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Four-genera of links and Heegaard Floer homology

BEIBEI LIU

For links with vanishing pairwise linking numbers, the link components bound
pairwise disjoint oriented surfaces in B4 . We use the h–function which is a link
invariant from the Heegaard Floer homology to give lower bounds for the 4–genus of
the link. For L–space links, the h–function is explicitly determined by the Alexander
polynomials of the link and its sublinks. We show some L–space links where the
lower bounds are sharp, and also describe all possible genera of disjoint oriented
surfaces bounded by such links.

57M25, 57M27

1 Introduction

Let LD L1[L2[ � � � [Ln be an oriented n–component link in S3 with all linking
numbers 0. Recall that a link bounds disjointly embedded oriented surfaces in B4 if
and only if it has vanishing pairwise linking numbers. The 4–genus of L is defined as

g4.L/Dmin
� nX
iD1

gi

ˇ̌̌
gi D g.†i /; †1 t � � � t†n ,! B4; @†i D Li

�
:

If L is a knot, the 4–genus is also known as the slice genus. Powell [17], Murasugi [10]
and Livingston [8] showed lower bounds for the 4–genera of links in terms of the
Levine–Tristram signatures. Rasmussen [18; 19] defined the h–function (as an analogue
of the Frøyshov invariant in Seiberg–Witten theory) for knots, and used it to obtain
nontrivial lower bounds for the slice genus of a knot. We generalize Rasmussen’s result
and obtain lower bounds for the 4–genera of links with vanishing pairwise linking
numbers. The h–function for links was introduced by Gorsky and Némethi [3]. It is
closely related to d –invariants of large surgeries on links. For details, see Section 2.

We obtain lower bounds for the 4–genera of links in terms of the h–function. When
the link has one component, we recover the lower bound for the slice genus given by
Rasmussen. Here is our main result:
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3512 Beibei Liu

Theorem 1.1 Let L D L1 [ � � � [ Ln � S3 be an oriented link with vanishing
pairwise linking numbers. Assume that the link components Li bound pairwise
disjoint, smoothly embedded oriented surfaces †i � B4 of genera gi . Then, for
any vD .v1; : : : ; vn/ 2 Zn ,

h.v/�

nX
iD1

fgi
.vi /:

where h.v/ is the h–function of L and fgi
W Z! Z is defined by

fgi
.vi /D

�˙1
2
.gi � jvi j/

�
if jvi j � gi ;

0 if jvi j> gi :

Corollary 1.2 For the link L in Theorem 1.1, if v � g , then h.v/ D 0, where
g D .g1; : : : ; gn/.

The proof of Theorem 1.1 is inspired by Rasmussen’s argument for knots [19]. We
construct a nonpositive definite Spinc –cobordism from large surgeries on the link to the
connected sum of circle bundles over closed, oriented surfaces of genera gi . Ozsváth
and Szabó [11] established the behavior of the d –invariants of standard 3–manifolds
under negative semidefinite Spinc –cobordism. We apply this result, and obtain the
inequality between the d –invariants of large surgeries on the link and d –invariants
of the circle bundles. By using the h–function of the link to compute d –invariants of
large surgeries, we prove the inequality.

Theorem 1.3 If LD L1[ � � � [Ln � S3 is a (smoothly) slice L–space link , then L

is an unlink.

The idea of the proof goes as follows: The 4–genus for the slice link L is 0. By
Theorem 1.1, the h–function is identically 0. We compute the dual Thurston polytope
of L by using the properties of L–space links and prove that L is an unlink. For
details, see Section 3.2.

As an application of the inequality in Theorem 1.1, we can compare the following two
sets. Let

G.L/D f.g.†1/; g.†2/; : : : ; g.†n// j†1 t � � � t†n ,! B4; @†i D Lig;

where †i are oriented surfaces, and

GHF.L/D fvD .v1; : : : ; vn/ j h.v/D 0 and v � 0g:
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Four-genera of links and Heegaard Floer homology 3513

The 4–genus of the link L equals ming2G.L/.g1 C � � � C gn/. By Theorem 1.1,
G.L/�GHF.L/.

If L is an L–space link (see Definition 2.16), the h–function is explicitly determined
by the Alexander polynomials of the link and its sublinks; see Borodzik and Gorsky
[1, Section 3.3]. We can describe the set GHF.L/ in terms of these Alexander polyno-
mials explicitly (see Lemma 2.19). Moreover, let p and q be coprime positive integers,
and L.p;q/ denote the .p; q/–cable of L1 . Then the link Lp;qDL.p;q/[L2[� � �[Ln

is also an L–space link if q=p is sufficiently large [1, Proposition 2.8]. The set
GHF.Lp;q/ can be obtained from the set GHF.L/ by applying the transformation
T W Zn

�0 ! Zn
�0 ; see Theorem 4.7. Inductively, let pi and qi be coprime positive

integers for 1� i � n, and let L.pi ;qi / denote the .pi ; qi /–cable of Li . Then the link
Lcab D L.p1;q1/[ � � � [L.pn;qn/ is also an L–space link if qi=pi is sufficiently large
for each 1� i � n. For example, let L denote the 2–bridge link b.4k2C4k;�2k�1/,
which is an L–space link; see Liu [7]. Then, for sufficiently large surgery coefficients,
Lcab is also an L–space link, and G.Lcab/DGHF.Lcab/ is as shown in Figure 1. For
details, see Section 4.

Proposition 1.4 If L� S3 is an L–space link such that G.L/DGHF.L/, then, for
sufficiently large cables, Lp;q also satisfies that G.Lp;q/DGHF.Lp;q/.

Remark 1.5 For an L–space link L as in Proposition 1.4, we can prove that G.Lcab/D

GHF.Lcab/ by induction.

lengthp1

GHF.Lcab/DG.Lcab/

lengthp2

�
1
2
.p1�1/.q1�1/;

1
2
.p2�1/.q2�1/

�

Figure 1: The set G.Lcab/ for the cable link.
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Organization of the paper In Sections 2.1 and 2.2, we review the definitions of
the h–function for links in S3 and the d –invariants for standard 3–manifolds. In
Section 2.3, we review the definition of L–space links, and the explicit formula to
compute the h–function in terms of the Alexander polynomials of the link and its
sublinks. In Section 2.4, we review the Heegaard Floer link homologies of L–space
links. In Section 3, we prove Theorems 1.1 and 1.3, and give some lower bounds
for the 4–genera of links. In Section 4, we show some examples of L–space links,
including the 2–bridge links b.4k2C 4k;�2k � 1/, where k is some positive integer,
and prove that G.L/DGHF.L/ in these examples. Then the 4–genus is determined
by the Alexander polynomials. We also show the proof of Proposition 1.4.

Notation and conventions In this paper, all the links and surfaces are assumed to
be oriented. We use L to denote a link in S3 , and L1; : : : ; Ln to denote the link
components. Then L1 and L2 denote different links in S3 , and L1 and L2 denote
different components in the same link. We denote vectors in the n–dimension lattice Zn

by bold letters, and we let Zn
�0 denote the vectors with entries nonnegative. For two

vectors uD .u1; u2; : : : ; un/ and vD .v1; : : : ; vn/ in Zn , we write u� v if ui � vi
for each 1 � i � n, and u � v if u � v and u¤ v . Let ei denote the vector in Zn

where the i th entry is 1 and other entries are 0. For a subset B � f1; : : : ; ng, let
eB D

P
i2B ei . Similarly, we use LB � L to denote the sublink

S
i2B Li . Assume

f1; : : : ; ngnB D fi1; : : : ; ikg. For y D .y1; : : : ; yn/2Zn , let y nyB D .yi1 ; : : : ; yik /.
Let �L.t1; : : : ; tn/ denote the symmetrized Alexander polynomial of L. Throughout
this paper, we work over the field F D Z=2Z.

Acknowledgements I deeply appreciate Eugene Gorsky for introducing this interest-
ing question to me and his patient guidance and helpful discussions during the project.
I want to thank the referee for numerous and useful comments and suggestions. I am
also grateful to Allison Moore, Robert Lipshitz, Jacob Rasmussen and Zhongtao Wu
for useful discussions. The project is partially supported by NSF grant DMS-1700814.

