3–manifolds, which have con-
nections to many important objects, such as character varieties, the Jones polynomial,
Teichmüller spaces, and cluster algebras. Skein modules serve as a bridge between
classical and quantum topology; see eg Bullock [4], Kauffman [12], Lê [13; 15],
Marché [18], and V Turaev [27].

By a marked 3–manifold we mean a pair .M;N /, where M is an oriented 3–manifold
with (possibly empty) boundary @M, and N is a 1–dimensional oriented submanifold
N � @M such that each connected component of N is diffeomorphic to the open
interval .0; 1/. By an N–tangle in M we mean a compact 1–dimensional nonoriented
submanifold T of M equipped with a normal vector field, called the framing, such that
@T D T \N and the framing at each boundary point of T is a positive tangent vector
of N. Two N–tangles are N–isotopic if they are isotopic in the class of N–tangles.

For a nonzero complex number � the skein module S�.M;N / is the C–vector space
freely spanned by N–isotopy classes of N–tangles modulo the local relations described
in Figure 1. For a detailed explanation see Section 4.

D q C q�1 D�q2� q�2

N

D 0

Figure 1: Defining relations of skein module: skein relation (left), trivial knot
relation (middle), and trivial arc relation (right). Here q D � .

When N D∅ we don’t need the third relation (the trivial arc relation), and in this case
the skein module was introduced independently by J Przytycki [21] and Turaev [27; 26].
The skein relation and the trivial knot relations were introduced by Kauffman [12] in
his study of the Jones polynomial; see Jones [10].

The trivial arc relation was introduced by G Muller in [19], where he defined the skein
module of marked surfaces, which was then generalized to marked 3–manifolds by
the first author [17]. It turns out that the extension to include the marked set N on the
boundary @M makes the study of the skein modules much easier both in technical and
conceptual perspectives.
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1.2 The Chebyshev–Frobenius homomorphism

When N D ∅, Bonahon and Wong [3] constructed a remarkable map between two
skein modules, called the Chebyshev homomorphism, which plays an important role in
the theory. One main result of this paper is to extend Bonahon and Wong’s Chebyshev
homomorphism to the case where N ¤∅ and to give a conceptual explanation of its
existence from basic facts about q–commutative algebras.

A 1–component N–tangle ˛ is diffeomorphic to either the circle S1 or the closed
interval Œ0; 1�; we call ˛ an N–knot in the first case and an N–arc in the second case.
For a 1–component N–tangle ˛ and an integer k � 0, write ˛.k/ 2S�.M/ for the
kth framed power of ˛ obtained by stacking k copies of ˛ in a small neighborhood of ˛
along the direction of the framing of ˛ . Given a polynomial P.z/D

P
ciz

i 2 ZŒz�,
the threading of ˛ by P is given by P fr.˛/D

P
ci˛

.i/ 2S�.M/.

The Chebyshev polynomials of type one Tn.z/ 2 ZŒz� are defined recursively as

(1) T0.z/D 2; T1.z/D z; Tn.z/D zTn�1.z/�Tn�2.z/ for all n� 2:

The extension of Bonahon and Wong’s result to marked 3–manifolds is the following.

Theorem 1.1 (see Theorem 8.1) Suppose that .M;N / is a marked 3–manifold
and that � is a complex root of unity. Let N be the order of �4 ; that is, let N be
the smallest positive integer such that �4N D 1. Let " D �N

2

. Then there exists
a unique C–linear map ˆ� W S".M;N / ! S�.M;N / such that for any N–tangle
T D a1[ � � � [ ak [ ˛1[ � � � [ ˛l , where the ai are N–arcs and the ˛i are N–knots,

ˆ�.T /D a
.N/
1 [� � �[a

.N/

k
[.TN /

fr.˛1/[� � �[.TN /
fr.˛l/ in S�.M;N /

WD

X
0�j1;:::;jl�N

cj1 � � � cjla
.N/
1 [� � �[a

.N/

k
[˛

.j1/
1 [� � �[˛

.jl /

l
in S�.M;N /;

where TN .z/D
PN
jD0 cj z

j.

We call ˆ� the Chebyshev–Frobenius homomorphism. Our construction and proof are
independent of the previous results of [3] (which requires the quantum trace map [2])
and [14]. This is true even for the case N D∅.

Note that when T has only arc components, ˆ�.T / is much simpler as it can be defined
using monomials and no Chebyshev polynomials are involved. The main strategy we
employ is to understand the Chebyshev–Frobenius homomorphism for this simpler
case, then show that the knot components case can be reduced to this simpler case.

Algebraic & Geometric Topology, Volume 19 (2019)
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1.3 Skein algebras of marked surfaces

In proving Theorem 1.1 we prove several results on the skein algebras of marked
surfaces which are of independent interest. The first is an extension of a result of
Muller [19] from totally marked surfaces to marked surfaces.

By a marked surface we mean a pair .†;P/, where † is an oriented surface with
(possibly empty) boundary @† and a finite set P�@†. Define S�.†;P/DS�.M;N /,
where M D†�.�1; 1/ and N DP�.�1; 1/. Given two N–tangles T and T 0 define
the product T T 0 by stacking T above T 0. This gives S�.†;P/ an algebra structure,
which was first introduced by Turaev [27] for the case P D ∅ in connection with
the quantization of the Atiyah–Bott–Weil–Petersson–Goldman symplectic structure
of the character variety. The algebra S�.†;P/ is closely related to the quantum
Teichmüller space and the quantum cluster algebra of the surface. If ˇ is an unmarked
boundary component of @†, ie ˇ\P D∅, then ˇ is a central element of S�.†;P/.
Thus S�.†;P/ can be considered as an algebra over CŒH�, the polynomial algebra
generated by H , which is the set of all unmarked boundary components of @†.

A P–arc is a path aW Œ0; 1�!† such that a.0/; a.1/2P and a maps .0; 1/ injectively
into † nP . A quasitriangulation of .†;P/ is a collection � of P–arcs which cut †
into triangles and holed monogons (see Penner [20] and Section 5). Associated to a
quasitriangulation � is a vertex matrix P, which is an antisymmetric ��� matrix
with integer entries. See Section 5 for details. Define the Muller algebra

(2) X�.�/DCŒH�ha˙1; a 2� j ab D �Pa;b bai;

which was introduced by Muller [19] for the case when HD∅. An algebra of this type
is called a quantum torus. A quantum torus is like an algebra of Laurent polynomials
in several variables which q–commute, ie ab D qkba for a certain integer k . Such a
quantum torus is Noetherian, is an Ore domain, and has many other nice properties.
In particular, X�.�/ has a ring of fractions zX�.�/ which is a division algebra. The
CŒH�–subalgebra of X�.�/ generated by a 2� is denoted by XC;�.�/.

Theorem 1.2 (see Theorem 6.3) Assume � is a quasitriangulation of the marked
surface .†;P/. Then there is a natural algebra embedding

'�W S�.†;P/ ,! X�.�/

such that '�.a/D a for all a 2�. The image of '� is sandwiched between XC;�.�/

and X�.�/. The algebra S�.†;P/ is an Ore domain, and '� induces an isomorphism
z'�W �S�.†;P/ Š�! zX�.�/, where �S�.†;P/ is the division algebra of S�.†;P/.

Algebraic & Geometric Topology, Volume 19 (2019)
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In the case when HD∅, Theorem 1.2 was proved by Muller [19]. The significance of
the theorem is that, as S�.†;P/ is sandwiched between XC;�.�/ and X�.�/, many
problems concerning S�.†;P/ are reduced to problems concerning the quantum
torus X�.�/, which is algebraically much simpler.

1.4 Surgery

One important feature of the inclusion of unmarked boundary components is that we can
develop a surgery theory. One can consider the embedding '�W S�.†;P/ ,! X�.�/

as a coordinate system of the skein algebra which depends on the quasitriangulation �.
A function on S�.†;P/ defined through the coordinates makes sense only if it is
independent of the coordinate systems. One such problem is discussed in the next
subsection. To help with this independence problem we develop a surgery theory of
coordinates in Section 7 which describes how the coordinates change under certain
modifications of the marked surfaces. We will consider two such modifications: one is
to add a marked point and the other one is to plug a hole (ie glue a disk to a boundary
component with no marked points). Note that the second one changes the topology of
the surface, and is one of the reasons why we want to extend Muller’s result to allow
unmarked boundary components. Besides helping with proving the existence of the
Chebyshev–Frobenius homomorphism, we think our surgery theory will find more
applications elsewhere.

1.5 Independence of triangulation problem

Suppose .†;P/ is a triangulable marked surface, ie every boundary component of †
has at least one marked point and .†;P/ has a quasitriangulation. In this case a
quasitriangulation is called simply a triangulation. Let � be a triangulation of .†;P/.
Let � be a nonzero complex number (not necessarily a root of unity), N be a positive
integer, and "D �N

2

.

From the presentation (2) of the quantum tori X".�/ and X�.�/, one sees that there
is an algebra homomorphism,

FN W X".�/! X�.�/; given by FN .a/D aN for all a 2�;

called the Frobenius homomorphism, which is injective; see Proposition 2.4.

Identify S�.†;P/ with a subset of X�.�/ for �D � and �D " via the embedding '� .
Consider the diagram at the top of the next page.

Algebraic & Geometric Topology, Volume 19 (2019)
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(3)

S".†;P/ X".�/

S�.†;P/ X�.�/

‹ FN

We consider the following questions about FN :

(A) For which � 2C n f0g and N 2N does FN restrict to a map from S".†;P/
to S�.†;P/ such that the restriction does not depend on the triangulation �?

(B) If FN can restrict to such a map, can the restriction of FN onto S".†;P/ be
defined in an intrinsic way, without reference to any triangulation �?

It turns out that the answer to Question (A) is that � must be a root of unity, and N is
the order of �4. See Theorem 8.2. Then Theorem 8.3, answering Question (B), states
that, under these assumptions on � and N, the restriction of FN onto S".†;P/ can
be defined in an intrinsic way without referring to any triangulation. Explicitly, if a is
a P–arc, then FN .a/D aN, and if ˛ is a P–knot, then FN .˛/D TN .˛/. From these
results and the functoriality of the skein modules we can prove Theorem 1.1.

1.6 Centrality and transparency

With the help of Theorem 1.2 we are able to determine the center of S�.†;P/ for
generic � .

Theorem 1.3 (see Theorem 10.1) Suppose .†;P/ is a marked surface with at least
one quasitriangulation and � is not a root of unity. Then the center of S�.†;P/ is
the C–subalgebra generated by zˇ for each connected component ˇ of @†. Here,
if ˇ \P D ∅ then zˇ D ˇ , and if ˇ \P ¤ ∅ then zˇ is the product of all P–arcs
lying in ˇ .

The center of an algebra is important, for example, in questions about the representations
of the algebra. When � is a root of unity and P D ∅, the center of S�.†;∅/ was
determined by Frohman, Kania-Bartoszynska, and Lê in [8] and is instrumental in
proving the main result there, the unicity conjecture of Bonahon and Wong. In a
subsequent paper we will determine the center of S�.†;P/ for the case when � is
a root of unity. Przytycki and Sikora [23] determined the center of a reduced skein
algebra, which is a quotient of S�.†;P/, for the case when � is not a root of unity.

While skein modules of marked 3–manifolds have no notion of central element, they do
have the closely related notions of transparency and skew-transparency. Informally, an
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element x 2S�.M;N / is transparent if passing a strand of an N–tangle T through x
does not change the value of the union x[T .

We generalize the result in [14] for unmarked 3–manifolds to obtain the following
theorem.

Theorem 1.4 (see Theorem 9.2) Suppose .M;N / is a marked 3–manifold, � is a
root of unity, N D ord.�4/, and "D �N

2

. Suppose �2N D 1. Let ˆ� W S".M;N /!
S�.M;N / be the Chebyshev–Frobenius homomorphism. Then the image of ˆ� is
transparent in the sense that if T1 and T2 are N–isotopic N–tangles disjoint from
another N–tangle T , then in S�.M;N / we have

ˆ�.T /[T1 Dˆ�.T /[T2:

Note that since ord.�/DN, we have either �2N D 1 or �2N D�1. When �2N D�1,
the corresponding result is that the image of ˆ� is skew-transparent; see Theorem 9.2.
Theorem 9.2 can be depicted pictorially as the identity in Figure 2.

ˆ� ˆ�

D �2N

Figure 2: Applying the Chebyshev–Frobenius homomorphism to an
N–tangle makes it transparent or skew-transparent.

1.7 Chebyshev polynomial of q–commuting variables

In the course of proving the main theorem, we apply the following simple but useful
result given in Proposition 3.1 relating Chebyshev polynomials and q–commuting
variables.

Proposition 1.5 (see Proposition 3.1) Suppose K and E are variables and q an
indeterminate such that KE D q2EK and K is invertible. Then for any n� 1,

Tn.KCK
�1
CE/DKnCK�nCEnC

n�1X
rD1

n�rX
jD0

c.n; r; j /ŒErKn�2j�r �;

where c.n; r; j / 2 ZŒq˙1� is given explicitly by (9) as a ratio of q–quantum inte-
gers, and in fact c.n; r; j / 2 NŒq˙1�. Besides, if q2 is a root of unity of order n,
then c.n; r; j /D 0.

Algebraic & Geometric Topology, Volume 19 (2019)
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In particular, if q2 is a root of unity of order n, then

Tn.KCK
�1
CE/DKnCK�nCEn:

The above identity was first proved by Bonahon and Wong [3], as an important case of
the calculation of the Chebyshev homomorphism. See also Lê [14]. An algebraic proof
of identities of this type is given by Bonahon in [1]. Here the identity follows directly
from Proposition 3.1. The new feature of Proposition 3.1 is that it deals with generic q
and may be useful in the study of the positivity of the skein algebra; see Lê [16] and
Thurston [25].

