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1 Introduction

1.1 Overview

This paper is part of an overarching project to give algebraic models for the category of
rational G –spectra for any compact Lie group G and hence describe the triangulated
category of rational G–equivariant cohomology theories. Specifically, we give an
algebraic model for the toral G–spectra (those concentrated over subgroups of a
maximal torus).

In a little more detail, the conjecture due to the second author [5] states that for
every compact Lie group G there is a graded abelian category A.G/ and a Quillen
equivalence

G–spectra'Q dA.G/

between rational G –spectra and differential objects in A.G/. The abelian model A.G/
is conjectured to be a category of sheaves over the space of closed subgroups of G

with the stalk over a subgroup K giving the information over the isotropy group K .
For example the stalk over the trivial subgroup gives a model for free G –spectra.

In this paper we focus on rational G–spectra with isotropy consisting of subgroups
of a maximal torus T . There are several reasons for selecting this part; crudely, it
is both useful and accessible. It is useful since it includes many important examples
(K–theory, elliptic cohomology, Borel cohomology, . . . ) and it is a direct summand of
the whole category capturing much of the character of the whole. On the other hand it
is fairly accessible because it is relatively easy to describe the subgroups of a torus and
their conjugacy in G.

When G D T is a torus, all T –spectra are toral. In this case, the category A.T /
has been made explicit — see Greenlees [6] — and the conjecture has been proved
by Greenlees and Shipley [13]. Moving on, one may then want to mimic complex
representation theory of a compact Lie group, when one understands representations by
restricting them to the maximal torus, whilst remembering the action of the Weyl group.
Of course, when restricting to T it is only reasonable to hope to capture information
about subconjugates of T , so that the toral information is the most we can hope for.
Moreover, it was proved in Greenlees [7] that all information about all toral subgroups
is captured by restriction to T . An abelian model A.G; toral/ for toral G–spectra
was constructed from the model A.T / for the maximal torus T by fully taking into
account the action of the Weyl group W D NG.T /=T on T and all its subgroups.
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The paper [7] constructed a finite Adams spectral sequence, based on A.G; toral/,
convergent for all toral spectra. Our purpose here is to show that A.G; toral/ can be
used to give a full algebraic model of the category of toral G –spectra. In other words,
we prove here the conjecture from [7] that the category of rational toral G –spectra is
Quillen equivalent to the category of differential objects in A.G; toral/.

The toral information is captured by the maximal torus for any group G, and in particular
this applies to the normalizer of the maximal torus N DNG.T /. This is the simplest
of the groups with maximal torus T and Weyl group W . It was shown in [7] that
the category of rational toral spectra for G is a retract of the category of rational
toral spectra for N . In fact, we may deduce that toral G –spectra and A.G; toral/ are
obtained from toral N –spectra and A.N; toral/ by cellularization at a collection of
toral cells that we denote G=TC and define later. This observation suggests the idea of
the proof for general G ; first we show that

toral N–spectraQ 'Q dA.N; toral/

and later deduce the sequence of Quillen equivalences

toral G–spectraQ 'Q G=TC–cell–toral N–spectraQ

'Q G=TC–cell–dA.N; toral/'Q dA.G; toral/

by applying cellularization to the first statement; see Figure 1 for more details.

Finally, since T is the identity component of N it is not hard to see that in both
topology (toral N –spectra) and in algebra (the abelian category A.N; toral/), the
categories consist of their T –equivariant counterpart together with an action of the
Weyl group W (in a pervasive way that includes the action of W on the subgroups).
This observation suggests the strategy of the proof for N ; we take the proof of [13] for
the torus, and show that it is compatible with the action of the Weyl group in the sense
that the arguments can be lifted from the category of T –spectra to toral N –spectra.

The general idea of the proof is straightforward, but considerable work is involved in
implementing it. We proceed with describing the issues below.