2 Background

2.1 The h–function

Ozsváth and Szabó associated chain complexes CF�.M/;cCF.M/, CF1.M/ and
CFC.M/ to an admissible Heegaard diagram for a closed oriented connected 3–
manifold M [12]. The homologies of these chain complexes are called Heegaard

Algebraic & Geometric Topology, Volume 19 (2019)



Four-genera of links and Heegaard Floer homology 3515

Floer homologies HF�.M/;bHF.M/;HF1.M/ and HFC.M/, which are 3–manifold
invariants. A nullhomologous link LD L1[ � � � [Ln in M defines a filtration on the
link Floer complex CF�.M/ [9; 15]. For links in S3 , the filtration is indexed by an
n–dimensional lattice H which is defined as follows:

Definition 2.1 For an oriented link LD L1[ � � � [Ln � S
3 , define H.L/ to be an

affine lattice over Zn ,

H.L/D
nM
iD1

Hi .L/; Hi .L/D ZC 1
2

lk.Li ;L nLi /;

where lk.Li ;L nLi / denotes the linking number of Li and L nLi .

Given s D .s1; : : : ; sn/ 2H.L/, the generalized Heegaard Floer complex A�.L; s/
is defined to be a subcomplex of CF�.S3/ corresponding to the filtration indexed
by s [9]. For v � s , A�.L; v/� A�.L; s/. The link homology HFL� is defined as
the homology of the associated graded complex,

(2-1) HFL�.L; s/DH�

�
A�.L; s/

.X
v�s

A�.L; v/

�
:

The complex A�.L; s/ is a finitely generated module over the polynomial ring
F ŒU1; : : : ; Un�, where the action of Ui drops the homological grading by 2 and
drops the i th filtration Ai by 1 [15]. Hence, UiA�.L; s/ � A�.L; s � ei /. All
the actions Ui are homotopic to each other on each A�.L; s/, and the homology
of A�.L; s/ can be regarded as an F ŒU �–module, where U acts as U1 [3; 15].

By the large surgery theorem [9], the homology of A�.L; s/ is isomorphic to the
Heegaard Floer homology of a large surgery on the link L equipped with some Spinc –
structure as an F ŒU �–module [9]. Then the homology of A�.L; s/ consists of one
copy of F ŒU � and some U –torsion.

Definition 2.2 [1, Definition 3.9] For an oriented link L � S3 , we define the H –
function HL.s/ by saying that �2HL.s/ is the maximal homological degree of the
free part of H�.A�.L; s//, where s 2H.L/.

Lemma 2.3 [1, Proposition 3.10] For an oriented link L � S3 , the H –function
HL.s/ takes nonnegative values, and HL.s�ei /DHL.s/ or HL.s�ei /DHL.s/C1,
where s 2H.L/.

Algebraic & Geometric Topology, Volume 19 (2019)



3516 Beibei Liu

For an n–component link L with vanishing pairwise linking numbers, H.L/D Zn .
The h–function hL.s/ is defined as

hL.s/DHL.s/�HO.s/;

where O denotes the unlink with n components and s 2 Zn . Recall that for split
links L, the H –function is H.L; s/ D HL1

.s1/C � � � CHLn
.sn/, where HLi

.si /

is the H –function of the link component Li [1, Proposition 3.11]. Then HO.s/D
H.s1/C � � � CH.sn/, where H.si / denotes the H –function of the unknot. More
precisely, HO.s/D

Pn
iD1

1
2
.jsi j � si /. Then HL.s/D hL.s/ for all s � 0.

For the rest of this subsection, we use LD L1[ � � � [Ln � S
3 to denote links with

vanishing pairwise linking numbers. Consider the set

GHF.L/D fsD .s1; : : : ; sn/ 2 Zn j h.s/D 0; s � 0g:

We obtain the following properties of the set GHF.L/:

Lemma 2.4 If x2GHF.L/ and y�x , then y 2GHF.L/. Equivalently, if x…GHF.L/

and y � x , then y …GHF.L/.

Proof This is straightforward from Lemma 2.3.

Lemma 2.5 If sD .s1; : : : ; sn/2GHF.L/, then snsi 2GHF.LnLi / for all 1� i �n.
Moreover, if s n si 2 GHF.L nLi /, then, for si sufficiently large, s D .s1; : : : ; sn/ 2
GHF.L/.

Proof For an oriented link L, there exists a natural forgetful map �i W H.L/!H.Ln

Li / [9]. If L has vanishing pairwise linking numbers, �i .s/D s n si , where s 2 Zn .
Suppose that s2GHF.L/. Then hL.s/DHL.s/D 0. By Lemma 2.3, HL.sCtei /D 0

for all i and t > 0. Recall that HL.sC tei /DHLnLi
.s n si / for sufficiently large t

[1, Proposition 3.12]. Then HLnLi
.s n si /D 0. Thus, s n si 2GHF.L nLi /.

Conversely, if s n si 2 GHF.L n Li / and si is sufficiently large, then HL.s/ D

HLnLi
.s n si /D 0, which implies that s 2GHF.L/.

Definition 2.6 A lattice point s 2Zn is maximal if s …GHF.L/ but sCei 2GHF.L/

for all 1� i � n.

Lemma 2.7 The set GHF.L/ is determined by the set of maximal lattice points and
GHF.L nLi / for all 1� i � n.
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Proof We claim that x …GHF.L/ if and only if either x � z for some maximal lattice
point z2Zn or xnxi …GHF.LnLi / for some i , where xD .x1; : : : ; xn/. For the “if”
part, assume that x 2GHF.L/. Then z 2GHF.L/ if z� x and x n xi 2GHF.L nLi /

for all i by Lemmas 2.4 and 2.5, which contradicts the assumption.

For the “only if” part, assume that x … GHF.L/ and x n xi 2 GHF.L nLi / for all i .
It suffices to find a maximal lattice point z such that x � z. If HL.xC ei /D 0 for
all i , we let zD x . Otherwise, suppose HL.xC ei /¤ 0 for some 1� i � n. There
exists some constant ti such that HL.xC tiei /¤ 0, and HL.xC .tiC1/ei /D 0 since
x n xi 2GHF.L nLi /. If, for all j ¤ i , HL.xC tiei C ej /D 0, we let zD xC tiei .
Otherwise, we repeat this process. The process stops after finitely many steps. Thus,
there exists a maximal lattice point z such that x � z.

2.2 The d –invariant

For a rational homology sphere M with a Spinc –structure s, the Heegaard Floer
homology HF1.M; s/Š F ŒU; U�1� and HFC.M; s/ is absolutely graded, where the
free part is isomorphic to F ŒU�1�. Define the d –invariant of .M; s/ to be the absolute
grading of 1 2 F ŒU�1� [11].

We define standard 3–manifolds following [11, Section 9]:

Definition 2.8 A closed, oriented 3–manifold M is standard if, for each torsion
Spinc –structure s,

HF1.M; s/Š .ƒ�H 1.M;F//˝F F ŒU; U�1�:

Remark 2.9 If M is standard, then rk HF1.M; s/D 2b as an F ŒU; U�1�–module,
where b D b1.M/.

Let M1 and M2 be a pair of oriented closed 3–manifolds equipped with Spinc –
structures s1 and s2 , respectively. There is a connected sum formula for the Heegaard
Floer homology [12, Theorem 6.2],

HF1.M1 #M2; s1 # s2/ŠH�.CF1.M1; s1/˝FŒU;U�1� CF1.M2; s2//:

By the algebraic Künneth theorem, if M1 and M2 are standard, then M1 #M2 is also
standard.

Algebraic & Geometric Topology, Volume 19 (2019)
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If a 3–manifold M has a positive first Betti number (ie b1.M/>0), the exterior algebra
ƒ�.H1.M IF// acts on the homology groups HF1.M; s/;HFC.M; s/;HF�.M; s/ and
bHF.M; s/ [12, Section 4.2.5]. Define the subgroup As � HF1.M; s/ by

As D fx 2 HF1.M; s/ j 
 � x D 0 for all 
 2H1.M;F/g:

If M is standard, As Š F ŒU; U�1�, and its image under the map � W HF1.M; s/!
HFC.M; s/ is isomorphic to F ŒU�1�.