Structure of the paper

A brief summary of each section of the paper is as follows:

Section 2 This section defines the quantum torus abstractly. Also in this section is the
definition of the Frobenius homomorphism between quantum tori.

Section 3 This section is a review of Chebyshev polynomials and some computations
of Chebyshev polynomials with q–commuting variables.

Section 4 This section defines the skein module of a marked 3–manifold .M;N / and
some related terminology.

Section 5 Here we define some terminology related to marked surfaces .†;P/,
including P–triangulations and P–quasitriangulations, as well as the vertex matrix
which is used to construct the quantum torus into which the skein algebra embeds,
known as a Muller algebra.

Section 6 Here, Muller’s skein algebra of totally marked surfaces is extended to the
case where .†;P/ is not totally marked and basic facts are given, such as how to
embed the skein algebra in the Muller algebra.

Section 7 We describe a surgery theory that describes what happens to a skein algebra
of a marked surface when marked points are added or when a hole corresponding to an
unmarked boundary component is plugged.

Section 8 We prove the existence of the Chebyshev–Frobenius homomorphism be-
tween marked 3–manifolds and marked surfaces in this section.

Section 9 We show the Chebyshev–Frobenius homomorphism is (skew-)transparent.

Section 10 We utilize the Muller algebra to give a short argument which finds the
center of the skein algebra when q is not a root of unity.
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2 Quantum tori and Frobenius homomorphism

In this section we survey the basics of quantum tori, Ore domains, and present the
Frobenius homomorphism of quantum tori. Throughout the paper N , Z, Q, and C are,
respectively, the set of all nonnegative integers, the set of integers, the set of rational
numbers, and the set of complex numbers. All rings have unit and are associative.

In this section R is a commutative Noetherian domain containing a distinguished
invertible element q1=2. The reader should have in mind the example RD ZŒq˙1=2�.

2.1 Weyl normalization

Suppose A is an R–algebra, not necessarily commutative. Two elements x; y 2A are
said to be q–commuting if there is a C.x; y/ 2 Z such that xy D qC.x;y/yx . Suppose
x1; x2; : : : ; xn 2A are pairwise q–commuting. Then the Weyl normalization of

Q
i xi

is defined by
Œx1x2 � � � xn� WD q

� 1
2

P
i<j C.xi ;xj /x1x2 � � � xn:

It is known that the normalized product does not depend on the order; that is, if
.y1; y2; : : : ; yn/ is a permutation of .x1; x2; : : : ; xn/, then Œy1y2 � � �yn�D Œx1x2 � � �xn�.

2.2 Quantum torus

For a finite set I denote by Mat.I � I;Z/ the set of all I � I matrices with entries
in Z; ie A 2Mat.I � I;Z/ is a function AW I � I ! Z. We write Aij for A.i; j /.

Let A 2Mat.I � I;Z/ be antisymmetric, ie Aij D�Aj i . Define the quantum torus
over R associated to A with basis variables xi ; i 2 I by

T .AIR/ WDRhx˙1i ; i 2 I i=.xixj D q
Aij xjxi /:

When R is fixed, we write T .A/ for T .AIR/. Let TC.A/�T .A/ be the subalgebra
generated by xi ; i 2 I.
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Let ZI be the set of all maps kW I!Z. For k2ZI define the normalized monomial xk

using the Weyl normalization

xk D

�Y
i2I

x
k.i/
i

�
:

The set fxk j k 2 ZI g is an R–basis of T .A/; ie we have the direct decomposition

(4) T .A/D
M
k2ZI

Rxk:

Similarly, TC.AIR/ is free over R with basis fxk j k 2NI g.

Define an antisymmetric Z–bilinear form on ZI by

hk;niA WD
X
i;j2I

Aijk.i/n.j /:

The following well-known fact follows easily from the definition: for k;n 2 ZI,

(5) xkxn D q
1
2
hk;niAxkCn D qhk;niAxnxk:

In particular, for n 2 Z and k 2 ZI, one has

(6) .xk/n D xnk:

The first identity of (5) shows that the decomposition (4) is a ZI–grading of the
R–algebra T .A/.

2.3 Two-sided Ore domains, weak generation

Both T .AIR/ and TC.AIR/ are two-sided Noetherian domains; see [9, Chapter 2].
As any two-sided Noetherian domain is a two-sided Ore domain (see [9, Corollary 6.7]),
both T .AIR/ and TC.AIR/ are two-sided Ore domains. Let us review some facts in
the theory of Ore localizations.

A regular element of a ring D is any element x 2D such that xy ¤ 0 and yx ¤ 0
for all nonzero y 2D. If every x 2D n f0g is regular, we call D a domain.

For a multiplicative subset X�D consisting of regular elements of D, a ring E is called
a ring of fractions for D with respect to X if D is a subring of E such that (i) every
x 2X is invertible in E and (ii) every e 2E has presentation eD dx�1D .x0/�1.d 0/
for d; d 0 2 D and x; x0 2 X. Then D has a ring of fractions with respect to X if
and only if X is a two-sided Ore set, and in this case the left Ore localization X�1D
and the right Ore localization DX�1 are the same and are isomorphic to E ; see
[9, Theorem 6.2]. If D is a domain and X DD n f0g is a two-sided Ore set, then D
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is called an Ore domain, and X�1D DDX�1 is a division algebra, called the division
algebra of D .

Proposition 2.1 Suppose X is a two-sided Ore set of a ring D and D �D0 �DX�1,
where D0 is a subring of DX�1.

(a) The set X is a two-sided Ore set of D0 and D0X�1 DDX�1.

(b) If D is an Ore domain then so is D0, and both have the same division algebra.

Proof (a) Since DX�1 is also a ring of fractions for D0 with respect to X, one has
that X is a two-sided Ore set of D0 and D0X�1 DDX�1.

(b) Let Y DDnf0g. Since D�D0�DX�1�DY �1, the result follows from (a).

Corollary 2.2 Suppose TC.A/�D�T .A/, where D is a subring of T .A/. Then D
is an Ore domain and the embedding D ,! T .A/ induces an R–algebra isomorphism
from the division algebra of D to that of T.

A subset S of an R–algebra D is said to weakly generate D if D is generated as
an R–algebra by S and the inverses of all invertible elements in S. For example, D
weakly generates its Ore localization DX�1. Clearly an R–algebra homomorphism
D!D0 is totally determined by its values on a set weakly generating D.

2.4 Reflection anti-involution

The following is easy to prove; see [17].

Proposition 2.3 Assume that there is a Z–algebra homomorphism �W R! R such
that �.q1=2/D q�1=2 and �2 D id, the identity map. Suppose A 2Mat.I � I;Z/ is
antisymmetric. There exists a unique Z–linear isomorphism y�W T .A/! T .A/ such
that y�.rxk/D �.r/xk for all r 2 R and k 2 ZI, which is an antihomomorphism, ie
y�.ab/D y�.b/y�.a/. In addition, y�2 D id.

We call y� the reflection anti-involution.

2.5 Frobenius homomorphism

Proposition 2.4 Suppose A 2Mat.I � I;Z/ is an antisymmetric matrix and N is a
positive integer. There is a unique R–algebra homomorphism,

FN W T .N
2A/! T .A/;

called the Frobenius homomorphism, such that FN .xi /D xNi . Also, FN is injective.
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Proof As the xi weakly generate T .N 2A/, the uniqueness is clear. If we define FN
on the generators xi by FN .xi /D xNi , it is easy to check that the defining relations
are respected by FN . Hence FN gives a well-defined R–algebra map.

By (6) one has FN .xk/ D xNk. This shows FN maps the R–basis fxk j k 2 ZI g

of T .N 2A/ injectively onto a subset of an R–basis of T .A/. Thus FN is injective.

3 Chebyshev polynomial and quantum torus

The Chebyshev polynomials of type one Tn.z/ 2 ZŒz� are defined recursively by

T0 D 2; T1.z/D z; Tn.z/D zTn�1.z/�Tn�2.z/ for n� 2:

It is easy to see that for any invertible element K in a ring,

Tn.KCK
�1/DKnCK�n:(7)

We want to generalize the above identity and calculate Tn.KCK�1CE/, when E is
a new variable which q–commutes with K .

Suppose q is an indeterminate. For n 2 Z and k 2 N , define as usual the quantum
integer and the quantum binomial coefficient, which are elements of ZŒq˙1�, by

Œn�q WD
qn� q�n

q� q�1
and

�
n

k

�
q

D

kY
jD1

Œn� j C 1�q

Œj �q
:

Proposition 3.1 Suppose K and E are variables such that KE D q2EK and K is
invertible. Then for any n� 1,

(8) Tn.KCK
�1
CE/DKnCK�nCEnC

n�1X
rD1

n�rX
jD0

c.n; r; j /ŒErKn�2j�r �;

where c.n; r; j / 2 ZŒq˙1� is given by

(9) c.n; r; j /D
Œn�q

Œr�q

�
n� j � 1

r � 1

�
q

�
r C j � 1

r � 1

�
q

:

Here ŒEaKb� is the Weyl normalization of EaKb, ie

ŒEaKb� WD qabEaKb D q�abKbEa:

Proof One can easily prove the proposition by induction on n.
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Corollary 3.2 [3; 1] Suppose q2 is a root of unity of order exactly n. Then

Tn.KCK
�1
CE/DKnCK�nCEn:

Proof If q2 is a root of unity of order n, then Œn�qD0 but Œr�q¤0 for any 1�r�n�1.
Equation (9) shows c.n; r; j /D0 for all 1� r �n�1. From (8) we get the corollary.

Remark 3.3 If n; k 2N , then
�
n
k

�
q
2NŒq˙1�, the set of Laurent polynomials with

nonnegative integer coefficients. From (9) it follows that c.n; r; j / 2NŒq˙1�.

4 Skein modules of 3–manifolds

In this section we define the Kauffman bracket skein module of marked 3–manifolds,
following closely [17]. Recall that the ground ring R is a commutative Noetherian
domain, with a distinguished invertible element q1=2 and a Z–algebra involution
�W R!R such that �.q1=2/D q�1=2. In all figures throughout the paper, the framing
of any tangle is assumed to be facing the reader unless otherwise specified.

4.1 Marked 3–manifold

A marked 3–manifold .M;N / consists of an oriented connected 3–manifold M with
(possibly empty) boundary @M and a 1–dimensional oriented submanifold N � @M
such that N consists of a finite number of connected components, each of which is
diffeomorphic to the interval .0; 1/.

An N–tangle T in M consists of a compact 1–dimensional nonoriented submanifold
of M equipped with a normal vector field such that T \N D @T and at a boundary
point x 2 @T \N, the normal vector is tangent to N and agrees with the orientation
of N. Here a normal vector field is a vector field which is not collinear with the tangent
space of T at any point. This vector field is called the framing of T , and the vectors
are called framing vectors of T . Two N–tangles are N–isotopic if they are isotopic
through the class of N–tangles. The empty set is also considered an N–tangle which
is N–isotopic only to itself.

4.2 Kauffman bracket skein modules

Let T .M;N / be the R–module freely spanned by the N–isotopy classes of N–tangles
in M. The Kauffman bracket skein module S .M;N / is the quotient

S .M;N /D T .M;N /=Relq;
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where Relq is the R–submodule of T .M;N / spanned by the skein relation elements,
the trivial loop relation elements, and the trivial arc relation elements, where:

� R is identified with the R–submodule of T .M;N / spanned by the empty tangle,
via c! c �∅.

� A skein relation element is any element of the form T � qTC � q
�1T� , where

T , TC , and T� are N–tangles identical everywhere except in a ball in which they
appear as in Figure 3.

Figure 3: T (left), TC (middle), T� (right).

� A trivial loop relation element is any element of the form ˇC q2C q�2, where ˇ
is a trivial knot, ie a loop bounding a disk in M with framing perpendicular to the
disk.

� A trivial arc relation element is any N–tangle T containing an N–arc a for which
there exists an arc b �N such that a[ b bounds a continuous disk D in M such
that D\ .T n a/D∅. This situation is depicted in Figure 4.

a

b
N

Figure 4: The gray shaded area is a region of @M, the striped region is a
continuous disk with boundary a[ b , and b �N.

These relation elements are also depicted in Figure 1 in Section 1.

By [17, Proposition 3.1], one also has the reordering relation depicted in Figure 5
in S .M;N /.

Remark 4.1 Muller [19] introduced Kauffman bracket skein modules for marked
surfaces. Here we use a generalization of Muller’s construction to marked 3–manifolds,
introduced in [17].

Algebraic & Geometric Topology, Volume 19 (2019)



Skein modules of marked 3–manifolds and the Chebyshev–Frobenius homomorphism 3467

D q

N N

Figure 5: Reordering relation: Here N is perpendicular to the page and its
perpendicular projection onto the page (and in the shaded disk) is the bullet
labeled N. The vector of orientation of N is pointing to the reader. There
are two strands of the tangle coming to N near N, with the lower one being
depicted by the broken line.

4.3 Functoriality

By a morphism f W .M;N /! .M 0;N 0/ between marked 3–manifolds we mean an
orientation-preserving embedding f W M ,!M 0 such that f restricts to an orientation-
preserving embedding on N. Such a morphism induces an R–module homomorphism
f�W S .M 0;N 0/!S .M 0;N 0/ by f�.T /D T for any N–tangle T .

Given marked 3–manifolds .Mi ;Ni / for i D 1; : : : ; k such that Mi �M , Ni � N,
and the Mi are pairwise disjoint, there is a unique R–linear map, called the union map,

UnionW
kY
iD1

S .Mi ;Ni /!S .M;N /;

such that if Ti is an Ni–tangle in Mi for each i , then

Union.T1; : : : ; Tk/D T1[ � � � [Tk :

For xi 2S .Mi ;Ni / we denote Union.x1; : : : ; xk/ also by x1[ � � � [ xk .