1.2 The challenges

To describe the novel contribution of this paper, we need to explain in more detail the
methods employed in earlier work.
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The reduction from G to the normalizer N of its maximal torus (ie from the general
case to the case with identity component a torus) applies the cellularization principle of
Greenlees and Shipley [10] to the restriction-coinduction adjunction. The reason that this
works is that all toral subgroups are represented inside N and furthermore all conjugates
of toral subgroups are represented inside N . This is in addition to the fundamental
fact that the spectrum †1G=NC is rationally trivial as a toral spectrum. This part of
the argument was first described in Kędziorek [16] for the case of G D SO.3/. The
identification of dA.G; toral/ with the cellularization of dA.N; toral/ is then deduced
from the results of [7].

The step described above reduces us to the case of a group N with identity component T .
To describe this case, we now recall the strategy in the case of a torus from [13]. We
start by identifying T –spectra with modules over the sphere spectrum S. The first
substantive step is to express S as a homotopy pullback of a punctured .rC1/–cube
diagram zR of ring T –spectra, where r is the rank of T . It follows that the category
of modules over S can be modelled as the cellularization of the category of modules
over the diagram zR. The advantage is that each of the ring T –spectra zR.a/ in the
diagram is determined by its homotopy, and its module category can be understood in
algebraic terms and ultimately related to the category A.T /.

We implement here the same argument for N . The N –equivariant sphere should be
torally equivalent to the homotopy pullback of an .rC1/–cube of ring N –spectra. In
fact, because of the way toral equivalence is defined, this will be immediate if we can
construct the terms zR.a/ (for a a vertex in the cube) as N –spectra. This is one of the
major technical achievements of this paper.

The terms zR.a/ can be viewed as constructed (using products and localizations) from
stalks zRK corresponding to the subgroups K of T . Our main challenge is that the
group K is only fixed by the normalizer NN.K/, a group that contains T but will
typically not be all of N . Our first step is to observe that zRK can be constructed as
a ring NN.K/–spectrum (and not just as a T –spectrum). The substantial new step
in the argument is the proof that the object constructed from all of these stalks (not
individually N –spectra) does in fact admit an action of all of N . This will be done in
Sections 4 and 5.

1.3 Precise constructions

Finally we will be more precise about the categories of objects we are discussing.
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The endomorphism ring of the sphere spectrum is the rational Burnside ring ŒS;S�G D
A.G/, and tom Dieck showed that this can be understood using the mark homomor-
phism. Indeed, if f W S! S then we may take geometric H –fixed points to get a
nonequivariant map ˆHf W S! S, and we write m.f /.H / for its degree. This defines
a function m.f /W ˆG!Q from the space ˆG of conjugacy classes of subgroups
H of G with finite index in their normalizers. If we give ˆG the quotient of the
Hausdorff metric topology, m.f / is continuous, and in fact

mW ŒS;S�G Š
�! C.ˆG;Q/

is an isomorphism; see tom Dieck [2, Propositions 5.6.4 and 5.9.13]. Here Q on the
right has a discrete topology and C denotes continuous functions. Accordingly, any
open and closed subset of ˆG defines an idempotent of A.G/ with this support. In
particular, the conjugacy class of the maximal torus is open and closed in ˆG. We
write eT for the associated idempotent in A.G/. Evidently eT S'Eƒ.T /C , where
ƒ.T / is the family of all subgroups of a maximal torus and Eƒ.T /C denotes the
universal G–space for the family ƒ.T /. The homotopy category of toral spectra
consists of those of the form eT X 'Eƒ.T /C ^X.

We will be working with model categories, so we should specify our chosen models.
To start with, our model for G –spectra is the category GSpO of orthogonal G –spectra.
We rationalize it by localizing at the rational sphere spectrum SQ . We form the category
of toral G –spectra by localizing at the idempotent eT . These can be done together by
localizing with respect to eT SQ .

At the algebraic end, we will not give a detailed description of the models. Instead we
state that the abelian category A.T / is defined for a torus T in [6]. The abelian category
A.G; toral/ is defined in [7]. These categories are of finite injective dimension, and
the categories dA.T / and dA.G; toral/ of differential graded objects admit injective
model structures, as described in [13]. Perhaps the most efficient way to show these
injective model structures exist is to use the left-lifting technique of Hess, Kędziorek,
Riehl and Shipley [14].