Definition 2.10 For a standard 3–manifold M equipped with a torsion Spinc –struc-
ture s, the d–invariant d.M; s/ is defined as the absolute grading of 12�.As/ŠF ŒU�1�.

Ozsváth and Szabó proved an inequality for d –invariants [11, Section 9]. The following
theorem is a reformulation of their result, which can be found in [19, Lemma 3.3]:

Proposition 2.11 [11, Section 9] Suppose that W is a negative semidefinite cobor-
dism from a rational homology sphere Y1 to a standard 3–manifold Y2 with b1.W /D0.
Let s be a Spinc –structure on W whose restriction si to Yi is torsion for i D 1; 2.
Then

(2-2) d.Y2; s2/� d.Y1; s1/�
1
4
.c1.s/

2
� 2�.W /� 3�.W //:

The d –invariants of large surgeries on a link LDL1[� � �[Ln� S
3 can be computed

in terms of the H –function of the link by the large surgery theorem [9]. Choose a
framing vector q D .q1; : : : ; qn/ 2 Zn where q1; : : : ; qn are sufficiently large. Let ƒ
denote the linking matrix where ƒij is the linking number of Li and Lj when i ¤ j ,
and ƒi i D qi .

Attach n 2–handles to the 4–ball B4 along L1; L2; : : : ; Ln with framings q1; : : : ; qn .
We obtain a 2–handlebody W with boundary @W D S3q .L/ which is the 3–manifold
obtained by doing surgery along L1; L2; : : : ; Ln with surgery coefficients q1; : : : ; qn ,
respectively. Assume that det.ƒ/ ¤ 0; then S3q .L/ is a rational homology sphere
with jH1.S3q .L//j D jdet.ƒ/j. Note that if L has vanishing pairwise linking numbers,
then ƒ is a diagonal matrix with ƒi i D qi , and det.ƒ/D q1 � � � qn ¤ 0. The Spinc –
structures on S3q .L/ are enumerated as follows:

Lemma 2.12 [9, Section 9.3] There are natural identifications

H 2.S3q .L//ŠH1.S
3
q .L//Š Zn=Znƒ

such that c1.s/D Œ2s� for any s 2 Spinc.S3q .L//ŠH.L/=Znƒ.
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Fix � D .�1; : : : ; �n/ 2Rn such that the values �i > 0 are very close to 0 and linearly
independent over Q. Let P.ƒ/ be the hyperparallelepiped with vertices

�C 1
2
.˙ƒ1;˙ƒ2; : : : ;˙ƒn/;

where all combinations of the signs are used and ƒ1; : : : ; ƒn are column vectors of
the matrix ƒ. Let

PH.ƒ/D P.ƒ/\H.L/;

where H.L/ is the lattice for L.

Proposition 2.13 [9, Section 10.1] For any v 2 PH.ƒ/ there exists a unique Spinc –
structure sv on Sq.L/ which extends to a Spinc –structure tv on W with c1.tv/ D
2v� .ƒ1C � � �Cƒn/.

Remove a ball B4 from the 2–handlebody W . We obtain a Spinc –cobordism U

from .S3; s0/ to .S3q .L/; sv/. By reversing the orientation of U, we obtain a Spinc –
cobordism U0 equipped with the Spinc –structure tv from .S3q .L/; sv/ to .S3; s0/.

Theorem 2.14 [1; 9] For v2PH.ƒ/, the d –invariant of a large surgery with surgery
coefficients q on L is given by

d.S3q .L/; sv/D�degF.U0;tv/� 2H.v/;

where degFU0;tv is the grading shift of the cobordism U0 with Spinc –structure tv . The
degree does not depend on the link, but depends on the linking matrix ƒ.

2.3 The h–function of L–space links

In [13], Ozsváth and Szabó introduced the concept of L–spaces.

Definition 2.15 A 3–manifold M is an L–space if it is a rational homology sphere
and its Heegaard Floer homology has minimal possible rank: for any Spinc –structure s,
bHF.M; s/D F, and HF�.Y; s/ is a free F ŒU �–module of rank 1.

In terms of the large surgery, Gorsky and Némethi defined L–space links in [3].

Definition 2.16 An oriented n–component link L� S3 is an L–space link if there
exists 0� p 2Zn such that the surgery manifold S3q .L/ is an L–space for any q � p .
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For L–space links L, H�.A�.L; s//D F ŒU � [7]. By equation (2-1) and the inclusion–
exclusion formula, one can write [1]

(2-3) �.HFL�.L; s//D
X

B�f1;:::;ng

.�1/jBj�1HL.s� eB/:

The Euler characteristic �.HFL�.L; s// was computed in [15], and we follow the
normalization convention in [1],

(2-4) z�L.t1; : : : ; tn/D
X

s2H.L/

�.HFL�.L; s//ts11 � � � t
sn
n ;

where sD .s1; : : : ; sn/, and

z�L.t1; : : : ; tn/ WD

�
.t1 � � � tn/

1=2�L.t1; : : : ; tn/ if n > 1;
�L.t/=.1� t

�1/ if nD 1:

Note that we regard 1=.1� t�1/ as an infinite power series.

Theorem 2.17 [3] The H –function of an L–space link is determined by the Alexan-
der polynomials of its sublinks via

(2-5) HL.s/D
X
L0�L

.�1/#L
0�1

X
u0��L0 .sC1/

�.HFL�.L0;u0//;

where 1D .1; : : : ; 1/ and �L0 W H.L/!H.L0/ is the projection to the entries corre-
sponding to link components Li � L0.

Remark 2.18 For L–space links with two components, the explicit formula for the
H –function can also be found in [7].

Consider L–space links L with vanishing pairwise linking numbers. The set GHF.L/

can also be described in terms of the Alexander polynomials of the link and its sublinks.

Lemma 2.19 For an n–component L–space link L � S3 with vanishing pairwise
linking numbers, s2GHF.L/ if and only if for all yD .y1; : : : ; yn/�s , the coefficients
of ty1

1 � � � t
yn
n in z�L.t1; : : : ; tn/ are 0, and the coefficients corresponding to y nyB in

z�LnLB
.ti1 ; : : : ; tik / are also 0 for all B � f1; : : : ; ng.

Proof For the “if” part, note that �.HFL�.L;y//D0 and �.HFL�.LnLB/;ynyB/D
0 for all y � s and B � f1; : : : ; ng by (2-4). Then HL.s/ D 0 by Theorem 2.17,
and s 2 GHF.L/. For the “only if” part, suppose that s … GHF.L/. By Lemma 2.7,
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either there exists a maximal vector z …GHF.L/ such that s � z or there exists some
1 � j � n such that s n sj … GHF.L n Lj /. We claim that for all maximal lattice
points z, �.HFL�.L; zC1//¤ 0. Since z is maximal, hL.z/D 1, and for any subset
B � f1; : : : ; ng, hL.zC eB/ D 0. By (2-3), �.HFL�.L; zC 1// D .�1/n ¤ 0. If
s � z, the coefficient of zC 1� s in z�L.t1; : : : ; tn/ equals 0, which contradicts our
assumption. If s n si …GHF.L nLi /, we use the induction to get a contradiction.

2.4 The Heegaard Floer link homology

Ozsváth and Szabó associated the multigraded link invariants HFL�.L/ and bHFL.L/
to links L � S3 , where HFL�.L/ is as defined in (2-1), and bHFL.L/ is defined as
follows [2; 15]:

bHFL.L; s/DH�

�
A�.L; s/

.� nX
iD1

A�.s� ei /˚

nX
iD1

UiA
�.sC ei /

��
:

If L is an L–space link, there exist spectral sequences converging to HFL�.L/ and
bHFL.L/, respectively [2; 3].

Proposition 2.20 [3, Theorem 1.5.1] For an oriented L–space link L� S3 with n
components and s 2H.L/, there exists a spectral sequence with E1 D HFL�.L; s/
and

E1 D
M

B�f1;:::;ng

H�.A
�.L; s� eB//;

where the differential in E1 is induced by inclusions.