5 Marked surfaces

Here we present basic facts about marked surfaces and their quasitriangulations. Our
marked surface is the same as a marked surface in [19], or a ciliated surface in [7], or a
bordered surface with punctures in [5] if one considers a boundary component without
any marked points on it as a puncture.

5.1 Marked surface

A marked surface .†;P/ consists of a compact, oriented, connected surface † with
possibly empty boundary @† and a finite set P � @†. Points in P are called marked
points. A connected component of @† is marked if it has at least one marked point,
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otherwise it is unmarked. The set of all unmarked components is denoted by H . We
call .†;P/ totally marked if HD∅, ie every boundary component has at least one
marked point.

A P–tangle is an immersion T W C ! †, where C is a compact 1–dimensional
nonoriented manifold, such that

� the restriction of T onto the interior of C is an embedding into † nP , and

� T maps the boundary of C into P .

The image of a connected component of C is called a component of T . When C is
homeomorphic to S1, we call T a P–knot, and when C is Œ0; 1�, we call T a P–arc.
Two P–tangles are P–isotopic if they are isotopic through the class of P–tangles.

Remark 5.1 We emphasize here that, unlike N–tangles in a marked 3–manifold
.M;N /, a P–tangle T W C ! † cannot actually be “tangled” since the restriction
of T to the interior of C is an embedding into † nP . We justify this terminology
since we define the skein algebra of a surface in terms of .P�.�1; 1//–tangles in
.†� .�1; 1/;P � .�1; 1// and use P–tangles primarily as a tool to define and assist
in working with .P�.�1; 1//–tangles, such as the preferred R–basis B.†;P/ of the
skein algebra; see Section 6.1.

A P–arc x is called a boundary arc, or x is boundary, if it is P–isotopic to a P–arc con-
tained in @†. A P–arc x is called an inner arc, or x is inner, if it is not a boundary arc.

A P–tangle T �† is essential if it does not have a component bounding a disk in †;
such a component is either a smooth trivial knot in † nP , or a P–arc bounding a disk
in †. By convention, the empty set is considered an essential P–tangle.

5.2 Quasitriangulations

In most cases, a marked surface can be obtained by gluing together a collection
of triangles and holed monogons along edges. Such a decomposition is called a
quasitriangulation. We now give a formal definition. For details see [20].

A marked surface .†;P/ is said to be quasitriangulable if

� there is at least one marked point, and

� .†;P/ is not a disk with � 2 marked points, or an annulus with one marked
point.
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A quasitriangulation � of a quasitriangulable marked surface .†;P/, also called a
P–quasitriangulation of †, is a collection of P–arcs such that

(i) no two P–arcs in � intersect in † nP and no two are P–isotopic, and

(ii) � is maximal amongst all collections of P–arcs with the above property.

An element of � is also called an edge of the P–quasitriangulation �. Let �bd be
the set of all boundary edges, ie edges which are boundary P–arcs. The complement
�in WD� n�bd is the set of all inner edges. Then �in cuts † into triangles and holed
monogons (see [20] for exactly what is meant by this). Here a holed monogon is a
region in † bounded by an unmarked component of @† and a P–arc; see Figure 6.

p ˇ aˇ

Figure 6: Monogon bounded by P–arc aˇ . The inner loop is an unmarked
component ˇ of @† , ie ˇ 2H .

For an unmarked component ˇ 2H let aˇ 2� be the only edge on the boundary of
the monogon containing ˇ . We call aˇ the monogon edge corresponding to ˇ ; see
Figure 6. Denote by �mon �� the set of all monogon edges.

The situation simplifies if .†;P/ is totally marked and quasitriangulable, ie HD∅,
and .†;P/ is not a disk with � 2 marked points. Then we don’t have any monogons,
and instead of “quasitriangulable” and “quasitriangulation” we use the terminology
“triangulable” and “triangulation”. Thus every triangulable surface is totally marked.

5.3 Vertex matrix

Suppose a and b are P–arcs which do not intersect in † nP . We define a number
P.a; b/2Z as follows. Removing an interior point of a from a , we get two half-edges
of a , each of which is incident to exactly one vertex in P . Similarly, removing an
interior point of b from b , we get two half-edges of b . Suppose a0 is a half-edge of a
and b0 is a half-edge of b , and p 2 P . If one of a0 or b0 is not incident to p , set
Pp.a

0; b0/D 0. If both a0 and b0 are incident to p , define Pp.a0; b0/ as in Figure 7, ie

Pp.a
0; b0/D

�
1 if a0 is clockwise to b0 (at vertex p);
�1 if a0 is counterclockwise to b0 (at vertex p):
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Now define
P.a; b/D

X
Pp.a

0; b0/;

where the sum is over all p 2 P , all half-edges a0 of a , and all half-edges b0 of b .

Suppose � is a quasitriangulation of a quasitriangulable marked surface .†;P/. Two
distinct a; b 2� do not intersect in † nP , hence we can define P.a; b/. Let P� 2
Mat.���;Z/, called the vertex matrix of �, be the antisymmetric ��� matrix
defined by P�.a; b/D P.a; b/, with 0 on the diagonal.

Remark 5.2 The vertex matrix was introduced in [19], where it is called the orientation
matrix.

a0b0

p

a0 b0

p

Figure 7: Pp.a0; b0/D 1 for the left case, and Pp.a0; b0/D�1 for the right
one. Here the shaded area is part of † , and the arrow edge is part of a
boundary edge. There might be other half-edges incident to p , and they may
be inside or outside the angle between a0 and b0.

5.4 Intersection index

Given two P–tangles S and T , the intersection index �.S; T / is the minimal number
of crossings between S 0 and T 0, over all transverse pairs .S 0; T 0/ such that S 0 is
P–isotopic to S and T 0 is P–isotopic to T . Intersections at marked points are not
counted. We say that S and T are taut if the number of intersection points of S and T
in † nP is equal to �.S; T /.

Lemma 5.3 [6] Let x1; x2; : : : ; xn be a finite collection of essential P–tangles. Then
there are essential P–tangles x01; x

0
2; : : : ; x

0
n such that

� x0i is P–isotopic to xi for all i , and
� x0i and x0j are taut for all i and j .

6 Skein algebras of marked surfaces

Throughout this section we fix a quasitriangulable marked surface .†;P/. The main
result of this section is Theorem 6.3, which shows that the skein algebra of a quasitri-

Algebraic & Geometric Topology, Volume 19 (2019)



Skein modules of marked 3–manifolds and the Chebyshev–Frobenius homomorphism 3471

angulable marked surface can be embedded into a quantum torus. We also discuss the
flip operation on quasitriangulations.

6.1 Skein module of a marked surface

Let M be the cylinder over † and N the cylinder over P , ie M D†� .�1; 1/ and
N DP� .�1; 1/. We consider .M;N / as a marked 3–manifold, where the orientation
on each component of N is given by the natural orientation of I. We will consider † as
a subset of M by identifying † with †�f0g. There is a vertical projection prW M!†,
mapping .x; t/ to x .

Define S .†;P/ WDS .M;N /. Since we fix .†;P/, we will use the notation S D

S .†;P/ for the remainder of this section unless clarification is needed.

An N–tangle T in M is said to have vertical framing if the framing vector at every
point p 2 T is vertical, ie it is tangent to p� .�1; 1/ and has direction agreeing with
the positive orientation of .�1; 1/.

Suppose T �† is a P–tangle. Technically T may not be an N–tangle in M since
several strands of T may meet at the same point in P , which is forbidden in the
definition of an N–tangle. We modify T in a small neighborhood of each point p 2 P
by vertically moving the strands of T in that neighborhood, to get an N–tangle T 0 in
M D†�.�1; 1/ as follows. Equip T with the vertical framing. If at a marked point p
there are k D kp strands a1; a2; : : : ; ak of T (in a small neighborhood of p ) incident
to p and ordered in clockwise order, then we N–isotope these strands vertically so
that a1 is above a2 , a2 is above a3 , and so on; see Figure 8. The resulting T 0 is an
N–tangle whose N–isotopy class only depends on the P–isotopy class of T . Define T
as an element in S by

(10) T WD q
1
4

P
p2P kp.kp�1/T 0 2S :

The factor which is a power of q on the right-hand side is introduced so that T is
invariant under the reflection involution; see Section 6.2.

The set B.†;P/ of all P–isotopy classes of essential P–tangles in .†;P/ is a basis of
the free R–module S (see [19, Lemma 4.1]), and we will call B.†;P/ the preferred
basis of S . For 0¤ x 2S one has the finite presentation

x D
X
i2I

cixi with ci 2R n f0g and xi 2 B.†;P/
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a1

a2

a3

p

a01

a02

a03

p

Figure 8: There are three strands a1 , a2 , and a3 of T coming to p , ordered
clockwise (left). The corresponding strands a01 , a02 , and a03 of T 0, with
a01 above a02 , and a02 above a03 (right). Arrowed edges are part of the
boundary, not part of the P–tangles.

and we define the support of x to be the set supp.x/D fxi j i 2 I g. For z 2 B.†;P/
define

(11) �.z; x/D max
xi2supp.x/

�.z; xi /:

Here �.z; xi / is the geometric intersection index defined in Section 5.4.

Remark 6.1 Equation (10) describes the isomorphism between Muller’s definition of
the skein algebra of a totally marked surface .†;P/ in terms of multicurves of knots
and arcs in .†;P/ and our definition of a skein algebra of a marked surface .†;P/ in
terms of .P�.�1; 1//–tangles in .†� .�1; 1/;P � .�1; 1//.

6.2 Algebra structure and reflection anti-involution

For N–tangles T1 and T2 in .M;N /D .†� .�1; 1/;P � .�1; 1// define the product
T1T2 as the result of stacking T1 atop T2 using the cylinder structure of .M;N /. More
precisely, this means the following. Let �1W M ,!M be the embedding �1.x; t/ D�
x; 1
2
.tC1/

�
and �2W M ,!M be the embedding �2.x; t/D

�
x; 1
2
.t�1/

�
. Then T1T2 WD

�1.T1/[ �2.T2/. This product makes S an R–algebra, which is noncommutative in
general.

Let y�W S !S be the bar homomorphism of [19], ie the Z–algebra antihomomorphism
such that (i) y�.x/ D �.x/ if x 2 R , and (ii) if T is an N–tangle with framing v
then y�.T / is refl.T / with the framing �refl.v/, where refl is the reflection which
maps .x; t/! .x;�t / in † � .�1; 1/. It is clear that y� is an anti-involution. An
element z 2S is reflection invariant if y�.z/D z .

The prefactor on the right-hand side of (10) was introduced so that every P–tangle T
is reflection invariant as an element of S . The preferred basis B.†;P/ consists of
reflection-invariant elements.
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Suppose T is a P–tangle with components x1; : : : ; xk . By the reordering relation (see
Figure 5), any two components xi and xj are q–commuting as elements of S (and
note that xixj D xjxi if at least one is a P–knot), and

T D Œx1x2 � � � xk� in S ;

where on the right-hand side we use the Weyl normalization; see Section 2.1.

6.3 Functoriality

Let .†0;P 0/ be a marked surface such that †0 � † and P 0 � P . The morphism
�W .†0;P 0/ ,! .†;P/ given by the natural embedding induces an R–algebra homomor-
phism ��W S .†0;P 0/!S .†;P/.

Proposition 6.2 Suppose P 0 � P . Then ��W S .†;P 0/!S .†;P/ is injective.

Proof This is because the preferred basis B.†;P0/ is a subset of B.†;P/ .

6.4 Quantum torus associated to the vertex matrix for a marked surface

Recall that an unmarked component is a connected component of @† not containing any
marked points, and H is the set of unmarked components. It is clear that every ˇ 2H
is in the center of S . Note that two distinct elements of H are not P–isotopic
since otherwise † is an annulus with P D ∅, which is ruled out since .†;P/ is
quasitriangulable. For k 2NH, define the following element of S :

Hk WD
Y
ˇ2H

ˇk.ˇ/ 2S :

The set fHk j k 2 NHg is a subset of the preferred basis B.†;P/ . It follows that
the polynomial ring RŒH� in the variables ˇ 2 H with coefficients in R embeds as
an R–subalgebra of S . We will identify RŒH� with this subalgebra of S . Then RŒH�
is a subalgebra of the center of S , and hence we can consider S as an RŒH�–algebra.

Let � be a quasitriangulation of .†;P/. By definition, each a 2� is a P–arc, and
can be considered as an element of the skein algebra S . From the reordering relation
we see that for each pair of P–arcs a; b 2�,

(12) ab D qP.a;b/ba;

where P 2Mat.���;Z/ is the vertex matrix (see Section 5.3).
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Let X.�/ be the quantum torus over RŒH� associated to P with basis variables Xa ,
a 2�. That is,

X.�/DRŒH�hX˙1a ; a 2�i=.XaXb D q
P.a;b/XbXa/:

As a free RŒH�–module, X.�/ has a basis given by fXn j n 2 Z�g. As a free
R–module, X.�/ has a basis given by fHkXn j k 2NH;n 2 Z�g.

Let XC.�/ be the RŒH�–subalgebra of X.�/ generated by Xa; a 2�. Then XC.�/

is a free RŒH�–module with a basis given by fXn j n 2 N�g and a free R–module
with preferred basis B�;C WD fHkXn j k 2NH; n 2N�g. Furthermore, XC.�/ has
the following presentation as an algebra over RŒH�:

XC.�/DRŒH�hXa; a 2�i=.XaXb D qP.a;b/XbXa/:

The involution �W R!R extends to an involution �W RŒH�!RŒH� by �.rx/D�.r/x
for all r 2R and xDHk for all k 2NH. As explained in Section 2.4, � extends to an
anti-involution y�W X.�/!X.�/ so that y�.x/D�.x/ for x 2RŒH� and y�.Xk/DXk.