With these categories specified, the other notation is easily inferred using some general
constructions. First of all, we adopt the general conventions of [13], since we often
consider corresponding rings in different categories. Thus zRtop might be a ring G–
spectrum, Rtop the corresponding ring in spectra, Rt the corresponding ring in DGAs,
and Ra in graded rings; this convention is only suggestive, and the exact definitions
will need to be given in due course.
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Coming to model structures, if zRtop is a ring in a category of G –spectra, the category
zRtop–mod denotes the category of zRtop –modules with the algebraically projective

model structure generated by cells G=HC ^ zRtop (more properly the model structure
right-lifted from G –spectra along the forgetful functor). The algebraic side is similar,
but here we also use the injective model structure (left-lifted along the forgetful functor).
It will be clearly indicated which model structure we have in mind.

We also need to consider diagrams zRtop of rings in G–spectra, we write zRtop–mod
for the category of diagrams of modules with the diagram-injective model structure
(in which weak equivalences and cofibrations are created by the evaluations at the
vertices).

From these categories we form other model structures by localization. We write LE

for the left Bousfield localization with respect to the object E and A–cell to denote
cellularization (or right Bousfield localization) with respect to a set of objects A.

1.4 The strategy

The plan for this paper is to prove the Quillen equivalences of Figure 1. In that
diagram left adjoints are on the left and double-ended arrows indicate zigzags of
Quillen equivalences.

The first step is to prove that the model category of toral G –spectra is Quillen equivalent
to toral N –spectra, cellularized at the set G=TC of N –spectra G=KC for K � T .

The next step is to classify toral N –spectra in terms of an algebraic model. We show that
there is a series of Quillen equivalences between toral N –spectra, LeTN SQ.NSpO/

and dA.N; toral/. This part uses a number of cellularizations. In each case the
cellularization is done at the set KDN=TC of the (derived) images of the generators
for toral N –spectra, under the (derived) composite of functors from toral N –spectra
to the given category. This step models rational toral N –spectra.

The final step for the classification of toral G –spectra is to cellularize the whole diagram
for toral N –spectra at the (derived) images of cells G=TC of LeTG

SQ.GSpO/ and
at the end recognize the model category as dA.G; toral/ with the injective model
structure.

Acknowledgements The authors wish to thank the Mathematisches Forschungsinstitut
Oberwolfach for providing an ideal environment to work on this project as part of the
Research in Pairs Programme.
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classification of toral G –spectra

toral G–spectraDLeTG
SQ.GSpO/

i�

��

G=TC–cell–LeTN
SQ.NSpO/

FN .GC;�/

OO

zigzag from
��

G=TC–cell–dA.N; toral/

the N–case

OO

algebraic
��

dA.G; toral/

simplification

OO

classification of toral N –spectra

LeTN
SQ.NSpO/

�^zRtop
��

K–cell–zRtop–mod–LeTN
SQ.NSpO/

lim

OO

‰T

��

KT –cell–Rtop–mod–Le1SQ.W SpO/

einf
N

W

OO

change of model
��

KT –cell–Rtop–mod–SpO
QŒW �

structure and universe

OO

SingıU
��

KT –cell–Rtop–mod–Sp†QŒW �

Pıj�j

OO

H Q^�
��

KT –cell–Rtop–mod–.HQ–dmodŒW �/

U

OO

zigzag of Quillen equivalences
��

Kt –cell–Rt –mod–Q–dmodŒW �

(Shipleyfication)

OO

formality
��

Ka–cell–Ra–mod–Q–dmodŒW �

zigzag

OO

algebraic
��

dA.N; toral/

simplification

OO

Figure 1: Diagram of Quillen equivalences.

2 Reduction to N–spectra

As mentioned in the introduction, the rational Burnside ring A.G/ of an arbitrary
compact Lie group G has an idempotent eT corresponding to the maximal torus T

and all its subconjugates; see [3]. We may Bousfield localize the category of orthogonal
G –spectra at eT SQ , where SQ is the rational sphere spectrum.