Remark 2.21 Precisely, the differential @1 in the E1–page is

@1.z.s� eB//D
X
i2B

UH.s�eB/�H.s�eBCei /z.s� eB C ei /;

where z.s� eB/ denotes the unique generator in H�.A�.L; s� eB// with the homo-
logical grading �2H.s� eB/.

Proposition 2.22 [2, Proposition 3.8] For an L–space link L� S3 with n compo-
nents and s 2H.L/, there exists a spectral sequence converging to yE1 D bHFL.L; s/
with E1–page

yE1 D
M

B�f1;:::;ng

HFL�.L; sC eB/:
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There is a nice symmetric property of bHFL.L/. Ozsváth and Szabó proved

(2-6) bHFL�.L; s/Š bHFL�.L;�s/

up to some grading shift in [14].

3 The proof of the main theorem

3.1 The Spinc –cobordism

In this section, we use LDL1[� � �[Ln�S
3 to denote an oriented link with vanishing

pairwise linking numbers. Suppose that link components Li bound pairwise disjoint
smoothly embedded surfaces †i of genera gi in B4 for all 1 � i � n. Attach n
2–handles to the 4–ball B4 along L1; L2; : : : ; Ln with framings �p1;�p2; : : : ;�pn .
We obtain a 2–handlebody W with boundary @W D S3�p1;:::;�pn

.L/ which is the 3–
manifold obtained by doing surgeries along L1; L2; : : : ; Ln with surgery coefficients
�p1;�p2; : : : ;�pn , respectively. The linking matrix ƒ is a diagonal matrix with
�i i D�pi . Observe that det.ƒ/¤ 0, so S3�p1;:::;�pn

.L/ is a rational homology sphere.
For our purpose, we assume that pi � 0 for all 1� i � n in this section.

Let †0i be the closed surface in W which is the union of †i and the core of the
2–handle attached along Li . Then †0i are also pairwise disjoint. Observe that W is
homotopy equivalent to the wedge of n copies of S2 . Thus, H2.W /D Zn and Œ†0i �
are generators of H2.W /. The self-intersection number of each †0i in W is �pi .

Take small tubular neighborhoods nd.†0i / of †0i such that they are also pairwise
disjoint. Then nd.†0i / is a disk bundle over †0i and its boundary @.nd.†0i // is a circle
bundle B�pi

with Euler number �pi . The boundary connected sum D of the disk
bundles over †0i in W is obtained by identifying smoothly embedded balls B3i �B�pi

and B3iC1 � B�piC1
for 1 � i � n� 1, and D is also a smooth oriented manifold

[4, Section 6.3]. Observe that D has the homotopy type of D�p1
_� � �_D�pn

, where
D�pi

denotes the disk bundle over †0i . Since D�pi
is homotopy equivalent to †0i ,

zHj .D/Š

nM
iD1

zHj .†
0
i /:

Let X denote the complement of D in W . It is a cobordism from B�p1
# � � �#B�pn

to
S3�p1;:::;�pn

.L/. Let X be the cobordism from S3�p1;:::;�pn
.L/ to B�p1

# � � � #B�pn

obtained by reversing the orientation of X.
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Proposition 3.1 For a circle bundle B�m over a closed oriented surface of genus g
and Euler number �m< 0, its cohomology is

H 1.B�m/Š Z2g ; H 2.B�m/Š Z2g ˚Zm; H 3.B�m/Š Z:

Proof For the circle bundle B�m , we have the following long exact sequence by using
the Gysin sequence:

0!H 1.†g/!H 1.B�m/!H 0.†g/
[e
�!H 2.†g/!H 2.B�m/!H 1.†g/! 0;

where e is the Euler class. Then we compute that

0! Z2g !H 1.B�m/! Z
�m
�! Z!H 2.B�m/! Z2g ! 0:

Thus, H 1.B�m/Š Z2g and we have the short exact sequence

0! Zm!H 2.B�m/! Z2g ! 0:

Since Z2g is free, the exact sequence splits and H 2.B�m/Š Z2g ˚Zm . The circle
bundle B�m is oriented and closed, so H 3.B�m/Š Z.

Lemma 3.2 Suppose that M1 and M2 are closed, connected and oriented smooth
n–dimensional manifolds. Then

H i .M1 #M2/ŠH
i .M1/˚H

i .M2/ for i ¤ 0 and n;

and H 0.M1 #M2/ŠH
n.M1 #M2/Š Z.

Corollary 3.3 The cohomology of #niD1B�pi
is

H 1
� n

#
iD1

B�pi

�
ŠZ2g1C���C2gn ; H 2

� n

#
iD1

B�pi

�
ŠZ2g1C���C2gn ˚Zp1

� � �˚Zpn

and H 0
�
#niD1B�pi

�
ŠH 3

�
#niD1B�pi

�
Š Z.

Proposition 3.4 For the cobordism X, we have

H 2.X/ŠH 2
� n

#
iD1

B�pi

�
Š Z2g1C���C2gn ˚Zp1

˚ � � �˚Zpn
; H 1.X/Š 0:

Proof We use the Mayer–Vietoris sequence to compute the cohomology of X . Ob-
serve that W is the union of X and D, and the intersection of X and D is #niD1B�pi

.
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Then we have the long exact sequence

0!H 1.W /!H 1.X/˚H 1.†01/ � � � ˚H
1.†0n/

i�
�!

nM
iD1

H 1.B�pi
/

!H 2.W /!

nM
iD1

H 2.†0i /˚H
2.X/!H 2

� n

#
iD1

B�pi

�
!H 3.W /!H 3.X/!H 3

� n

#
iD1

B�p2

�
! 0:

Recall that W is homotopy equivalent to S2 _ � � � _S2 . Then H 1.W /ŠH 3.W /Š

H 4.W /Š 0. Thus, we have

H 3.X/ŠH 3
� n

#
iD1

B�pi

�
Š Z; H 4.X/D 0

and

0!H 1.X/˚Z2g1 � � �˚Z2gn i�
�!

nM
iD1

Z2gi!Zn!H 2.X/˚Zn!
nM
iD1

.Z2gi˚Zpi
/

! 0:

We claim that the map j �W H 1.†0i /!H 1.B�pi
/ is an isomorphism. Observe that

H 1.†0i /ŠH1.†
0
i / and H 1.B�pi

/ŠH2.B�pi
/ by the Poincaré duality. Each gener-

ator in H1.†0i / is represented by a simple closed curve in †0i . The curve along with
its circle fiber is a generator in H2.B�pi

/, which is precisely the image of the curve
under j � . Therefore, j � is an isomorphism. Note that the map i� restricted to the
summand H 1.†0i / is exactly j � , mapping H 1.†0i / isomorphically onto the summand
H 1.B�pi

/. Hence, i� is an isomorphism when restricted to Z2g1˚� � �˚Z2gn . Then
H 1.X/D 0. We have the short exact sequence

(3-1) 0! Zn
g
�!H 2.X/˚Zn

f
�!

pM
iD1

.Z2gi ˚Zpi
/! 0:

Note that each Z–summand in H2.W; @W /ŠH 2.W / is represented by the surface †0i
and it corresponds to the generator of H 2.†0i /ŠH0.†

0
i /. Then g maps Zn identically

to the summand Zn of H 2.X/˚Zn . This implies that the map f is an isomorphism
when restricted to H 2.X/. Thus H 2.X/ŠH 2

�
#niD1B�pi

�
Š
Ln
iD1.Z

2gi ˚Zpi
/.

Remark 3.5 From the computation in the proof, �.X/D 2g1C � � � 2gn .
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Proposition 3.6 The intersection form QW H 2.X/=Tor�H 2.X/=Tor!Q vanishes.