6.5 Embedding of S in the quantum torus X.�/

The following extends a result of Muller [19, Theorem 6.14] for totally marked surfaces
to the case of marked surfaces.

Theorem 6.3 Suppose the marked surface .†;P/ has a quasitriangulation �.

(a) There is a unique RŒH�–algebra embedding '�W S ,! X.�/ such that

(13) '�.a/DXa for all a 2�:

(b) If we identify S with its image under '� then S is sandwiched between
XC.�/ and X.�/, ie

(14) XC.�/�S � X.�/:

Consequently S is a two-sided Ore domain, and '� induces an RŒH�–algebra
isomorphism

z'�W �S .†;P/ Š�! zX.�/;

where �S .†;P/ and zX.�/ are the division algebras of S .†;P/ and X.�/,
respectively.

(c) Furthermore, '� is reflection invariant, ie '� commutes with y�.
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Proof The proof is a modification of Muller’s proof for the totally marked surface
case of Muller. To further simplify the proof, we will use Muller’s result for the totally
marked surface case.

(a) We first prove a few lemmas.

Lemma 6.4 The ring S is a domain.

Proof Let P 0�P be a larger set of marked points such that .†;P 0/ is totally marked.
By Proposition 6.2 S .†;P/ embeds into S .†;P 0/, which is a domain by Muller’s
result. Hence S is a domain.

Relation (12) shows there is a unique RŒH�–algebra homomorphism � W XC.�/!S

defined by �.Xa/D a . Then for n 2 Z�,

�.Xn/D�n WD

� Y
a2�

an.a/
�
:

Note that � is injective since � maps the preferred R–basis B�;C of XC.�/ bijectively
onto a subset of the preferred R–basis B.†;P/ of S . We will identify XC.�/ with
its image under � . Given a subset S ��, an S–monomial is an element in S of the
form �n, where n 2N� has that n.a/D 0 if a 62 S.

Recall that �D�in[�bd , where �in is the set of inner edges and �bd is the set of
boundary edges.

Lemma 6.5 Let x 2S .

(i) If S �� there is an S–monomial m such that �.a; xm/D 0 for all a 2 S.

(ii) There is an �in–monomial m such that xm 2 XC.�/.

Proof (i) The following two facts are [19, Lemma 4.7(3)] and [19, Corollary 4.13],
respectively:

�.a; yz/� �.a; y/C�.a; z/ for all a 2� and y; z 2S ;(15)

�.a; ya�.a;y//D 0 for all a 2� and y 2S .(16)

These results are formulated and proved for general marked surfaces in [19], not just
totally marked surfaces. Besides, since any two edges in � have intersection index 0,

(17) �.a;m/D 0 for all �–monomials m and all a 2�.
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Let n 2 Z� be given by n.a/ D �.a; x/ for a 2 S and n.a/ D 0 for a 62 S. Then
m D �n is an S–monomial. Suppose a 2 S. By taking out the factors a in m and
using (5), we have

mD qk=2a�.a;x/m0;

where m0 is another S–monomial and k 2 Z. Using (16) and then (15) and (17),

�.a; xm/� �.a; xa�.a;x//C�.a;m0/D 0;

which proves �.a; xm/D 0 for all a 2 S.

(ii) Choose m of part (a) with S D�in . Let xi 2 supp.xm/. Clearly �.a; xi /D 0 for
all a 2�bd . Since �.a; xm/D 0 for all a 2�in , one can find a P–tangle x0i which
is P–isotopic to xi such that xi and a are taut (see Lemma 5.3), so that x0i \ aD∅
in † nP for each a 2�. The maximality in the definition of quasitriangulation shows
that each component of x0i is P–isotopic to one in �[H . It follows that xi DHk�n

in S for some k 2NH and n 2N�. This implies xm 2 XC.�/.

Lemma 6.6 The multiplicative set M generated by �–monomials is a two-sided Ore
subset of S . Similarly the multiplicative set Min generated by �in–monomials is
a two-sided Ore subset of S .

Proof By definition, M is right Ore if for every x 2S and every u 2M, one has
xM\uS ¤∅.

By (5), one has uD qk=2�n for some k 2Z and n2N�. By Lemma 6.5, there is a �–
monomial m such that xm2XC.�/. Since B�;CDfHk�n jk2NH; n2N�g is the
preferred R–basis of XC.�/, we have a finite sum presentation xmD

P
i2I ciHki�ni

with ci 2R . It follows that

xM 3 xmuD qk=2
X
i2I

ciHki�ni�n D qk=2
X
i2I

ciq
hni ;niPHki�n�ni

D qk=2�n
X
i2I

ciq
hni ;niPHki�ni D u

X
i2I

ciq
hni ;niPHki�ni 2 uS ;

where the second equality follows from (5). This proves M is right Ore. Since the
reflection anti-involution y� reverses the order of the multiplication and fixes each
�–monomial, M is also left Ore. The proof that Min is Ore is identical, replacing M

by Min everywhere.
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Let us prove Theorem 6.3(a). Since S is a domain, the natural map S !SM�1,
where SM�1 is the Ore localization of S at M, is injective. Since Ore localization
is flat, the inclusion � W XC.�/ ,!S induces an inclusion

(18) z� W XC.�/M
�1 ,!SM�1:

Note that XC.�/M
�1 D X.�/. Let us prove z� is surjective. After identifying

XC.�/M
�1 as a subset of SM�1 via z� , it is enough to show that S �XC.�/M

�1.
This is guaranteed by Lemma 6.5, and thus z� is an isomorphism.

Let '� be the restriction of z��1 onto S . Then we have an embedding of RŒH�–algebras
'�W S ,! X.�/ such that '� ı � is the identity on XC.�/. Any element x 2 S

can be presented as ym�1 with y 2 XC.�/ and m 2M. This shows XC.�/ weakly
generates S , and thus the uniqueness of '� is clear. This proves (a).

(b) Inclusion (14) follows from (13), and part (b) follows from Corollary 2.2.

(c) Let us prove that '� is reflection invariant, ie for every x 2S , we have

(19) '�.y�.x//D y�.'�.x//:

Identity (19) clearly holds for the case when x 2�[H . Hence it holds for x in the
R–algebra generated by �[H , which is XC.�/�S . Since every element x 2S

can be presented in the form ym�1, where y 2 XC.�/ and m 2M, we also have (19)
for x . This completes the proof of Theorem 6.3.

Remark 6.7 Lemma 6.5 shows that '�.S / lies in XC.�/.Min/
�1.

6.6 Flip and transfer

For a quasitriangulation � of .†;P/, the map '�W S ,! X.�/ will be called the
skein coordinate map. We wish to understand how these coordinates change under
change of quasitriangulation.

Let us first introduce the notion of a flip of a P–quasitriangulation.

Suppose � is a quasitriangulation of .†;P/ and a is an inner edge in �. The

a

b

c

d

e a�

b

c

d

e

Figure 9: Flip a! a� (Case 1).
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a

b

c

ˇ a�

b

c

ˇ

Figure 10: Flip a! a� (Case 2).

flip of � at a is a new quasitriangulation given by �0 WD� n fag [ fa�g, where a�

is the only P–arc not P–isotopic to a such that �0 is a quasitriangulation. There are
two cases:

Case 1 a is the common edge of two distinct triangles; see Figure 9.

Case 2 a is the common edge of a holed monogon and a triangle; see Figure 10.

In both cases a� is depicted in Figures 9 and 10.

Any two P–quasitriangulations are related by a sequence of flips; see eg [20], where a
flip of Case 2 is called a quasiflip. If .†;P/ is a totally marked surface, then there is
no flip of Case 2.

Suppose � and �0 are two quasitriangulations of .†;P/. Let

‚�;�0 WD z'�0 ı .z'�/
�1
W zX.�/! zX.�0/:

By Theorem 6.3, ‚�;�0 is an RŒH�–algebra isomorphism from zX.�/ onto zX.�0/.
We call ‚�;�0 the transfer isomorphism from � to �0 .

Proposition 6.8 (a) The transfer isomorphism ‚�;�0 is natural. This means

‚�;� D id and ‚�;�00 D‚�0;�00 ı‚�;�0 :

(b) The skein coordinate maps '�W S ,! zX.�/ commute with the transfer isomor-
phisms, ie

'�0 D‚�;�0 ı'�:

(c) Suppose �0 is obtained from � by a flip at an edge a , with a replaced
by a� as in Figure 9 (Case 1) or Figure 10 (Case 2). Identify S as a subset
of X.�/ and zX.�0/. Then, with edge notation as in Figure 9 or Figure 10,

‚��0.u/D u for u 2� n fag;(20)

‚��0.a/D

�
Œce.a�/�1�C Œbd.a�/�1� in Case 1;
Œb2.a�/�1�C Œc2.a�/�1�CˇŒbc.a�/�1� in Case 2:

(21)
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Proof Parts (a) and (b) follow right away from the definition. Identity (20) is obvious
from the definition. Case 1 of (21) is proved in [17, Proposition 5.4].

For Case 2 of (21), we have that ‚�;�0.a/D z'�0.a/. To compute this, we note that
aa� D q2b2C q�2c2Cˇbc in S . Then

z'�0.aa
�/D z'�0.q

2b2/C z'�0.q
�2c2/C z'�0.ˇbc/;

z'�0.a/z'�0.a
�/D q2b2C q�2c2Cˇbc;

z'�0.a/a
�
D q2b2C q�2c2Cˇbc:

Multiply both sides on the right by .a�/�1 and note that the q factors agree with Weyl
normalization. Therefore,

z'�0.a/D q
2b2.a�/�1C q�2c2.a�/�1Cˇbc.a�/�1

D Œb2.a�/�1�C Œc2.a�/�1�CˇŒbc.a�/�1�:

7 Modifying marked surfaces

In this section, a quasitriangulable marked surface .†;P/ is fixed and we write
S WD S .†;P/. The inclusion of unmarked boundary components in the theory
allows us to describe how the skein coordinates change under modifications of surfaces.
In this section we consider two modifications: adding a marked point and plugging an
unmarked boundary component with a disk. The results of this section will be used in
the proof of the main theorem, particularly for Proposition 8.8.

7.1 Surgery algebra

Let � be a quasitriangulation of .†;P/. Identify S as a subset of X.�/ using the
skein coordinate map '� . Recall that �mon is the set of all monogon edges. Let
�ess WD� n�mon .

Suppose ˇ 2H is an unmarked component whose monogon edge is aˇ . Let †0 be the
result of gluing a disk to † along ˇ . We will say that .†0;P/ is obtained from .†;P/
by plugging the unmarked ˇ . Then aˇ becomes 0 in S .†0;P/, while it is invertible
in X.�/. For this reason we want to find a subalgebra Z.�/ of X.�/ in which aˇ is
not invertible, but we still have S � Z.�/.

For a 2�mon choose a P–arc a� such that �n fag[fa�g is a new quasitriangulation,
ie it is the result of the flip of � at a . Let ��mon WD fa

� j a 2 �mong. For a 2 �mon

let .a�/� D a .
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The surgery algebra Z.�/ is the RŒH�–subalgebra of X.�/ generated by a˙1 with
a 2�ess , and all a 2�mon[�

�
mon. Thus in Z.�/ we don’t have a�1 (for a 2�mon )

but we do have a�, which will suffice in many applications. With the intention to
replace a�1 by a�, we introduce the following definition: for a 2� and k 2Z define

afkg D

�
.a�/�k if a 2�mon and k < 0,
ak in all other cases.

For k 2 Z� define

�fkg WD

� Y
a2�

afk.a/g
�
:

Proposition 7.1 (a) As an RŒH�–algebra, Z.�/ is generated by �[��mon and
a�1 for a 2�ess , subject to the relations

xyD qP.x;y/yx if .x; y/¤.a; a�/ for all a2.�mon[�
�
mon/;(22)

aa�D q2b2C q�2c2Cˇbc if a2.�mon[�
�
mon/:(23)

Here, for the case where a 2 �mon [ �
�
mon , we denote by ˇ the unmarked

boundary component surrounded by a , and the edges b and c are as in Figure 10.

(b) The skein algebra S is a subset of Z.�/ for any quasitriangulation �.

(c) As an RŒH�–module, Z.�/ is free with basis

Bsur
� WD f�

fkg
j k 2 Z�g:

It should be noted that P.x; y/ in (22) is well defined since x and y do not intersect
in † nP .

Proof (a) Let us redefine Z.�/ so that it has the presentation given in the proposition.
Recall that S �X.�/, and hence a�2X.�/. Define an RŒH�–algebra homomorphism
� W Z.�/! X.�/ by �.a/D a for all a 2�[��mon. Since all the defining relations
of Z.�/ are satisfied in X.�/, the homomorphism � is well defined. To prove (a) we
need to show that � is injective.

Let ZC.�/� Z.�/ be the RŒH�–algebra generated by all a 2�[��mon.

Lemma 7.2 Let T �S be an essential P–tangle such that �.T; b/D0 for all b2�ess .
Then T 2ZC.�/.
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Proof After a P–isotopy we can assume T does not intersect any b 2�ess in † nP
by Lemma 5.3. Cutting † along �ess , one gets a collection of ideal triangles and eyes.
Here an eye is a bigon with a small open disk removed; see Figure 11. Each eye has
two quasitriangulations. If x is a component of T , then x , lying inside of a triangle or
an eye, must be P–isotopic to an element in �[��mon[H , which implies x 2ZC.�/.
Hence T 2 ZC.�/.

Figure 11: An eye (left) and its two quasitriangulations.

Lemma 7.3 (i) The set

Bsur
�;C WD f�

fkg
j k 2N�ess �Z�mong

is an RŒH�–basis for ZC.�/. The map � maps ZC.�/ injectively into S .