Definition 2.1 The model category of toral G –spectra is the model category

LeT SQGSpO :
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This model category is Quillen equivalent to the model structure on G –spectra right-
lifted from LSQTSpO using the restriction functor

resG
T W GSpO

! TSpO :

It is also Quillen equivalent to the cellularization of rational G –spectra at the set of (all
suspensions and desuspensions of) objects G=KC as K runs over the subconjugates
of T . In particular, the weak equivalences in toral G –spectra are precisely those maps
which forget to weak equivalences of rational T –spectra.

Thus a toral G–spectrum is determined by its restriction to the maximal torus and
fusion information. All the relevant fusion information is contained in N DNG.T /.
In effect, everything is organized around the restriction functor

resG
N W GSpO

!NSpO :

The restriction functor has both a left and a right adjoint, and it is the right adjoint that
is most important to us. Writing i W N! G for the inclusion, so that i� D resG

N the
core structure is

i�W GSpO � NSpO
WFN.GC;�/;

where FN.GC;�/ is the coinduction functor. We will prove that with suitable model
structures, this adjunction gives a Quillen equivalence. That this adjunction could be
made into a Quillen equivalence was central to the classification of rational SO.3/–
spectra; see [16].

We begin with the model structures of toral G–spectra and toral N –spectra, using
idempotents eTG

2A.G/ and eTN 2A.N/, respectively. The above adjunction gives
a Quillen adjunction

i�W LeTG
SQ.GSpO/� LeTN SQ.NSpO/ WFN.GC;�/

as the left adjoint preserves cofibrations and weak equivalences (this follows from the
facts that eTN i�.eTG

/D eTN and i� is strong monoidal).

Now we apply the cellularization principle of [10] to get a model for toral G –spectra
in terms of N –spectra.

Theorem 2.2 The restriction–coinduction adjunction induces a Quillen equivalence

LeTG
SQ.GSpO/'Q G=TC–cell–LeTN SQ.NSpO/;

where G=TC is the set of N –spectra G=KC for K a subgroup of T .

Algebraic & Geometric Topology, Volume 19 (2019)
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Proof The essential information is that the spaces G=KC for K � T give a set of
homotopically compact generators of the category of toral G–spectra. That they are
generators is clear from the description of the weak equivalences and that they are
homotopically compact follows as localization at an idempotent is smashing. Similarly,
i�.G=KC/ for K�T is homotopically compact in LeTN SQ.NSpO/ since a compact
N –manifold admits the structure of a finite N –CW complex by Illmann [15].

The result now follows directly from the cellularization principle of [10] once we check
that the components of the derived unit on generators G=KC! FN.GC;G=KC/ are
weak equivalences in LeTG

SQ.G�SpO/. This follows from [7, Corollary 7.11], which
states that the unit of the algebraic counterpart of the derived adjunction of restriction
and coinduction on rational toral G – and N –spectra is an isomorphism.

3 The sphere as a formal pullback (recollections from the
case of a torus)

Central to the case of the torus T in [13] was that the T –equivariant sphere S can
be constructed as the pullback of a cubical diagram of commutative ring T –spectra
(called there the “formal cube”). At each point of the cube other than where S sits, the
ring T –spectrum is obtained from isotropically simple ring T –spectra by a process of
localizations and products.

The purpose of Sections 4 and 5 is to show that the diagram zR of T –spectra can be
lifted to a diagram zRtop of N –spectra. It then follows automatically that it is still a
pullback in toral N –spectra.

In Section 3.2 we recall the diagram of T –spectra from [13], with examples in
Section 3.3. We then introduce the appropriate general coinduction-type construction
in Section 4. This is applied in Section 5 to particular equivariant diagrams to construct
the cubical diagram in N –spectra that we require.

3.1 The characters

We start by introducing the main characters used to build a sphere as a homotopy limit
of a cubical diagram of T –spectra.

Definition 3.1 For a connected subgroup K of a torus T , denote by F=K the family
of all finite subgroups of T=K (these are in bijective correspondence to subgroups of T
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with identity component K ). We then consider the T=K–spectrum DEF=KC WD
F.EF=KC;S/, the functional dual of the universal space for that family EF=KC in
T=K–spectra.