Proof For two elements s; t 2H 2.X/=TorŠH2.X/, we have Q.s; t/D hxs;PD.t/i,
where xs is the image of s under the map p�W H2.X/!H2.X; @X/ induced by the
projection and PD.t/2H 2.X; @X/. We claim the map i�W H2.@X/!H2.X/ induced
by the inclusion is surjective. Consider the Mayer–Vietoris sequence of homology
similar to the argument in the proof of Proposition 3.4. We have

0!H2

� n

#
iD1

B�pi

�
f 0
�!

nM
iD1

H2.†
0
i /˚H2.X/

g 0
�!H2.W /!H1

� n

#
iD1

B�pi

�
!� � � :

Observe that H2.W / is generated by the surfaces †0i . Then g0 is injective when re-
stricted to

Ln
iD1H2.†

0
i /. From the proof of Proposition 3.4, H2.X/Š

Ln
iD1Z2gi Š

H2
�
#niD1B�pi

�
. Since f 0 is injective, f 0 maps to H2.X/ and it is surjective. Note

that H2.X/ŠH2
�
#niD1B�pi

�
˚H2.S

3
�p1;:::;�pn

.L//. The map i� equals the map f 0

when restricted to the summand H2
�
#niD1B�pi

�
. Hence, i� is surjective. Then p�D0

by the long exact sequence of homology induced by the inclusion @X to X. Hence,
xs D 0 and Q.s; t/D 0. Therefore the intersection form Q vanishes in X.

Corollary 3.7 The signature �.X/ equals 0.

By Proposition 3.4, H 2.X/ŠH 2
�
#niD1B�pi

�
Š Z2g1���C2gn ˚Zp1

� � � ˚Zpn
. We

can identify the generator of a Z–summand in H 2.B�pi
/ to be the Poincaré dual of

a simple closed curve which is a generator of H1.†0i /, and we identify the generator
of Zpi

to be the Poincaré dual of the fiber. Then this will give an isomorphism
from H 2.X/ to Z2g1���C2gn ˚ Zp1

� � � ˚ Zpn
. The restriction map from H 2.X/

to H 2.S3�p1;:::;�pn
.L// Š Zp1

˚ � � � ˚ Zpn
is the projection onto the summand

Zp1
˚� � �˚Zpn

. Note that the fiber of the circle bundle B�pi
is the meridian of the link

component Li , which corresponds to the generator of Zpi
in H 2.S3�p1;:::;�pn

.L//.

An sD .s1; : : : ; sn/2Zn=Znƒ corresponds to a Spinc –structure s on S3�p1;:::;�pn
.L/

which can be extended to W by Proposition 2.13. We denote its restrictions to X
and #niD1B�pi

both by s0. Moreover, we let s0i denote the restriction of the Spinc –
structure on X to B�pi

. By an argument similar to the one in [19, Lemma 3.1], we
have c1.s0i /D 2si . So s0i is a torsion Spinc –structure on B�pi

, which indicates that
s0 is a torsion Spinc –structure on #niD1B�pi

.

Lemma 3.8 The three-manifolds S3�p1;:::;�pn
.L/ and #niD1B�pi

are both standard.
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Proof Recall that we assume that pi�0 for all i in this section. Then S3�p1;:::;�pn
.L/

is a rational homology sphere. So H 1.S3�p1;:::;�pn
.L// is trivial and

HF1.S3�p1;:::;�pn
.L/; s/Š F ŒU; U�1�

for any Spinc –structure s on S3�p1;:::;�pn
.L/. Hence, S3�p1;:::;�pn

.L/ is a standard
three-manifold.

For the circle bundle B�pi
with a torsion Spinc –structure s0i , Rasmussen proved that

HF1.B�pi
; s0i /Š HF1

�
#2g S1 �S2; s0

�
;

where s0 is the unique torsion Spinc –structure on the manifold #2g.S1 �S2/ [19].
Thus, HF1

�
#niD1B�pi

; s0
�

is also standard by the connected sum formula for Hee-
gaard Floer homology [12, Theorem 6.2].

Remark 3.9 By the additivity property of the d –invariants [5, Proposition 4.3],

d
� n

#
iD1

B�pi
; s0
�
D d.B�p1

; s01/C � � �C d.B�pn
; s0n/:

Next, we can use Proposition 2.11 to prove the following d –invariant inequality:

Proposition 3.10 d.S3�p1;:::;�pn
.L/; s/�

nX
iD1

d.B�pi
; s0i /Cg1C � � �Cgn:

Proof By Proposition 3.6 and Lemma 3.8, the 4–manifold X is negative semidefinite
and bounds standard 3–manifolds. Let s be a Spinc –structure on S3�p1;:::;�pn

.L/ and
s0 be the corresponding Spinc –structure on X and #niD1B�pi

, which is a torsion
Spinc –structure on #niD1B�pi

. By Proposition 3.6, c21.s
0/ D Q.c1.s

0/; c1.s
0// D 0,

b1.X/D 0 and bC2 .X/D 0. By (2-2),

0� 4
�
�d.S3�p1;:::;�pn

; s/C d
� n

#
iD1

B�pi
; s0
��
C 2.2g1C � � �C 2gn/:

This implies

0� �4d.S3�p1;:::;�pn
; s/C 4d

� n

#
iD1

B�pi
; s0
�
C 4g1C � � �C 4gn:

Thus,

d.S3�p1;:::;�pn
.L/; s/�

nX
iD1

d.B�pi
; s0i /Cg1C � � �Cgn:
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Let L� denote the mirror of L. Observe that S3�p1;:::;�pn
.L/ is obtained from

S3p1;:::;pn
.L�/ by reversing the orientation. For any s 2 Zn , choose sufficiently large

pi � 0 so that s 2 PH.ƒ/. Let s denote the Spinc –structure on S3�p1;:::;�pn
.L/

corresponding to s . By Theorem 2.14,

d.S3�p1;:::;�pn
.L/; s/D�d.S3p1;:::;pn

.L�/; s/D degFU0;sC 2HL�.s/;

where HL� is the H –function of L� . Let O denote the unlink with n components.
Similarly, we have

d.S3�p1;:::;�pn
.O/; s/D�d.S3p1;:::;pn

.O/; s/D degFU0;sC 2HO.s/:

Thus,

d.S3�p1;:::;�pn
.L/; s/� d.S3�p1;:::;�pn

.O/; s/D 2HL�.s/� 2HO.s/D 2hL�.s/:

Recall that for a circle bundle B�m with Euler number �m over a closed, oriented
genus g surface, H 2.B�m/ Š Z2g ˚ Zm . We label the torsion Spinc –structures
on B�m following the convention in [19]. Note that B�m can be obtained by doing �m
surgery on the “Borromean knot” B� #2g.S1�S2/. Let X2 be the surgery cobordism
from #2g.S1 � S2/ to B�m . The restriction map H 2.X2/! H 2

�
#2g.S1 � S2/

�
has kernel isomorphic to Z, which corresponds to the 2–handle attached along B. If
x denotes a generator of Z, we let tk denote the Spinc –structure on X2 such that
c1.tk/D .�mC2k/x . For simplicity, we still let tk be its restriction on B�m . For the
lens space L.m; 1/ in Proposition 3.11, the labeling of Spinc –structures on L.m; 1/
is similar. We consider the surgery cobordism from S3 to L.m; 1/. For details, see
[19, Section 2.1].

Proposition 3.11 [19, Proposition 3.4] Let B�m denote a circle bundle equipped
with a torsion Spinc –structure tk over a closed oriented surface †g . For m� 0,

d.B�m; tk/D

�
E.m; k/�gC 2

˙
1
2
.g� jkj/

�
if jkj � g;

E.m; k/�g if jkj> g;

where fE.m; k/ j k 2 Zmg is the set of d –invariants of the lens space L.m; 1/.

3.2 Proofs of the main theorems

We prove Theorems 1.1 and 1.3 in this subsection.
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Proof of Theorem 1.1 By Propositions 3.10 and 3.11,

d.S3�p1;:::;�pn
.L/; s/�

nX
iD1

.E.pi ; si /�gi C 2fgi
.si //Cg1C � � �Cgn:

Recall that d.S3�p1;:::;�pn
.L/; s/D 2hL�.s/Cd.S

3
�p1;:::;�pn

.O/; s/. For lens spaces,
our orientation convention is the one used in [19], namely that �p surgery on the unknot
produces the oriented space L.p; 1/. Then S3�p1;:::;�pn

.O/DL.p1; 1/# � � �#L.pn; 1/,
and

d.S3�p1;:::;�pn
.O/; s/D

nX
iD1

d.L.pi ; 1/; si /D

nX
iD1

E.pi ; si /:

Hence,

hL�.s/�

nX
iD1

fgi
.si /:

The surfaces †i bounded by Li are pairwise disjoint. Then the corresponding link
components of the mirror link L� bound the mirrors of †i which have the same genera
as †i . Thus we have hL.s/�

Pn
iD1 fgi

.si /.