(ii) The multiplicative set N generated by all �ess–monomials is a two-sided Ore
set of ZC.�/ and Z.�/D ZC.�/N�1.

Proof (i) Clearly ZC.�/ is RŒH�–spanned by monomials in elements of �[��mon.
Since each b 2�ess will q–commute with any element of �[��mon , every monomial
in elements of �[��mon is equal to, up to a factor which is a power of q , an element
of the form

(24) x D a1 � � � al�
k
ess; k 2N�ess ;

where ai 2 �mon [ �
�
mon and �kess is understood to be a �ess–monomial. Each

a 2 �mon [�
�
mon commutes with every element of �mon [�

�
mon except for a�. If

fa; a�g 6� fa1; : : : ; alg for any a 2�mon[�
�
mon , then x 2Bsur

�;C , up to a factor which
is a power of q .

If fa; a�g � fa1; : : : ; alg, then we can permute the product to bring one a next to
one a�, and relation (23) shows that x is equal to an RŒH�–linear combination of
elements of the form (24) which each have a smaller number of a and a�. Induction
shows that elements x of the form (24) are linear combinations of elements of the
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same form (24) in which not both a and a� appear for every a 2�mon[�
�
mon. This

shows Bsur
�;C spans ZC.�/ as an RŒH�–module.

The geometric realization of elements in Bsur
�;C (ie their image in S ) shows that �

maps Bsur
�;C injectively into the preferred basis B.†;P/ of S . This shows that BZ;C

must be RŒH�–linearly independent, that BZ;C is an RŒH�–basis of ZC.�/, and that f
maps ZC.�/ injectively into S .

(ii) As ZC.�/ embeds in S , which is a domain, N contains only regular elements.
To get Z.�/ from ZC.�/ we need to invert all a 2 �ess . As every a 2 �ess will
q–commute with any other generator, every element of Z.�/ has the form xn�1 and
also the form .n0/�1x0, where x; x0 2ZC.�/, and n and n0 are �ess–monomials. Thus
Z.�/ is a ring of fractions of ZC.�/ with respect to N. This shows that N is a
two-sided Ore set of ZC.�/ and Z.�/D ZC.�/N�1.

Suppose �.x/D 0 for some x 2 Z . Then x D yn�1 for some y 2 ZC.�/ and n 2N.
Hence �.y/D �.x/�.n/D 0. Lemma 7.3 shows y D 0. Consequently x D 0. This
proves the injectivity of � .

(b) Suppose x2S . Using Lemma 6.5 with SD�ess , there is a �ess–monomial n such
that �.a; xn/D 0 for all a2�ess . Then xn is an R–linear combination of essential P–
tangles which do not intersect any edge in �ess by Lemma 5.3. By Lemma 7.2, it follows
that xn2ZC.�/. Hence xD .xn/n�12ZC.�/N�1DZ.�/. This proves S �Z.�/.

(c) As any element of Z.�/ may be written as xn�1, where x 2 ZC.�/ and n is
a �ess–monomial, and Bsur

�;C spans ZC.�/ as an RŒH�–module, we have that Bsur
�

spans Z.�/ as an RŒH�–module. On the other hand, suppose we have an RŒH�–linear
combination of Bsur

� giving 0:X
i

ci�
fki g D 0; ci 2RŒH�:

Multiplying on the right by .�ess/
k, where k.a/ is sufficiently large for each a 2�ess ,

we get X
i

qli=2ci�
fk0
i
g
D 0; li 2 Z;

where k0i .a/� 0 for all a 2�ess . This means each �fk
0
i
g is in Bsur

�;C , an RŒH�–basis
of ZC.�/. It follows that ci D 0 for all i . Hence, Bsur

� is linearly independent
over RŒH�, and consequently an RŒH�–basis of Z.�/.
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Lemma 7.4 An R–algebra homomorphism gW S ! A extends to an R–algebra
homomorphism Z.�/ ! A if and only if g.a/ is invertible for all a 2 �ess , and
furthermore the extension is unique.

Proof We have ZC.�/�S �Z.�/DZC.�/N�1. By Proposition 2.1, N is a two-
sided Ore subset of S and Z.�/DSN�1. The lemma follows from the universality
of the Ore extension.

7.2 Adding marked points

Let p 2 @†nP , and P 0DP[fpg. The identity map �W †!† induces an R–algebra
embedding ��W S .†;P/! S .†;P 0/; see Proposition 6.2. After choosing how to
extend a P–quasitriangulation � to be a P 0–quasitriangulation �0, we will show that ��
has a unique extension to an R–algebra homomorphism ‰W Z.�/! Z.�0/ which
makes the following diagram commute:

(25)

S .†;P/ Z.�/

S .†;P 0/ Z.�0/

��

'�

‰

'�0

The map ‰ describes how the skein coordinates change. There are two scenarios to
consider: adding a marked point to an unmarked boundary component or to a boundary
edge.

7.3 Scenario 1: adding a marked point to a boundary edge

Suppose a � @† is a boundary P–arc of .†;P/ and p is a point in the interior of a .
Let P 0 D P [fpg. The set H0 of unmarked boundary components of the new marked
surface .†;P 0/ is equal to H .

Let � be a P–quasitriangulation of .†;P/. Define a P 0–quasitriangulation �0 of †
by �0 WD �[ fa1; a2g as shown in Figure 12 (where we have P 0–isotoped a away
from @† in �0 ).

Recall that Z.�/ is weakly generated by �[��mon, and that �ess D� n�mon .

Proposition 7.5 There is a unique RŒH�–algebra homomorphism ‰W Z.�/!Z.�0/
which makes diagram (25) commutative. Moreover, ‰ is given by ‰.a/D a for all
a 2�[��mon.
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a

�

a

a1 a2p

�0

Figure 12: Adding a marked point to a boundary edge. The shaded part is a
subset of the interior of † .

Proof Identify S .†;P/ with its image under '� and S .†;P 0/ with its image
under '�0 . Note that �ess � �

0
ess . Hence if a 2 �ess then ��.a/ D a is invertible

in Z.�0/. That ‰ exists uniquely follows from Lemma 7.4 because '�0 ı ��.a/ is
invertible for all a2�ess . That ‰.a/Da for all a2�[��mon follows immediately.

7.4 Scenario 2: adding a marked point to an unmarked component

Suppose ˇ 2H is an unmarked boundary component of .†;P/. Choose a point p 2 ˇ
and set P 0 D P [fpg. We call the new marked surface .†;P 0/ and write H0 DH nˇ
for its set of unmarked boundary components.

Suppose � is a quasitriangulation of .†;P/. Let a 2 �mon be the monogon edge
bounding the eye containing the unmarked boundary component ˇ (as defined in
Figure 11), and b; c 2� be the edges immediately clockwise and counterclockwise
to a as depicted on the left in Figure 13. To get a triangulation of the eye containing ˇ
with the added marked point p , we need to add three edges d , e , and f as depicted
on the right side of Figure 13. Here f is the boundary P 0–arc whose ends are both p .
By relabeling, we can assume that e is counterclockwise to d at p . Up to isotopy
of † fixing every point in the complement of the monogon, there is only one choice
for such d and e . Then �0 D�[fd; e; f g is a quasitriangulation of .†;P 0/.

Since H¤H0, it is not appropriate to consider modules and algebras over RŒH�. Rather
we will consider both S .†;P/ and S .†;P 0/ as algebras over R . As an R–algebra,
Z.�/ is weakly generated by �[��mon[H .

a

b

c

ˇ

�

p
e

f d

�0

Figure 13: From � to �0 .
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Proposition 7.6 There exists a unique R–algebra homomorphism ‰W Z.�/!Z.�0/
which makes diagram (25) commutative. Moreover, for z 2�[��mon[H we have

(26) ‰.z/D

8̂̂̂̂
<̂
ˆ̂̂:
z if z … fˇ; a�g;

Œd�1e�C Œad�1e�1f �C Œde�1� if z D ˇ;

Œa�1b2�C Œa�1c2�C Œa�1bcd�1e�

C Œbcd�1e�1f �C Œa�1bcde�1� if z D a�:

Proof Again �ess��
0
ess , so the existence and uniqueness of ‰ follows. Formula (26)

follows from a simple calculation of the value of ��.z/.

7.5 Plugging a hole

The more interesting operation is plugging a hole.

Fix an unmarked boundary component ˇ 2H . Let †0 be the result of gluing a disk
to † along ˇ . Then .†0;P/ is another marked surface. The natural morphism
�W .†;P/ ! .†0;P/ gives rise to an R–algebra homomorphism ��W S .†;P/ !
S .†0;P/. Since �� maps the preferred R–basis B.†;P/ of S .†;P/ onto a set
containing the preferred R–basis B.†0;P/ of S .†0;P/, the map �� is surjective.

Suppose � is a quasitriangulation of .†;P/. Let a2� be the monogon edge bounding
the eye containing the unmarked boundary ˇ , and let � be the triangle having a as an
edge. Let a , b , and c be the edges of � in counterclockwise order, as in Figure 14.
Let �0 D� n fa; bg. Then �0 is a P–quasitriangulation of †0.

We cannot extend ��W S ! S 0 to an R–algebra homomorphism X.�/! X.�0/,
since ��.a/D 0 but a is invertible in X.�/. This is the reason why we choose to work
with the smaller algebra Z.�/, which does not contain a�1.

Recall that as an R–algebra, Z.�/ is weakly generated by H[��mon[�.

a

b

c

ˇ
b

Figure 14: From � to �0 .
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Proposition 7.7 There exists a unique R–algebra homomorphism ‰W Z.�/!Z.�0/
such that the diagram

(27)

S .†;P/ Z.�/

S .†0;P/ Z.�0/

��

'�

‰

'�0

is commutative. Explicitly, ‰ is defined on the generators in H[��mon[� as follows:

‰.e/D e if e 2 .H[��mon[�/ n fa; a
�; b; ˇg;(28)

‰.a/D‰.a�/D 0; ‰.b/D c; ‰.ˇ/D�q2� q�2:(29)

The map ‰ is surjective and its kernel is the ideal I of Z.�/ generated by a , a�, b�c ,
and ˇC q2C q�2.

Proof Identify S .†;P/ with its image under '� , and identify S .†;P 0/ with its
image under '�0 .

The existence and uniqueness of ‰ follows from Lemma 7.4, since ��.x/ is invertible
in Z.�0/ for all x 2�n�mon . By checking the value of ��.x/ for x 2H[��mon[�,
we get (28) and (29). It follows that I is in ker‰ . Hence ‰ descends to an R–algebra
homomorphism

‰W Z.�/=I ! Z.�0/:

We will prove that ‰ is bijective by showing that there is an R–basis X 0 of Z.�0/ and
an R–spanning set X of Z.�/=I such that ‰ maps X bijectively onto X 0. Then ‰
is an isomorphism. Let

X D f�fkg.H/n j k 2 Z�; n 2NH
g;

X0 D f�
fkg.H/n 2X j k.a/D k.b/D n.ˇ/D 0g �X;

X 0 D f.�0/fkg.H0/n j k 2 Z�
0

; n 2NH0
g:

By Proposition 7.1(c), the sets X and X 0 are respectively R–bases of Z.�/ and Z.�0/.
As �0D�nfa; bg and H0DHnfˇg, Formula (28) shows that ‰ maps X0 bijectively
onto X 0. Consequently, the projection � W Z.�/! Z.�/=I maps X0 bijectively onto
a set X and ‰ maps X bijectively onto X 0.

It remains to be shown that the R–span RhXi of X equals Z.�/=I. Suppose that
x D�fkgHn 2‰.X/ nX0 . Then either k.a/¤ 0 or k.b/¤ 0 or n.ˇ/¤ 0.
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If k.a/¤ 0, then in x there is factor of a or a� which is in I, and hence �.x/D 0.
Because b�c and ˇCq2Cq�2 are in I, in Z.�/=I we can replace b by c and ˇ by
the scalar �q2 � q�2. Thus, �.x/ 2 RhXi. As X spans Z.�/, this shows that X
spans Z.�/=I. The proposition is proved.

8 Chebyshev–Frobenius homomorphism

For the case when the marked set is empty, Bonahon and Wong [3] constructed a
remarkable algebra homomorphism, called the Chebyshev homomorphism, from the
skein algebra with quantum parameter q D �N

2

to the skein algebra with quantum
parameter q D � , where � is a complex root of unity, and N is the order (as a root
of unity) of �4. In [3] the proof of the existence of the Chebyshev homomorphism is
based on the theory of the quantum trace map [2]. Since the result can be formulated
using only elementary skein theory, Bonahon and Wong asked for a skein-theoretic
proof of their results. Such a proof was offered in [14].

Here we extend the result of Bonahon and Wong to the case of marked 3–manifolds.
Our proof is different from the two above-mentioned proofs even in the case of the
marked set being empty; it does not rely on many computations but rather on the
functoriality of the skein algebras.

8.1 Setting

Throughout this section we fix a marked 3–manifold .M;N /. The ground ring R
is C . Let C� denote the set of nonzero complex numbers. A root of unity is a complex
number � such that there exists a positive integer n such that �n D 1, and the smallest
such n is called the order of � , denoted by ord.�/.

The skein module S .M;N / depends on the choice of q D � 2C�, and we denote the
skein module with this choice by S�.M;N /. To be precise, we also choose and fix
one of the two square roots of � for the value of q1=2, but the choice of �1=2 is not
important, by the symmetry of complex conjugation.

Similarly, if .†;P/ is a marked surface with quasitriangulation �, then we use
S�.†;P/, X�.�/, and Z�.�/ to denote what were respectively the S .†;P/, X.�/,
and Z.�/ of Sections 6.5 and 7.1 with ground ring C and q D � . We will always
identify S�.†;P/ as a subset of X�.�/, its division algebra zX�.�/, and Z�.�/.
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8.2 Formulation of the result

For � 2C� recall that S�.M;N /D T .M;N /=Rel� , where T .M;N / is the C–vector
space with basis the set of all N–isotopy classes of N–tangles in M , and Rel� is the
subspace spanned by the trivial loop relation elements, the trivial arc relation elements,
and the skein relation elements; see Section 4.2. For x 2 T .M;N / denote by Œx�� its
image in S�.M;N /D T .M;N /=Rel� .