We will be using maps to relate various commutative ring spectra DEF=KC as K

varies. Indeed, DEF=KC is a commutative ring T=K–spectrum and, if L�K , there
is a map

infT=L
T=K DEF=KC!DEF=LC

of ring T=L–spectra [13, Section 6.A]. To see where this comes from, we observe that
its adjunct

EF=LC ^ infT=L
T=K DEF=KC! S

is obtained by composing the T=L–map EF=LC!EF=KC with evaluation.

If we have any decreasing sequence

G DH0 �H1 � � � � �Hr�1 �Hr D 1

of connected subgroups with codim.Hi/D i , then, omitting notation for inflation, we
have a sequence of maps of ring T –spectra, whose first term is S and whose last term
is DEFC ,

SDDE.F=T /C!D.EF=H1/C! � � � !D.EF=Hr�1/C!D.EF=1/C:

For K a connected subgroup of T , we define

S1V .K /
D

[
U KD0

SU ;

where U runs over finite-dimensional subrepresentations of U (our chosen complete
T –universe) such that U K D 0. If K �H, we see that V H � V K , so there is a map
S1V .K /! S1V .H / .

3.2 The formal diagram in T -spectra

In this article we use a cubical diagram which is known as the formal cube Cf in [13].
To avoid confusion we use slightly different notation to that in [13], and name the
vertices .b0; : : : ; br / with bi 2 f0; 1g.

First we take d D .d0; : : : ; ds/ to be the dimension vector of b , ie the set fj j bj D 1g

arranged in decreasing order. Then the value of zR at bD .b0; : : : ; br / is an iterated
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product as follows, where the subgroups Hi in the products below are connected
subgroups of dimension di :

zR.b0; : : : ; br /

D

Y
dim H0Dd0

�
S1V .H0/ ^

Y
H1�H0

dim H1Dd1

�
S1V .H1/^

� � � ^

Y
Hs�1�Hs�2

dim Hs�1Dds�1

�
S1V .Hs�1/ ^

Y
Hs�Hs�1

dim HsDds

S1V .Hs/ ^D.EF=Hs/C

�
� � �

��
:

See Definition 5.9 for the version in N –spectra.

3.3 Examples

The elaborate notation somewhat obscures the simplicity of this construction.

Example 3.2 (rank 1) In rank 1 the diagram is

S //

��

S1V .T/ ^DEF=TC

��

DEFC // S1V .T/ ^DEFC

Example 3.3 (rank 2) It is worth writing the diagram completely in rank 2. The
layout of the b vectors is

.010/ //

��

.110/

��

.000/ //

��

;;

.100/

��

;;

.011/ // .111/

.001/ //

;;

.101/

;;

and the diagram of ring spectra is as follows:

Algebraic & Geometric Topology, Volume 19 (2019)
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Q
H S1V .H /^DEF=HC //

��

S1V .T/^
Q

H S1V .H /^DEF=HC

��

S //

��

::

S1V .T/^DEF=TC

��

55

Q
H S1V .H /^DEFC // S1V .T/^

Q
H S1V .H /^DEFC

DEFC //

::

S1V .T/^DEFC

55

The only result we need from [13] is as follows:

Corollary 3.4 [13, Corollary 2.2] The cubical diagram zR is a homotopy pullback,
which is to say that S is the homotopy pullback of the cube diagram zR,

S' holim
 ����
v2PCf

zR.v/:

Here PCf denotes the punctured cube, where the initial vertex has been removed.

Remark 3.5 All values of the PCf –diagram zR are genuinely commutative rational
T –spectra by [9].

3.4 Diagrams

From the PCf –diagram zR of commutative ring T –spectra we may form a number of
other diagrams. Recall that the T –fixed points of a commutative ring T –spectra form
a commutative ring spectrum.