Corollary 3.12 For an oriented n–component link L� S3 , G.L/�GHF.L/.

Proof Suppose that the link components of L bound pairwise disjoint surfaces in B4

of genera gi . By Theorem 1.1, hL.s/D 0 if s � g , where g D .g1; : : : ; gn/.

Definition 3.13 An oriented n–component link L� S3 is (smoothly) slice if there
exist n disjoint, smoothly embedded disks in B4 with boundary L.

Proof of Theorem 1.3 If L is slice, then hL D 0 by Theorem 1.1. Thus HL.v/D

HO.v/ D
Pn
iD1H.vi /, where H.vi / is the H –function for the unknot and v D

.v1; : : : ; vn/ 2Zn . We claim that HFL�.L; v/D 0 if there exists a component vj > 0.
By Proposition 2.20, there exists a spectral sequence converging to HFL�.L/ with the
E1–page

E1.v/D
M

B�f1;:::;ng

H�.A
�.L; v� eB//

and differential @1 which is induced by inclusions.

Let KD f1; : : : ; ng n fj g, and

E 0.v/D
M
B�K

H�.A
�.L; v� eB//; E 00.v/D

M
B�K

H�.A
�.L; v� eB � ej //:
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Then E1.v/ D E 0.v/ ˚ E 00.v/. Recall that for L–space links L and each B �

f1; : : : ; ng, H�.A�.L; v � eB// Š F ŒU � [7]. Let @0 and @00 denote the differen-
tials in E 0.v/ and E 00.v/ which are induced by @1 . Let z denote the generator
of H�.A�.L; v� eB � ej // 2 E 00.v/ with homological grading �2H.v� eB � ej /.
Observe that H.v�eB�ej /DH.v�eB/ since H.vj �1/DH.vj / for vj >0. Then
@1.z/D @

00.z/Cz0, where z0 is the generator of H�.A�.L; v�eB// with homological
grading �2H.v�eB/. Let D be an acyclic chain complex with two generators a and b ,
and the differential @D.a/ D b . Then the chain complex .E1.v/; @1/ is isomorphic
to .E 00.v/˝D; @00˝ @D/. Thus E2 D 0, and the spectral sequence collapses at E2 .
Therefore, HFL�.L; v/D 0 if there exists vj > 0.

We also have bHFL.L; v/ D 0 if there exists vj > 0 by the spectral sequence in
Proposition 2.22. By the symmetric property [14], bHFL.L;�v/ D bHFL.L; v/ D 0.
Hence, bHFL.L; v/ D 0 if v ¤ 0. If L has no trivial component (an unknotted
component which is also unlinked from the rest of the link), the dual Thurston polytope
of L is a point at the origin [16, Theorem 1.1]. Then the link L bounds disjoint disks
in S3 , and L is an unlink. Otherwise, the split unknotted components bound disjoint
disks and we apply the same argument to the rest of the link components. Then L

bounds disjoint disks in S3 and it is still an unlink.

3.3 Lower bounds for the 4–genera

In this subsection, we use L � S3 to denote an n–component link with vanishing
pairwise linking numbers. The inequality in Theorem 1.1 produces some lower bounds
for the 4–genus of L.

Corollary 3.14 For the link L,

(3-2) g4.L/�minfs1C � � �C s2 j h.x/D 0 if x � sD .s1; : : : ; sn/g:

Proof This is straightforward from Corollary 3.12

Corollary 3.15 For the link L, g4.L/� 2maxs2Zn hL.s/�n. In particular,

(3-3) g4.L/� 2hL.0/�n:

Proof By Theorem 1.1, for all s 2 Zn , hL.s/�
˙
1
2
g1
�
C � � �C

˙
1
2
gn
�

. Observe that˙
1
2
gi
�
�
1
2
.gi C 1/. Then

g1C � � �CgnCn� 2 max
s2Zn

hL.s/:

Hence g4.L/� 2maxs2Zn hL.s/�n.
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Corollary 3.16 Let g4.Li / denote the 4–genus of the link component Li . Then

(3-4) g4.L/� 2hL.s/�nCjs1jC � � �C js2j;

where sD .s1; : : : ; sn/ and jsi j � g4.Li /.

Proof Suppose that L bounds pairwise disjoint surfaces †i in B4 of genera gi . Then
gi � g4.Li / for all i . If jsi j � g4.Li /, then, by Theorem 1.1,

hL.s/�

nX
iD1

˙
1
2
.gi � jsi j/

�
:

Since
˙
1
2
.gi � jsi j/

�
�
1
2
.gi � jsi jC 1/, we have

g1C � � �Cgn � 2hL.s/�nCjs1jC � � �C js2j:

Hence, g4.L/� 2hL.s/�nCjs1jC � � �C js2j.

For the rest of the subsection, we prove that the analogues of Lemmas 2.4, 2.5 and 2.7
hold for the set G.L/. For an oriented link L with vanishing pairwise linking numbers,
we use the cancellation process to find pairwise disjoint surfaces in B4 bounded by L.
Let †i � S3 denote a Seifert surface bounded by Li . Then †i and †j intersect
transversely at an even number of points in B4 since the linking number equals 0.
We remove the tubular neighborhoods of a positive crossing and a negative crossing
in †i and obtain a new surface with two punctures. Add a tube along an arc in †j
which connects the two intersection points to the punctured surface where the attaching
circles are boundaries of these two punctures, as in Figure 2. Then we obtain a new
surface †

0

i with fewer intersection points with †j and higher genus compared with †i .
The tube can also be attached to the surface †j along an arc connecting the intersection
points in †i . We repeat the process until we get pairwise disjoint surfaces in B4

bounded by L. We call the process of adding tubes to eliminate intersection points the
cancellation process.

Lemma 3.17 If g 2 G.L/ and y � g , then y 2 G.L/. Equivalently, if g … G.L/
and y � g , then y …G.L/.

Proof If gD .g1; : : : ; gn/2G.L/, there exist pairwise disjoint surfaces †i embedded
in B4 of genera gi and @†i DLi . We can attach tubes to the surfaces †i to increase
the genera. Thus y 2G.L/ if y � g .
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†j

†i

Figure 2: Cancellation process.

Lemma 3.18 If g D .g1; : : : ; gn/ 2G.L/, then g ngi 2G.LnLi / for all 1� i � n.
Moreover, if gngi 2G.LnLi /, then, for gi sufficiently large, gD .g1; : : : ; gn/2G.L/.

Proof If g 2 G.L/, it is easy to obtain that g n gi 2 G.L n Li /. Conversely, if
g n gi 2G.L nLi / for sufficiently large gi � 0, we claim that g 2G.L/. Suppose
that LnLi bounds pairwise disjoint surfaces †j in B4 . Let †i in S3 denote a Seifert
surface bounded by Li . Then †i intersects with †j transversely at an even number
of points in B4 since the linking number equals 0. By the cancellation process, we
add tubes to †i until the new surface is disjoint from all the surfaces †j . Thus, for
sufficiently large gi , g 2G.L/.

Lemma 3.19 The set G.L/ is determined by the set of maximal lattice points and
G.L nLi / for all 1� i � n.

Proof The proof is similar to the one in Lemma 2.7 by using Lemmas 3.17 and 3.18.

4 Examples

4.1 Examples

For L–space links, the H –function can be computed explicitly by the Alexander
polynomials of the link and sublinks. The lower bound for 4–genus of the link in
Section 3 can also be computed explicitly. In this section, we will show examples of
L–space links where G.L/DGHF.L/.
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k full twists k full twists

Figure 3: Two-bridge link b.4k2C 4k;�2k� 1/ .