For an N–arc or an N–knot T in .M;N / and k 2 N let T .k/ be the kth framed
power of T , which is k parallel copies of T obtained using the framing, which will
be considered as an N–tangle lying in a small neighborhood of T . The N–isotopy
class of T .k/ depends only on the N–isotopy class of T .

Given a polynomial P.z/D
P
ciz

i 2 ZŒz�, and an N–tangle T with a single com-
ponent, we define an element P fr.T / 2 T .M;N / called the threading of T by P by
P fr.T /D

P
ciT

.i/. If T is a P–knot in a marked surface .†;P/, then P fr.T /DP.T /.
Using the definition (10) one can easily check that P fr.T / D P.T / for the case
when T is a P–arc as well.

Fix N 2N . Suppose TN .z/D
P
ciz

i is the N th Chebyshev polynomial of type one
defined by (1). Define a C–linear map

�̂
N W T .M;N /! T .M;N /

so that if T is an N–tangle then �̂N .T /2T .M;N / is the union of a.N/ and .TN /fr.˛/
for each N–arc component a and each N–knot component ˛ of T . See Section 4.3
for the precise definition of union for skein modules. In other words, �̂N is given by
threading each N–arc by zN and each N–knot by TN .z/. More precisely, if the N–arc
components of T are a1; : : : ; ak and the N–knot components are ˛1; : : : ; ˛l , then

(30) �̂
N .T /D

X
0�j1;:::;jl�N

cj1 � � � cjla
.N/
1 [ � � � [ a

.N/

k
[ ˛

.j1/
1 [ � � � [ ˛

.jl /

l

2 T .M;N /:

Theorem 8.1 Let .M;N / be a marked 3–manifold and � be a complex root of unity.
Let N WD ord.�4/ and " WD �N

2

.

Then there exists a unique C–linear map ˆ� W S".M;N /!S�.M;N / such that if
x 2S".M;N / is presented by an N–tangle T then ˆ�.x/D Œ�̂N .T /�� in S�.M;N /.
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In other words, the map �̂N W T .M;N /! T .M;N / descends to a well-defined map
ˆ� W S".M;N /!S�.M;N /, meaning that the following diagram commutes:

T .M;N / T .M;N /

S".M;N / S�.M;N /

Œ � �"

�̂
N

Œ � ��

ˆ�

Note that if ord.�4/DN and "D �N
2

, then " 2 f˙1;˙ig. If N D∅, then the skein
module S".M;N / with "2f˙1;˙ig has an interpretation in terms of classical objects
and is closely related to the SL2–character variety; see [27; 4; 22; 24; 18].

We call ˆ� the Chebyshev–Frobenius homomorphism. As mentioned, for the case
when N D∅ (where there are no arc components), Theorem 8.1 was proved in [3] with
the help of the quantum trace map, and was proved again in [17] using elementary skein
methods. We will prove Theorem 8.1 in Section 8.10, using a result on skein algebras
of triangulable marked surfaces discussed below, which is also of independent interest.

8.3 Independence of triangulation problem

Let � be a triangulation of a (necessarily totally) marked surface .†;P/. Suppose N
is a positive integer and � 2 C� not necessarily a root of unity. For now we do not
require N D ord.�4/. Let "D �N

2

.

By Proposition 2.4, we have a C–algebra embedding (the Frobenius homomorphism):

FN W X".�/! X�.�/; FN .a/D a
N for all a 2�:(31)

Consider the embedding '�W S�.†;P/ ,! X�.�/ as a coordinate map depending on
a triangulation. If we try to define a function on S�.†;P/ using the coordinates, then
we have to ask if the function is well defined, ie it does not depend on the chosen
coordinate system. Let us look at this problem for the Frobenius homomorphism.

Identify S�.†;P/ as a subset of X�.�/ via '� , for � D "; � . We investigate when a
dashed arrow exists in the following diagram that makes it commute:

(32)

S".†;P/ X".�/

S�.†;P/ X�.�/

‹ FN

We answer the following questions about FN :
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(A) For which � 2 C� and N 2 N does FN restrict to a map from S".†;P/
to S�.†;P/ such that the restriction does not depend on the triangulation �?

(B) If FN can restrict to such a map, can the restriction of FN onto S".†;P/ be
defined in an intrinsic way, without reference to any triangulation �?

The answers are given in the following two theorems.

Question (A) is answered by the following theorem.

Theorem 8.2 Suppose � 2 C�, N � 2, and " D �N
2

. Assume that .†;P/ has
at least two different triangulations. If FN W X".�/ ! X�.�/ restricts to a map
S".†;P/!S�.†;P/ for all triangulations � and the restriction does not depend on
the triangulations, then � is a root of unity and N D ord.�4/.

Question (B) is answered by the following converse to Theorem 8.2.

Theorem 8.3 Suppose .†;P/ is a triangulable surface and � is a root of unity. Let
N D ord.�4/ and "D �N

2

. Choose a triangulation � of .†;P/.

(a) The map FN restricts to a C–algebra homomorphism F� W S".†;P/!S�.†;P/
which does not depend on the triangulation �.

(b) If a is a P–arc, then F�.a/D aN, and if ˛ is a P–knot, then F�.˛/D TN .˛/.

We prove Theorem 8.2 in Section 8.4 and Theorem 8.3 in Section 8.9.

8.4 Division algebra

Assume .†;P/ is triangulable, � 2 C� , and N 2 N . Choose a triangulation �

of .†;P/. Let zX".�/ and zX�.�/ be the division algebras of X".�/ and X�.�/,
respectively. The C–algebra embedding FN W X".�/!X�.�/ extends to a C–algebra
embedding

zFN W zX".�/! zX�.�/:

For � D "; � , let �S�.†;P/ be the division algebra of S�.†;P/. The embedding
'�W S�.†;P/ ,! X�.�/ induces an isomorphism z'�W �S�.†;P/ Š�! zX�.�/, by
Theorem 6.3. Diagram (32) becomes

�S".†;P/ zX".�/

�S�.†;P/ zX�.�/

Š

z'�

zFN

Š

z'�
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By pulling back zFN via z'� , we get a C–algebra embedding

(33) zFN;�W �S".†;P/! �S�.†;P/;

which a priori depends on the P–triangulation �.

Proposition 8.4 Let .†;P/ be a triangulable marked surface, � 2C� , and N 2N .

(a) If � is a root of unity and N WD ord.�4/, then zFN;� does not depend on the
triangulation �.

(b) Suppose .†;P/ has at least two different triangulations and N � 2. Then zFN;�
does not depend on � if and only if � is a root of unity and N D ord.�4/.

Remark 8.5 A totally marked surface .†;P/ has at least two triangulations if and
only if it is not a disk with fewer than four marked points.

Proof As (a) is a consequence of (b), let us prove (b).

By Proposition 6.8, the map zFN;� does not depend on the P–triangulation � if and
only if the diagram

(34)

zX".�/ zX".�
0/

zX�.�/ zX�.�
0/

‚�;�0

zFN zFN

‚�;�0

is commutative for any two P–triangulations � and �0. Since any two P–triangulations
are related by a sequence of flips, in (34) we can assume that �0 is obtained from � by
a flip at an edge a2�, with the notation as given in Figure 9. Then �0D�[fa�gnfag.
The commutativity of (34) is equivalent to

(35) . zFN ı‚�;�0/.x/D .‚�;�0 ı zFN /.x/ for all x 2 zX".�/:

Since � weakly generates the algebra zX�.�/, it is enough to show (35) for x 2�.

If x 2�nfag, then by (20) one has ‚�;�0.x/D x , and hence we have (35) since both
sides are equal to xN in zX".�0/. Consider the remaining case x D a . By (21), we
know that

(36) ‚�;�0.a/DX CY; where X D Œbd.a�/�1� and Y D Œce.a�/�1�:
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Using (36) and the definition of zFN , we calculate the left-hand side of (35):

(37) . zFN ı‚�;�0/.a/D zFN
�
Œbd.a�/�1�C Œce.a�/�1�

�
D ŒbNdN .a�/�N �C ŒcN eN .a�/�N �DXN CY N :

Now we calculate the right-hand side of (35):

(38) .‚�;�0 ı zFN /.a/D‚�;�0.a
N /D .‚�;�0.a//

N
D .X CY /N :

Comparing (37) and (38), we see that (35) holds if and only if

(39) .X CY /N DXN CY N :

From the q–commutativity of elements in �0 one can check that XY D �4YX. By the
Gauss binomial formula (see eg [11]),

.XCY /NDXNCY NC

N�1X
kD1

�N
k

�
�4
Y kXN�k; where

�N
k

�
�4
D

kY
jD1

1��4.N�jC1/

1��4j
:

Note that Y kXN�k is a power of � times a monomial in b , c , d , e , and .a�/�1,
and these monomials are distinct for k D 0; 1; : : : ; N. As monomials (with positive
and negative powers) in edges form a C–basis of X�.�0/, we see that .X CY /N D
XN CY N if and only if

(40)
�N
k

�
�4
D 0 for all k D 1; 2; : : : ; N � 1:

It is well known, and easy to prove, that (40) holds if and only if �4 is a root of unity
of order N.

As the edge a in the proof of Proposition 8.4 is in S .†;P/, Theorem 8.2 follows
immediately.

8.5 Frobenius homomorphism zF� WD zFN;�

From now on let � be a root of unity, N D ord.�4/, and "D �N
2

. Suppose .†;P/ is
a triangulable marked surface. Since zFN;� does not depend on � and N D ord.�4/,
we write

zF� WD zFN;�W �S".†;P/! �S�.†;P/:

8.6 Arcs in .†;P/

Proposition 8.6 Suppose a �† is a P–arc. Then zF�.a/D aN.

Proof zF�.a/D zFN;�.a/D a
N, since a is an element of a P–triangulation �.
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8.7 Functoriality

Proposition 8.7 Suppose .†;P/ and .†0;P 0/ are triangulable marked surfaces such
that † � †0 and P � P 0. For any � 2 C� , the embedding �W .†;P/ ,! .†0;P 0/
induces a C–algebra homomorphism ��W �S� .†;P/! �S� .†

0;P 0/.

Let � 2C� be a root of unity, N D ord.�4/, and "D �N
2

. Then the following diagram
commutes: �S".†;P/ �S".†

0;P 0/

�S�.†;P/ �S�.†
0;P 0/

��

zF� zF�

��

Proof If a �† is a P–arc, then it is also a P 0–arc in †0. Hence by Proposition 8.6,
both �� ı zF�.a/ and zF� ı ��.a/ are equal to aN in �S�.†

0;P 0/. Since for a triangulable
marked surface .†;P/, the set of all sums of P–arcs and their inverses generates
zX".�/D �S".†;P/, we have the commutativity of the diagram.

8.8 Knots in .†;P/

We find an intrinsic definition of zF�.˛/, where ˛ is a P–knot.

Proposition 8.8 Suppose .†;P/ is a triangulable marked surface, � is a root of unity,
and N D ord.�4/. If ˛ is a P–knot in .†;P/, then zF�.˛/D TN .˛/.

We break the proof of Proposition 8.8 into lemmas.

Lemma 8.9 (a) Proposition 8.8 holds if ˛ is a trivial P–knot, ie if ˛ bounds a disk
in †.

(b) If � is a root of unity with ord.�4/DN and "D �N
2

, then

(41) TN .��
2
� ��2/D�"2� "�2:

Proof (b) The left-hand side and the right-hand side of (41) are

TN .��
2
� ��2/D .��2/N C .���2/N D .�1/N .�2N C ��2N /;(42)

�"2� "�2 D��2N
2

� ��2N
2

:(43)

Since ord.�4/DN, either ord.�2/D 2N or ord.�2/DN.

Suppose ord.�2/ D 2N. Then the right-hand sides of (42) and (43) are both equal
to 2.�1/N, and so (41) holds.
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Suppose ord.�2/DN. Then N must be odd since otherwise ord.�4/D 1
2
N . Then the

right-hand sides of (42) and (43) are both equal to �2. This completes the proof of (b).

(a) Since ˛ is a trivial knot, ˛ D �"2 � "�2 in S".†;P/, and ˛ D ��2 � ��2

in S".†;P/. Hence

zF�.˛/D zF�.�"
2
� "�2/D�"2� "�2 D TN .��

2
� ��2/D TN .˛/;

where the third identity is part (b). Thus zF�.˛/D TN .˛/.

Lemma 8.10 Proposition 8.8 holds if †DA, the annulus, and P � @A consists of
two points, one in each connected component of @A.

Proof If ˛ is a trivial P–knot, then the result follows from Lemma 8.9. We assume ˛ is
nontrivial. Then ˛ is the core of the annulus, ie ˛ is a parallel of a boundary component
of A. Let �D fa; b; c; dg be the triangulation of .A;P/ shown in Figure 15.

a bc

d

Figure 15: Triangulation of .A;P/ in which c and d are boundary P–arcs.

The Muller algebra X�.�/ is a quantum torus with generators a , b , c , and d where
any two of them commute, except for a and b , for which abD ��2ba . We calculate ˛
as an element of X�.�/ as follows.

First, calculate a˛ by using the skein relation; see Figure 16.

a˛ D D � C ��1 D �b�C ��1b

Figure 16: Computation of a˛ D �b�C ��1b .