Definition 3.6 From the PCf –diagram zR of commutative ring T –spectra we form

(1) the PCf –diagram RD zRT of commutative ring spectra,

(2) the PCf –diagram of commutative DGAs obtained from R using the theorem
of Richter and Shipley [18] that the category of commutative HQ–algebras is
equivalent to commutative DGAs over Q (see Section 7),

(3) the PCf –diagram �T
� .
zR/D ��.R/DRa of graded rings.

Algebraic & Geometric Topology, Volume 19 (2019)
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In [13] it is shown that suitable model categories of modules over these diagrams are
all Quillen equivalent. This is the path from topology to algebra that we will replicate
for N –spectra. Once we are working in the algebraic context of Ra –modules, the task
is to simplify the algebraic description to the toral model dAfa .N; toral/.

4 Equivariant diagrams and coinduction from T to N

We now wish to lift the diagram zR to a diagram of N –spectra which we will call zRtop .
It is clear what we need to do: the Weyl group W acts on the closed subgroups of T ,
preserving their dimension, and we should group together the subgroups in each W–
orbit. In other words, if K D K1; : : : ;Kw make a W–orbit, with WK the isotropy
group of K , we use the T –equivalence

FWK
ŒW;S1V .K //'

Y
i

S1V .Ki /

to replace the product by the coinduced spectrum, where the left bracket is used to
indicate the addition of a basepoint to the domain.

To implement this idea we need to specify an appropriate framework, and establish it
has the required properties. This is straightforward, but a number of things must be
made explicit. We begin with a space level construction, which we will then extend to
spectra levelwise.

4.1 W –diagrams

The construction is a slightly elaborated version of a simple and familiar one we
describe here.

If A is a W–set, we may consider diagrams DW A! C in a category C . For w 2
W we may form the pulled-back diagram w�D defined by .w�D/.a/ D D.wa/;
evidently e�D DD and one quickly checks that w�v�D D .vw/�D. (In [7] a right
action was used on the set of subgroups so the dictionary relating the two notations is
w�D D .w�1/�D .)

Definition 4.1 A W–equivariant A–diagram in C is a diagram D equipped with
maps wmW D ! .w�1/�D which compose in the sense that em is the identity and
vmwm D .vw/m .

From this we can form the space of sections �.A;D/ D
Q

a2A D.a/, which is a
product of objects of C with W permuting the coordinates.

Algebraic & Geometric Topology, Volume 19 (2019)
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We need an analogous construction when the diagram D does not actually land in
the category C , but is such that the shape of the diagram lets us show the “space of
sections” �.AID/ takes values in C . The reader should think of a case of a diagram of
T –spaces (spectra) with a W–action which we want to view as a diagram of N –spaces
(spectra), by collecting orbits together. We make this example precise below.

4.2 N –spaces over A

In our general context we have an extension

1! T !N
p
�!W ! 1:

For any subgroup K of W we may consider the subgroup zK WD p�1.K/ of N , so
that, in particular, �W DN .

Definition 4.2 For a W–set A, an N –space over A is:

� For each n 2 N , a map nmW D.a/! D.p.n/a/ of spaces which is equivari-
ant over the group homomorphism cn�1 W �Wa!

�Wp.n/a (where ch is the left
conjugation map ch.g/D hgh�1 ).

� The map em is the identity and the maps are transitive, in that nmn0m D .nn0/m .

The definition implies that D.a/ is a �Wa –space for each a 2A. It is straightforward
to define a suitable N –space of sections.

Definition 4.3 Given an N –space D over A, we define the space of sections to be
the product

�.A;D/ WD
Y
a2A

D.a/:

Lemma 4.4 The space of sections has the properties:

(�1) �.A;D/ is an N –space.

(�2) For any W–sets Ai , the natural map

�

�a
i

Ai ;D

�
Š
�!

Y
i

�.Ai ;D/

is a homeomorphism.

(�3) On a W–orbit , this is naturally isomorphic to coinduction:

�.W =K;D/Š F zK .NC;D.eK//:
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We note explicitly that the individual values D.a/ are not N –spaces. We could define
�.A;D/ in terms of coinduction, but this would require a choice of decomposition
of A into W–orbits and then a proof that the result is independent of the choice. Instead,
we define sections in terms of the product

Q
a2A D.a/ as this does not involve any

choices. However, the easiest way to see that it is an N –space is to use .�1/ and .�2/

of the above.