Example 4.1 For k a positive integer, the two-bridge link LkD b.4k
2C4k;�2k�1/

is a 2–component L–space link with linking number 0 [7], and both link components
are unknots; see Figure 3. The Alexander polynomial of Lk can be obtained with the
help of a computer program [7, Section 6] (see also [6, Section 3]):

�Lk
.t1; t2/D .�1/

k
X

jiC1=2jCjjC1=2j�k

.�1/iCj t
iC1=2
1 t

jC1=2
2 :

The H –function of Lk is computed in [7, Proposition 6.12]. Note that nCL2
s1;s2 in [7]

equals H.s1; s2/� 1
2
.js1j � s1/ in our notation. Then the h–function of Lk is shown

in Figure 4, where h.k; 0/D 0 and h.k� 1; 0/D 1. For the shaded area bounded by

GHF.L/

Figure 4: The h–function of Lk .
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the “stairs”, the h–function is nonzero, and h.s/ D 0 for all lattice points s on the
“stairs” and outside of the shaded area in Figure 4. Thus, GHF.L/ consists of all the
lattice points on the “stairs” and outside the shaded area in the first quadrant. By the
inequality (3-2),

g4.Lk/�minfs1C s2 j h.x/D 0 if x � sD .s1; s2/g D k:

Observe that the components of Lk bound disks D1 and D2 in S3 . Push the disks
into B4 . Then they intersect transversely at 2k points in B4 . By the cancellation
process of crossings, we obtain disjoint surfaces †01 and †02 in B4 bounded by the
link components. Assume that the genus of †01 is k and †02 is still a disk of genus 0.
Then g4.Lk/ � k . Thus, g4.Lk/D k . We can add tubes to either D1 or D2 in the
cancellation process. Thus, for all g D .g1; g2/ with g1C g2 D k , we find disjoint
surfaces in B4 of genera g1 and g2 , respectively. Therefore, G.Lk/DGHF.Lk/.

Remark 4.2 For k D 1 we get the Whitehead link L1 , and the 4–genus g4.L1/
equals 1.

Example 4.3 The Borromean link LD L1 [L2 [L3 is a 3–component L–space
link with vanishing pairwise linking numbers [7]. Its Alexander polynomial equals

�L.t1; t2; t3/D .t
1=2
1 � t

�1=2
1 /.t

1=2
2 � t

�1=2
2 /.t

1=2
3 � t

�1=2
3 /:

By (2-5), hL.v/D 0 if v � 0, and hL.0/D 1. Thus, GHF.L/D fv 2 Zn j v � 0g and
g4.L/� 1.

A

B

C

Figure 5: Borromean link.
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We claim that g4.L/ D 1. In Figure 5, link components A and C bound pairwise
disjoint disks D1 and D3 , respectively, in S3 . We push the disk D1 in B4 . Note
that the link component B bounds a disk D2 in S3 which is disjoint from D1 , but
intersects with the disk D3 . After pushing D1 and D3 in B4 , these two disks intersect
transversely at two points. By adding a tube to cancel these intersection points, we
obtain three disjoint surfaces bounded by the Borromean link with genera 0, 1 and 0.
Thus, g4.L/D 1, and G.L/DGHF.L/.

Example 4.4 The mirror of L7a3 is a 2–component L–space link L D L1 [L2

with linking number 0, where L1 is the right-handed trefoil and L2 is the unknot [7].
Its Alexander polynomial equals

�L.t1; t2/D�.t
1=2
1 � t

�1=2
1 /.t

1=2
2 � t

�1=2
2 /.t2C t

�1
2 /:

The h–function in the first quadrant is shown as in Figure 6 by (2-5) or the formula
in [7]. Then the shaded area is GHF.L/ and g4.L/� 2.

GHF.L/

Figure 6: The h–function for the mirror of L7a3 .

Observe that the right-handed trefoil and the unknot bound Seifert surfaces of genera
1 and 0, respectively, in S3 . They intersect transversely at two points after pushing
them in B4 . By the cancellation process, we can obtain disjoint surfaces of genera
.2; 0/ or .1; 1/ bounded by the link. Thus, g4.L/D 2, and G.L/DGHF.L/.

Example 4.5 Let L denote the disjoint union of two links L1 and L2 . Then G.L/D

G.L1/�G.L2/ and GHF.L/DGHF.L1/�GHF.L2/.

Proof Suppose that L1 has n1 components and L2 has n2 components. If g1 2
G.L1/ and g2 2G.L2/, then .g1;g2/ 2G.L/, where LD L1 tL2 . Conversely, if

g D .g1; : : : ; gn1
; : : : ; gn1Cn2

/ 2G.L/;
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it is straightforward to obtain that .g1; : : : ; gn1
/ 2G.L1/ and .gn1C1; : : : ; gn1Cn2

/ 2

G.L2/. Thus, G.L/DG.L1/�G.L2/.

For the set GHF.L/, we first prove that HL.s/ D HL1
.s1/CHL2

.s2/, where s1 D
.s1; : : : ; sn1

/, s2D .sn1C1; : : : ; sn1Cn2
/ and sD .s1; : : : ; sn1

; : : : ; sn1Cn2
/. The argu-

ment is similar to the one in [1, Proposition 3.11]. For the link L by [15, Section 11],
one has

A�.L; s/Š A�.L1; s1/˝FŒU �A
�.L2; s2/;

and the isomorphism preserves the homological gradings. Since H –functions take
nonnegative values, HL.s/ D 0 if and only if HL1

.s1/ D HL2
.s2/ D 0. Thus,

GHF.L/DGHF.L1/�GHF.L2/.

4.2 Cables of L–space links

Let LDL1[� � �[Ln�S3 be an L–space link with vanishing pairwise linking numbers.
Let p and q be coprime positive integers. The link Lp;q D L.p;q/[L2[ � � � [Ln is
an L–space link if q=p is sufficiently large [1, Proposition 2.8]. Here Lp;q denotes
the .p; q/–cable on L1 . By induction, we can consider the links obtained by cabling
any link components. In particular, we let Lcab D L.p1;q1/ [ � � � [L.pn;qn/ , where
L.pi ;qi / is the .pi ; qi /–cable on Li . If for all i , qi=pi is sufficiently large, then Lcab

is also an L–space link [1, Proposition 2.8].

Given coprime positive integers p and q , define the map T W Zn
�0! Zn

�0 as

T .s/D p � sC
�
1
2
.p� 1/.q� 1/; 0; : : : ; 0

�
;

where p D .p; 1; : : : ; 1/ and p � sD .ps1; s2; : : : ; sn/.

Lemma 4.6 Given coprime positive integers p and q , s � s0 if and only if T .s/�
T .s0/.

Proof The proof is straightforward.

Theorem 4.7 Let L D L1 [ � � � [Ln be an L–space link with vanishing pairwise
linking numbers, and let Lp;q D L.p;q/[L2[ � � � [Ln , where p and q are coprime
positive integers with q=p sufficiently large and L.p;q/ is the .p; q/–cable on L1 .
Then

GHF.Lp;q/D fu 2 Zn�0 j u� T .s/ for some s 2GHF.L/g:
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Proof The normalizations for knots and links with at least two components are
different. We first prove the theorem in the case that L is a knot. Let �L.t/ denote the
symmetrized Alexander polynomial of L. Then the symmetrized Alexander polynomial
of the cable knot Lp;q is computed by Turaev in [20, Theorem 1.3.1]:

(4-1) �Lp;q
.t/D

�L.t
p/.t1=2� t�1=2/

tp=2� t�p=2
�
tpq=2� t�pq=2

tq=2� t�q=2
:

Here we are multiplying �L.t
p/ by a Laurent polynomial of degree T .0/.