Here b� is the new edge obtained from the flip of � at b as defined in Figure 9.
From (21) we have that b� D Œb�1a2�C Œb�1cd �. Thus,

(44) ˛ D a�1.a˛/D a�1.�b�C ��1b/D a�1.�.Œb�1a2�C Œb�1cd �/C ��1b/

D Œa�1b�1cd �C Œab�1�C Œa�1b�DX CY CY �1;
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where X D Œa�1b�1cd � and Y D Œab�1�. From the commutation relations in X�.�/,
we get YXD�4XY . Since each element of fa; b; c; dg is a P–arc, from Proposition 8.6,
we have

(45) zF�.˛/D Œa
�N b�N cNdN �C ŒaN b�N �C Œa�N bN �DXN CY N CY �N :

Since ord.�4/DN, Corollary 3.2 shows that

TN .˛/D TN .X CY CY
�1/DXN CY N CY �N ;

which is equal to zF�.˛/ by (45). This completes the proof.

Lemma 8.11 Proposition 8.8 holds if ˛ is not 0 in H1.†;Z/.

Proof First we establish the following claim:

Claim If ˛ is not 0 in H1.†;Z/, then there exists a properly embedded arc a �†
such that ja\ ˛j D 1.

Proof of claim Cutting † along ˛ we get a (possibly nonconnected) surface †0

whose boundary contains two components ˇ1 and ˇ2 coming from ˛ . That is, we
get †0 from † by gluing ˇ1 to ˇ2 via the quotient map prW †0!†, where pr.ˇ1/D
pr.ˇ2/D ˛ . Choose a point p 2 ˛ and let pi 2 ˇi such that pr.pi /D p for i D 1; 2.

Suppose first that †0 is connected. For i D 1; 2 choose a properly embedded arc ai
connecting pi 2ˇi and a point in a boundary component of †0 which is not ˇ1 nor ˇ2 .
We can further assume that a1 \ a2 D ∅ since if they intersect once then replacing
the crossing with either a positive or negative smoothing from the Kauffman skein
relation (only one will work) will yield arcs that do not intersect and end at the same
points as a1 and a2 , and the general case follows from an induction argument. Then
aD pr.a1[ a2/ is an arc such that ja\ ˛j D 1.

Now suppose †0 has two connected components †1 and †2 , with ˇi �†i . Since ˛ is
not homologically trivial, each †i has a boundary component other than ˇi . For iD1; 2
choose a properly embedded arc ai connecting pi 2 ˇi and a point in a boundary
component of †0 which is not ˇi . Then aD pr.a1[a2/ is an arc such that ja\˛j D 1.
This completes the proof of the claim.

Let QD @a and P 0 D P [Q. Let S � † be the closure of a tubular neighborhood
of ˛[ a . Then S is an annulus, and Q consists of two points, one in each connected
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component of @S. Let zF�;.S;Q/ , zF�;.†;P/ , and zF�;.†;P 0/ be the map zF� applicable
respectively to the totally marked surfaces .S;Q/, .†;P/, and .†;P 0/. By the
functoriality of the inclusion .S;Q/� .†;P 0/ (see Proposition 8.7) we get the first of
the identities

zF�;.†;P0/.˛/D zF�;.S;Q/.˛/D TN .˛/ in S�.†;P 0/;

while the second follows from Lemma 8.10. The functoriality of the inclusion P � P 0

gives
zF�;.†;P/.˛/D zF�;.†;P0/.˛/ in S�.†;P 0/:

It follows that
zF�;.†;P/.˛/D TN .˛/ in S�.†;P 0/:

Since the natural map S .†;P/!S .†;P 0/ is an embedding (Proposition 6.2), we
also have zF�;.†;P/.˛/D TN .˛/ in S�.†;P/, completing the proof.

Now we proceed to the proof of Proposition 8.8.

Proof of Proposition 8.8 If ˛ ¤ 0 in H1.†;Z/, then the statement follows from
Lemma 8.11. Assume ˛ D 0 in H1.†;Z/. The idea we employ is to remove a disk
in † so that ˛ becomes homologically nontrivial in the new surface, then use the
surgery theory developed in Section 7.

Since ˛ D 0 in H1.†;Z/, there is a surface S � † such that ˛ D @S. Let D � S
be a closed disk in the interior of S and ˇ D @D. Let †0 be obtained from † by
removing the interior of D. Fix a point p 2 ˇ and let P 0 D P [fpg. Since .†;P/ is
triangulable, .†0;P 0/ is also triangulable and .†0;P/ is quasitriangulable.

Choose an arbitrary quasitriangulation �0 of .†0;P/. Via Proposition 7.7, by plugging
the unmarked boundary component ˇ we get a triangulation � of .†;P/ and a quotient
map ‰� W Z� .�0/! Z� .�/ for each � 2C� , which we will just call ‰ unless there
is confusion. Since � is a triangulation, we have Z� .�/D X� .�/.

For each � 2C� we have the inclusions

Z� .�0/� X� .�
0/� �S� .†

0;P 0/;

where the second one comes from X� .�
0/� �S� .†

0;P/� �S� .†
0;P 0/.
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Claim 1 The map zF� W �S".†
0;P 0/ ! �S�.†

0;P 0/ restricts to a map from Z".�0/
to Z�.�0/. That is, zF�.Z".�0// � Z�.�0/. In other words, there exists a map F ˇ

�

corresponding to the dashed arrow in the following commutative diagram:

�S".†
0;P 0/ �S�.†

0;P 0/

Z".�0/ Z�.�0/

zF�

F
ˇ

�

Proof of Claim 1 Let a 2 �0 be the only monogon edge (which must correspond
to ˇ ). By definition, the set consisting of

(i) elements in �0 n fag and their inverses, a and a�, and

(ii) ˇ

generates the C–algebra Z".�0/. Let us look at each of these generators. If x is an
element of type (i), then by Proposition 8.6, we have zF�.x/D xN, which is in Z�.�0/.
Consider the remaining case x D ˇ . Since the class of ˇ in H1.†0;Z/ is nontrivial,
by Lemma 8.11, we have

(46) zF�.ˇ/D TN .ˇ/;

which is also in Z�.�0/. Claim 1 is proved.

Claim 2 The following diagram is commutative:

(47)

Z".�0/ Z�.�0/

X".�/ X�.�/

‰"

F
ˇ

�

‰�

FN

Proof of Claim 2 We have to show that

(48) .FN ı‰/.x/D .‰ ıF
ˇ

�
/.x/ for all x 2 Z".�0/:

It is enough to check the commutativity on the set of generators of Z".�0/ described
in (i) and (ii). If (48) holds for an x which is invertible, then it holds for x�1. Thus it
is enough to check (48) for x 2�0[fa�; ˇg. Assume the notation a , b , and c for the
edges near ˇ is as in Figure 14.
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First assume x 62 fa; a�; b; ˇg. By (28), we have ‰.x/D x . Hence the left-hand side
of (48) is

FN .‰.x//D FN .x/D x
N :

On the other hand, the right-hand side of (48) is

‰.F
ˇ

�
.x//D‰. zF�.x//D‰.x

N /D xN ;

which proves (48) for x 62 fa; a�; b; ˇg.

Assume x D a or x D a�. By (29), we have ‰.x/ D 0. Hence the left-hand side
of (48) is 0. On the other hand, the right-hand side is

‰.F
ˇ

�
.x//D‰. zF�.x//D‰.x

N /D 0;

which proves (48) in this case.

Now consider the remaining case x D ˇ . By (29), we have ‰.ˇ/D�"2� "�2. Hence
the left-hand side of (48) is

FN .‰.ˇ//D FN .�"
2
� "�2/D�"2� "�2 D TN .��

2
� ��2/;

where the last identity is (41). On the other hand, using (46) and the fact that ‰ is a
C–algebra homomorphism, we have

‰.F
ˇ

�
.x//D‰. zF�.x//D‰.TN .ˇ//D TN .‰.ˇ//D TN .��

2
� ��2/:

Thus we always have (48). This completes the proof of Claim 2.

Let us continue with the proof of the proposition. Since the class of ˛ is not 0
in H1.†0;Z/, by Lemma 8.11, we have F ˇ

�
.˛/D zF�.˛/DTN .˛/. The commutativity

of (47) and the fact that ‰ is a C–algebra homomorphism implies that

(49) FN .‰".˛//D‰�.F
ˇ

�
.˛//D‰�.TN .˛//D TN .‰�.˛//:

Note that ˛ defines an element in S�.†
0;P/ for �D "; � . Following the commutativity

of (27) in Proposition 7.7, we have that

‰".˛/D ˛ 2S".†;P/� X".�/;(50)

‰�.˛/D ˛ 2S�.†;P/� X�.�/:(51)
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Then we may compute

zF�.˛/D FN .˛/ by Proposition 8.4

D FN .‰".˛// by (50)

D TN .‰�.˛// by (49)

D TN .˛/ by (51);

completing the proof of Proposition 8.8.

8.9 Proof of Theorem 8.3

The C–algebra S".†;P/ is generated by P–arcs and P–knots. If a is a P–arc, then
by Proposition 8.6, zF�.a/DaN 2S�.†;P/. If ˛ is a P–knot, then by Proposition 8.8,
zF�.˛/D TN .˛/ 2S�.†;P/. It follows that zF�.S".†;P//�S�.†;P/. Hence zF�

restricts to a C–algebra homomorphism F� W S".†;P/!S�.†;P/. Since on X.�/,
zF� and FN are the same, F� is the restriction of FN on S".†;P/. By Proposition 8.4,
F� does not depend on the triangulation �. This proves part (a). Part (b) was established
in Propositions 8.6 and 8.8.

8.10 Proof of Theorem 8.1

Recall that �̂N W T .M;N /! T .M;N / is the C–linear map defined so that if T is
an N–tangle with arc components a1; : : : ; ak and knot components ˛1; : : : ; ˛l , then

(52) �̂
N .T /D

X
0�j1;:::;jl�N

cj1 � � � cjla
.N/
1 [ � � � [ a

.N/

k
[ ˛

.j1/
1 [ � � � [ ˛

.jl /

l
;

where TN .z/D
PN
iD0 ciz

i is the N th Chebyshev polynomial of type one; see (1). To
show that �̂N W T .M;N /! T .M;N / descends to a map S".M;N /!S�.M;N /
we have to show that �̂N .Rel"/ � Rel� . Let �̂� W T .M;N / ! S�.M;N / be the
composition �̂

� W T .M;N /
�̂
N
��! T .M;N / Œ � ����!S�.M;N /:

Then we have to show that �̂�.Rel"/D 0. There are three types of elements which
span Rel" : trivial arc relation elements, trivial knot relation elements, and skein relation
elements, and we consider them separately.

(i) Suppose x is a trivial arc relation element (see Figure 4). The N copies a.N/

in �̂�.x/ have 2N endpoints, and by reordering the heights of the endpoints, from a.N/
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we can obtain a trivial arc. Hence, the reordering relation (see Figure 5) and the trivial
arc relation show that �̂�.x/D 0.

(ii) Suppose x D "2C "�2C˛ is a trivial loop relation element, where ˛ is a trivial
loop. Each parallel of ˛ is also a trivial loop, which is equal to ��2���2 in S�.M;N /.
Hence �̂�.˛/D TN .��2� ��2/, and�̂

�.x/D "
2
C "�2CTN ..˛//D "

2
C "�2CTN .��

2
� ��2/D 0;

where the last identity is (41).

(iii) Suppose xD T �"TC�"�1T� is a skein relation element. Here T , TC , and T�
are N–tangles which are identical outside a ball B in which they appear as in Figure 17.

Figure 17: The tangles T (left), TC (middle), T� (right).

Case I (the two strands of T \B belong to two distinct components of T ) Let T1
be the component of T containing the overpass strand of T \B and T2 D T n T1 .
Let M 0 be the closure of a small neighborhood of B [T D B [TC D B [T� . Write
N 0 WDN\@.M 0/. The functoriality of the inclusion .M 0;N 0/! .M;N / implies that it
is enough to show �̂

�.x/D0 for .M 0;N 0/. Thus now we replace .M;N / by .M 0;N 0/.

Note that M 0 is homeomorphic to †� .�1; 1/, where † is an oriented surface which
is the union of the shaded disk of Figure 17 and the ribbons obtained by thickening the
tangle TC . As usual, identify † with †�f0g. Then, all four N 0–tangles T1 , T2 , TC ,
and T� are in † and have vertical framing. Note that † might be disconnected, but
each of its connected components has nonempty boundary. Let P D N \†. Then
S�.M

0;N 0/DS�.†;P/ for � D �; ". Enlarge P to a larger set of marked points Q
such that .†;Q/ is triangulable. Since the induced map ��W S�.†;P/!S�.†;Q/
is injective (by Proposition 6.2), it is enough to show that �̂�.x/D 0 in S�.†;Q/D
T .†;Q/=Rel� . Here T .†;Q/ WD T

�
†� .�1; 1/;Q� .�1; 1/

�
.

The vector space T .†;Q/ is a C–algebra, where the product ˛ˇ of two .Q�.�1; 1//–
tangles ˛ and ˇ is the result of placing ˛ on top of ˇ . The map �̂� W T .†;Q/!
S�.†;Q/ is an algebra homomorphism. Recall that for an element y 2 T .†;Q/ we
denote by Œy�� its image under the projection T .†;Q/!S�.†;Q/D T .†;Q/=Rel�
for � D �; ".
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As .†;Q/ is triangulable, by Theorem 8.3 we have the map F� W S".†;Q/!S�.†;Q/.

Suppose y is a component of one of T1 , T2 , TC , and T� . Then y is either a Q–knot
(in †) or a Q–arc (in †) whose endpoints are distinct, with vertical framing in both
cases. It follows that Œy.k/�� D Œyk�� . If y is a knot component then Proposition 8.8
shows that F�.Œy�"/D TN .Œy��/D �̂�.y/. Each of T1 , T2 , TC , and T� is the product
(in T .†;Q/) of its components as the components are disjoint in †. Hence from the
definition of �̂� , we have

�̂
�.Ti /D F�.ŒTi �"/ for all Ti 2 fT1; T2; TC; T�g:

As T D T1T2 in T .†;Q/, we have

�̂
�.T /D �̂�.T1T2/D �̂�.T1/�̂�.T2/D F�.ŒT1�"/F�.ŒT2�"/D F�.ŒT �"/:

As x D T � "TC� "�1T� , we also have �̂�.x/D F�.Œx�"/. But Œx�" D 0 because x
is a skein relation element. This completes the proof that �̂.x/D 0 in Case I.

Case II (both strands of T \B belong to the same component of T ) We show that
this case reduces to the previous case.

That both strands of T \B belong to the same component of T means that some pair
of nonopposite points of T \ @B are connected by a path in T nB (see Figure 18).
Assume that the two right-hand points of T \ @D are connected by a path in T nB .
All other cases are similar. Then the two strands of TC in B belong to two different
components of TC . We isotope TC in B so that its diagram forms a bigon, and
calculate �̂�.TC/ as follows:

(53) �̂
�

0@ 1AD �̂�
0@ 1A by isotopy

D "�̂�
0@ 1AC "�1�̂�

0@ 1A
D ".�"�3/�̂�

0@ 1AC "�1�̂�
0@ 1A ;

where the second equality follows from the skein relation, which can be used since
the two strands of TC in the applicable ball belong to different components of TC
(by Case I), and the third equality follows from the well-known identity correcting a
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Figure 18: Four possibilities for connecting nonopposite points by a path in T nB .

kink in the skein module:

D " C "�1 D ."C "�1.�"2� "�2// D�"�3 :

The identity (53) is equivalent to �̂�.x/D0, completing the proof of the theorem.

8.11 Consequence for marked surfaces

Suppose .†;P/ is a marked surface, with no restriction at all. Apply Theorem 8.1
to .M;N / D .†� .�1; 1/;P � .�1; 1//. Note that in this case ˆ� is automatically
an algebra homomorphism. Besides, since the set of P–arcs and P–knots generate
S".†;P/ as an algebra, we get the following corollary.

Proposition 8.12 Suppose that .†;P/ is a marked surface, � is a root of unity,
N D ord.�4/, and " D �N

2

. Then there exists a unique C–algebra homomorphism
ˆ� W S".†;P/!S�.†;P/ such that for P–arcs a and P–knots ˛ ,

ˆ�.a/D a
N and ˆ�.˛/D TN .˛/:

Remark 8.13 It follows from uniqueness that in the case where .†;P/ is a triangula-
ble surface, ˆ� is the same as the F� obtained in Theorem 8.3.

9 Image of ˆ� and (skew-)transparency

In this section we show that the image of the Chebyshev–Frobenius homomorphism ˆ�

is either “transparent” or “skew-transparent” depending on whether �2N is 1 or �1. Our
result generalizes known theorems regarding the center of the skein algebra [3; 14; 8]
of an unmarked surface and (skew-)transparent elements in the skein module of an
unmarked 3–manifold [14].

We fix the ground ring to be RDC throughout this section.
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9.1 Center of the skein algebra of an unmarked surface

Fix a compact oriented surface † with (possibly empty) boundary. For � 2 C� we
write S� WDS�.†;∅/. In this context, and when � is a root of unity, the Chebyshev–
Frobenius homomorphism ˆ� W S"!S� specializes to the Chebyshev homomorphism
for the skein algebra of † given in [3]. The image of ˆ� is closely related to the center
of S� .

Theorem 9.1 [8] Let � be a root of unity, N D ord.�4/, " D �N
2

, and H be the
set of boundary components of †. Note that �2N is either 1 or �1. Then the center
Z.S�/ of S� is given by

(54) Z.S�/D

�
ˆ�.S"/ŒH� if �2N D 1;
ˆ�.S

ev
" /ŒH� if �2N D�1:

Here S ev
�

is the C–subspace of S� spanned by all 1–dimensional closed submani-
folds L of † such that �.L; ˛/� 0 .mod 2/ for all knots ˛�†. In [3], the right-hand
side of (54) was shown to be a subset of the left-hand side using methods of quantum
Teichmüller theory in the case where �2N D 1. This result was proved again in [14]
using elementary skein methods. The generalization to �2N D�1 and the converse
inclusion was shown in [8].

9.2 (Skew-)transparency

In the skein module of a 3–manifold, we don’t have a product structure, and hence
cannot define central elements. Instead we will use the notion of (skew-)transparent
elements, first considered in [14]. Throughout this subsection we fix a marked 3–
manifold .M;N /.

Suppose T 0 and T are disjoint N–tangles. Since ˆ�.T 0/ can be presented by a
C–linear combination of N–tangles in a small neighborhood of T 0, one can define
ˆ�.T

0/[T as an element of S�.M;N /; see Section 4.3.

Suppose T1 , T2 , and T are N–tangles. We say that T1 and T2 are connected by a
single T –pass N–isotopy if there is a continuous family of N–tangles Tt for t 2 Œ1; 2�
connecting T1 and T2 such that Tt is transversal to T for all t 2 Œ1; 2� and furthermore
that Tt \T D∅ for t 2 Œ1; 2� except for a single s 2 .1; 2/ for which jTs \T j D 1.

Theorem 9.2 Suppose .M;N / is a marked 3–manifold, � is a root of unity, and
N D ord.�4/. Note that �2N is either 1 or �1.
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(a) If �2N D 1 then the image of the Chebyshev–Frobenius homomorphism is
transparent in the sense that if T1 and T2 are N–isotopic N–tangles disjoint
from another N–tangle T , then in S�.M;N / we have

(55) ˆ�.T /[T1 Dˆ�.T /[T2:

(b) If �2N D �1 then the image of the Chebyshev–Frobenius homomorphism is
skew-transparent in the sense that if two N–tangles T1 and T2 are connected
by a single T –pass N–isotopy, where T is another N–tangle, then in S�.M;N /
we have

(56) ˆ�.T /[T1 D�ˆ�.T /[T2:

Proof Both (a) and (b) are proved in [14] for the case where N D∅. That is, given
an ∅–tangle T , it is shown that ˆ�.T / is (skew-)transparent in S�.M;∅/, where
we necessarily have that all components of T are knots. By functoriality, ˆ�.T / is
(skew-)transparent in S�.M;N / as well when all components of T are knots.

We show that ˆ�.a/ is (skew-)transparent when a is an N–arc. Let T1 and T2

be N–isotopic N–tangles connected by a single a–pass N–isotopy Tt . Consider a
neighborhood U consisting of the union of a small tubular neighborhood of a and a
small tubular neighborhood of Tt . We may assume that the strands of ˆ�.a/D a.N/

are contained in the tubular neighborhood of a , and furthermore that Tt is a single
ai–pass N–isotopy for each component ai of a.N/. Write Q D N \U. Then both
a.N/[T1 and a.N/[T2 are .U;Q/–tangles and we apply the skein relation and trivial
arc relation inductively in S�.U;Q/ to derive the equations in Figure 19.

a.N/[T1 DQ N T1 QD �N N � 1 C ��N N � 1

a.N/[T2 DQ N T2 QD �N N � 1 C ��N N � 1

Figure 19: Resolving crossings between a.N/ and T1 and T2 in S�.U;Q/ .

By functoriality, the computation in S�.U;Q/ is true in S�.M;N / as well. We see
from Figure 19 that ˆ�.a/ is transparent if and only if �N D ��N, that is, �2N D 1. We
also see that ˆ�.a/ is skew-transparent if and only if �N D���N, that is, �2N D�1.
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10 Center of the skein algebra for q not a root of unity

Throughout this section R is a commutative domain with a distinguished invertible
element q1=2 and .†;P/ is a marked surface (R is no longer required to be Noetherian
in this section). We write S for the skein algebra S .†;P/ defined over R . We will
calculate the center of S .†;P/ for the case when q is not a root of unity.

10.1 Center of the skein algebra

Let H denote the set of all unmarked components in @† and H� the set of all marked
components. If ˇ 2H let zˇ D ˇ as an element of S . If ˇ 2H� let

zˇ D

�Y
a

�
2S ;

where the product is over all boundary P–arcs in ˇ .

Theorem 10.1 Suppose .†;P/ is a marked surface. Assume that q is not a root of
unity. Then the center Z.S .†;P// of S .†;P/ is the R–subalgebra generated by
fzˇ j ˇ 2H[H�g.

Proof It is easy to verify Theorem 10.1 for the few cases of nonquasitriangulable
surfaces. We will from now on assume that .†;P/ is quasitriangulable, and fix a
quasitriangulation � of .†;P/.

We write Z.A/ to denote the center of an algebra A.

Lemma 10.2 Let A and B be R–algebras such that A � B weakly generates B .
Then Z.A/�Z.B/.

Proof Let x 2 Z.A/. Then x commutes with elements of A, and hence with their
inverses in B if the inverses exist. So x 2Z.B/.

Since XC.�/ weakly generates X.�/, and XC.�/�S �X.�/ by Theorem 6.3, we
have:

Corollary 10.3 One has Z.S /�Z.X.�//. Consequently, Z.S /DZ.X.�//\S .

Lemma 10.4 For all ˇ 2H[H� , one has zˇ 2Z.S /�Z.X.�//.
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Proof It is clear that zˇ 2 Z.S / if ˇ 2 H . Let ˇ 2 H� . Any P–knot ˛ can be
isotoped away from the boundary, and therefore zˇ˛ D ˛zˇ . Let a 2S be a P–arc.
If a does not end at some p 2ˇ\P then azˇ D zˇa is immediate. Assume that a has
an end at p 2ˇ\P . Next, P–isotope a so that its interior does not intersect @†. Then
in the support of zˇ there is one strand clockwise to a at p and one counterclockwise.
Therefore azˇ D zˇa by the reordering relation in Figure 5. Since S is generated as
an R–algebra by P–arcs and P–knots, we have zˇ 2Z.S /.

For each ˇ 2H� , we define kˇ 2 Z� so that zˇ DXkˇ. In other words,

(57) kˇ .a/D

�
1 if a � ˇ;
0 otherwise.

We write P for the vertex matrix of � (see Section 5.3).

Lemma 10.5 Z.X.�//DRŒH�ŒXk j k 2 kerP �:

Proof Recall that X.�/ is a Z�–graded algebra given by

X.�/D
M
k2Z�

RŒH� �Xk:

The center of a graded algebra is the direct sum of the centers of the homogeneous
parts. Hence

Z.X.�//D
M

k2Z�WXk is central

RŒH� �Xk:

By the commutation relation (5) we have XkX l D qhk;liPX lXk. Thus Xk is central
if and only if qhk;liP D 1 for all l 2Z�. Since q is not a root of unity, this is true if and
only if hk; liP D 0 for all l 2Z�. Equivalently, k 2 kerP. This proves the lemma.

Lemma 10.6 The kernel kerP is the free Z–module with basis fkˇ j ˇ 2H�g.

Proof Let Null.P / be the nullity of P.

Lemmas 10.4 and 10.5 imply that kˇ 2 kerP for each ˇ 2 H� . Since the kˇ , as
functions from � to Z, have pairwise disjoint supports, the set fkˇ j ˇ 2 H�g is
Q–linear independent. In particular,

(58) Null.P /� jH�j:
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Claim 1 Assume that ˇ 2 H is an unmarked boundary component. Choose a
point pˇ 2 ˇ and let P 0 D P [ fpˇ g. Then let �0 be an extension of � to a P 0–
quasitriangulation as depicted in Figure 13 (this guarantees that ���0 ), and P 0 the
associated vertex matrix. Then Null.P 0/� Null.P /C 1.

Proof of Claim 1 Consider Z� � Z�
0

via extension by zero. Choose a Z–basis B
of kerP. Then because the ��� submatrix of P 0 equals P, one has B � kerP 0.
Let kˇ 2Z�

0

be as given in (57) with � replaced by �0. Then kˇ 2 kerP 0. Since kˇ
does not have support in �, it is Z–linearly independent of B . Therefore Null.P 0/
must be at least 1 greater than Null.P /. This completes the proof of Claim 1.

Claim 2 Null.P /D jH�j:

Proof of Claim 2 By [17, Lemma 4.4(b)], the claim is true if .†;P/ is totally marked,
ie if HD∅.

Suppose jHjD k . By sequentially adding marked points to unmarked components in H
and extending the triangulation as in Claim 1, we get a totally marked surface .†;P.k//
with a new vertex matrix P .k/. From Claim 1 we have Null.P .k// � Null.P /C k .
On the other hand, since .†;P.k// is totally marked and has jH�j C k boundary
components, we have Null.P .k//DjH�jCk . It follows that jH�j �Null.P /. Together
with (58) this shows Null.P /D jH�j, completing the proof of Claim 2.

Claim 2 and the fact that fkˇ j ˇ 2 H�g is a Q–linear independent subset of kerP
shows that fkˇ j ˇ 2 H�g is a Q–basis of kerP. Let us show that fkˇ j ˇ 2 H�g is
a Z–basis of kerP.

Let x 2 Z� be in kerP. Since fkˇ j ˇ 2H�g is a Q–basis of kerP, we have

x D
X
ˇ2H�

cˇkˇ ; cˇ 2Q:

Since the kˇ are functions from � to Z and have pairwise disjoint supports, and
xW �! Z has integer values, each cˇ must be an integer. Hence x is a Z–linear
combination of fkˇ jˇ 2H�g. This shows that fkˇ jˇ 2H�g is a Z–basis of kerP.

Lemmas 10.5 and 10.6 show that Z.X.�//DRŒH�ŒXkˇ j ˇ 2H��, which is a subset
of S . By Corollary 10.3, we also have Z.S /DZ.X.�//\S DRŒzˇ jˇ 2H[H��,
completing the proof.
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