Recall that in Section 2.3 we normalize the polynomial z�L.t/D�L.t/=.1� t
�1/ and

regard 1=.1� t�1/ as the power series 1C t�1C t�2C � � � . So the monomial with
the highest degree in �L.t/ is also the highest-degree term in z�L.t/. Suppose that tb

is the highest-degree term in �L.t/, where b � 0. We claim that GL D Œb;1/. By
equations (2-3) and (2-4), �.HFL�.L; s//DH.s� 1/�H.s/ equals 0 for all s > b
and equals 1 for sD b . Recall that H.s/D 0 if s is sufficiently large by Theorem 2.17.
Hence, H.b� 1/D 1 and H.s/D 0 for all s � b , which proves the claim. Observe
that the highest-degree term in �Lp;q

.t/ is tbpC.p�1/.q�1/=2 D T .b/. By a similar
argument, we prove that GHF.Lp;q/D ŒT .b/;1/.

Now we consider the case that L has at least two components. Let �L.t1; : : : ; tn/

denote the symmetrized Alexander polynomial of L. Then the Alexander polynomial
of the cable link Lp;q is computed by Turaev in [20, Theorem 1.3.1]:

(4-2) �Lp;q
.t1; : : : ; tn/D�L.t

p
1 ; t2; : : : ; tn/

t
pq=2
1 � t

�pq=2
1

t
q=2
1 � t

�q=2
1

:

Then

(4-3) z�Lp;q
.t1; : : : ; tn/D t

1=2�p=2
1

z�L.t
p
1 ; : : : ; tn/

t
pq=2
1 � t

�pq=2
1

t
q=2
1 � t

�q=2
1

:

Here .tpq=21 � t
�pq=2
1 /=.t

q=2
1 � t

�q=2
1 / is a Laurent polynomial of degree 1

2
pq� 1

2
q .

Observe that T .s/ D p � sC
�
1
2
�
1
2
p; : : : ; 0

�
C
�
1
2
.pq � q/; : : : ; 0

�
for any s 2 Zn .

We claim that the coefficients of ty1

1 � � � t
yn
n in z�L.t1; : : : ; tn/ are 0 for all y � s if

and only if for all y 0 � T .s/, the coefficients of ty
0
1
1 � � � t

y0n
n are 0 in z�Lp;q

.t1; : : : ; tn/.
The “only if ” part is straightforward by observing that every monomial ty1

1 � � � t
yn
n

in z�L.t1; : : : ; tn/ can contribute only to monomials of degree less than or equal to
T .y/ in z�Lp;q

.t1; : : : ; tn/. For the “if” part, we assume that for all y 0 � T .s/, the
coefficients of ty

0
1
1 � � � t

y0n
n are 0 in z�Lp;q

.t1; : : : ; tn/. Suppose there exists y � s such
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that the coefficient of ty1

1 � � � t
yn
n is nonzero. Then there exists a maximal lattice point

y 00 � y with associated nonzero coefficient. By Lemma 4.6, T .y 00/� T .s/, and the
coefficient corresponding to T .y 00/ in z�Lp;q

.t1; : : : ; tn/ is nonzero by (4-3), which
contradicts our assumption. This proves the claim.

For all subsets B � f1; : : : ; ng, the similar statement holds for the Alexander poly-
nomials z�LnLB

.ti1 ; : : : ; tik / and z�Lp;qn.Lp;q/B .ti1 ; : : : ; tik /. By Lemma 2.19, y 0 2
GHF.Lp;q/ if y 0 � T .s/ for some s 2GHF.L/. Thus,

GHF.Lp;q/� fu 2 Zn j u� T .s/ for some s 2GHF.L/g:

Conversely, suppose y 0 2GHF.Lp;q/. If y 0 D T .s/ for some s 2Zn , by Lemma 2.19
and the claim, s2GHF.L/. If y 0 is not in the image of T , then there exists s2Zn such
that y 0 � T .s/ and y 0 � T .y/ for all y � s . We claim that s 2GHF.L/. If there exists
y � s such that the coefficient corresponding to y in z�L.t1; : : : ; tn/ is not 0, then
there exists a maximal lattice point y 00 � y with associated nonzero coefficient. So the
coefficient corresponding to T .y 00/ in z�Lp;q

.t1; : : : ; tn/ is also not 0, which contradicts
our assumption. Similarly, we prove that for all subsets B�f1; : : : ; ng and all y�s , the
coefficients corresponding to y nyB in z�LnLB

.ti1 ; : : : ; tik / are all 0. By Lemma 2.19,
s 2GHF.L/. Thus, GHF.Lp;q/D fu 2 Zn j u� T .s/ for some s 2GHF.L/g.

Lemma 4.8 For such cable links Lp;q , G.Lp;q/� fu 2Zn j u� T .g/ for some g 2
G.L/g.

Proof Suppose that the link components in L bound pairwise disjoint surfaces †i in
B4 of genera gi . The cable knot L.p;q/ bounds a surface of genus pg1C12.p�1/.q�1/:
We start with p copies of †1 and use .p� 1/q half-twisted bands to connect them.
Since †i are pairwise disjoint, the new surfaces are also pairwise disjoint.

Proof of Proposition 1.4 Let G0 D fu 2 Zn j u � T .g/ for some g 2 G.L/g.
By assumption, G.L/ D GHF.L/. Then G0 D GHF.Lp;q/ by Theorem 4.7. Since
GHF.Lp;q/�G.Lp;q/�G0 by Lemma 4.8, we have GHF.Lp;q/DG.Lp;q/.

Remark 4.9 By induction, Proposition 1.4 also holds if we replace some link compo-
nents in L by their cables. We need to choose an appropriate transformation map T
correspondingly.

By Proposition 1.4, we can apply cables on all L–space links in the examples of
Section 4.1.
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G.Whp;q/

�
1
2
.p�1/.q�1/; 1

�

�
1
2
.p�1/.q�1/; 0

� ...

q full twists

p strands

Figure 7: Left: the h–function of Whp;q . Right: disjoint surfaces.

Example 4.10 (cables on the Whitehead link) Let Whp;q denote the link consisting
of the .p; q/–cable on one component of the Whitehead link and the unchanged second
component. The linking number is 0, and Whp;q is an L–space link if p and q are
coprime with q=p � 3 [1].

By Theorem 2.17, one can compute the h–function of the Whitehead link L in the
first quadrant: hL.s/ D 0 for all s � 0 and hL.0/ D 1. By (3-2), g4.L/ � 1. It is
not hard to find disjoint surfaces bounded by the Whitehead link in B4 with genera
0 and 1, respectively. Hence g4.L/ D 1 and GHF.L/ D G.L/. By Theorem 4.7,
GHF.Whp;q/ can be obtained from GHF.L/ by applying the transformation T , which
is shown in Figure 7 (left). By Proposition 1.4, GHF.Whp;q/ D G.Whp;q/. Thus
g4.Whp;q/D g1Cg2D 1

2
.p�1/.q�1/C1. The link Whp;q bounds disjoint surfaces

of genera 1
2
.p�1/.q�1/ and 1 as in Figure 7 (right). Note that the unknot component

bounds a disk and Tp;q bounds a surface with genus 1
2
.p�1/.q�1/ in S3 . These two

surfaces intersect transversely at 2p intersection points in B4 . We add a tube to the disk
which contains all the p strands to construct two disjoint surfaces bounded by Whp;q
with genera 1 and 1

2
.p�1/.q�1/, respectively. We can also add p tubes to the Seifert

surface bounded by Tp;q to cancel each pair of intersection points of a strand and the
disk. Then we obtain two disjoint surfaces with genera 0 and 1

2
.p � 1/.q � 1/Cp ,

which corresponds to the point
�
1
2
.p� 1/.q� 1/Cp; 0

�
in Figure 7 (left). Hence, we

have realized all points in G.Whp;q/.

Example 4.11 For the 2–bridge link LkD b.4k
2C4k;�2k�1/DL1[L2 , consider

the cable link LcabDL.p1;q1/[L.p2;q2/ , where pi and qi are coprime positive integers
with qi=pi sufficiently large. In Example 4.1, we compute the h–function of Lk in
the first quadrant and proved G.Lk/DGHF.Lk/. By Theorem 4.7 and the induction,
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GHF.Lcab/ can be obtained from GHF.Lk/ by applying the appropriate transforma-
tion T , which is shown in Figure 1. By Proposition 1.4, GHF.Lcab/ D G.Lcab/. In
Figure 1, all the horizontal segments in the “stair” have length p1 , vertical segments
have length p2 and there are k steps.
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