4.3 Naturality of coinduction

We discuss some of the formal properties of coinduction, which we can then apply to
our sections construction.

We observe that if X is an .H;G/–bispace (ie it has commuting left H –action and
right G–action) and Z is an H –space, then FH ŒX;Z/ is a G–space. This has the
properties:

� If XDG we obtain the coinduction from H to G.

� Given an .H;G/–bispace X, an .H 0;G0/–bispace X0 and an H 0–space Y 0, any
map � W X! X0 of bispaces over the group homomorphism .ˇ; ˛/W .H;G/!

.H 0;G0/ induces a map

��W ˛�FH 0 ŒX
0;Y 0/! FH ŒX; ˇ

�Y 0/

of G –spaces. This is contravariantly functorial in � .

� If XD
`

i Xi as .H;G/–bispaces then the natural map

FH ŒX;Z/
Š
�!

Y
i

FH ŒXi ;Z/

is an isomorphism of G –spaces.

A number of special cases follow:

� If K � G then restricting the G–space FH ŒX;Z/ to a K–space is given by
restricting the right action of G on X to K .

� If � W G0!G is a group homomorphism then

��FH ŒX;Z/Š FH Œ.IdH ; �/
�X;Z/:

� If H is of finite index in G and we write G D
`

i H
i , then

FH ŒG;Y /Š
Y

i

FH .H
i ;Y /
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and we have a homeomorphism of H 
 –spaces

FH ŒH
;Y /Š c�

�1Y;

where c
�1 W H 
 ! H is conjugation. If we write Œ
�1�y for the point of
c�

�1Y corresponding to y , it is given by taking Œ
�1�y to the H –map h
 7!

h
 Œ
�1�y D hy .

In particular, if Wa a subgroup of W then �Wa is of finite index in �W and we can
write �W Da

i

�Wabi

as left �Wa –spaces. We note that �Wab is a . �Wa; �W b
a /–bispace (where �W b

a D b�1 �Wab )
and we have an isomorphism of left �W b

a –spaces

F �Wa
Œ �Wab;Z/Š b�Z;

so that for any subgroup K �
T

i
�W bi

a , we have an isomorphism

F �Wa
Œ �W ;Z/Š

Y
i

b�i Z

of K–spaces.

We can apply the above properties to the case of an N –space over A for some transitive
W–set AŠW =WaŠW =Wb and see that the choice of orbit representatives is usually
unimportant.

Corollary 4.5 Suppose that p.n/a D b ; then D.b/ D n�D.a/ and the element n

gives an isomorphism

F �Wa
Œ �W ;D.a//Š F �Wb

Œ �W ;D.b//

of �W –spaces.

Proof We define � W �W ! �W by �.g/ D ng , which is a map of bispaces over the
map .cn; Id/W . �Wa; �W /! . �Wb; �W /. We may then apply the naturality property since
n�D.a/DD.b/.

Note that the comparison map for two different choices depends on n and not just p.n/.

4.4 Homotopy theory

The spaces X that we need to consider (in this paper at least!) are disjoint unions of
copies of N , but viewed as . zK;N/–bispaces for various subgroups K of W .
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The category of .H;G/–bispaces is equivalent to the category of H�G–spaces. In
our case, the relevant cells are the G –free cells, .H �G/=K , so that K\ .1�G/D 1.
Hence we use the equivariant Serre model structure where weak equivalences and
fibrations are the maps that are weak equivalences and fibrations of spaces after taking
K–fixed points for all subgroups K of H �G such that K\ .1�G/D 1.

We then wish to show that if X is a cofibrant .H;G/–bispace then the functor FH ŒX; � /

is well behaved.

Lemma 4.6 If X is a cofibrant .H;G/–bispace then the functor FH ŒX; � / is a right
Quillen functor from H –spaces to G –spaces with left adjoint X�G . � /. In particular,
FH ŒX; � / takes fibrant objects to fibrant objects.

Proof The functor X�G . � / preserves generating (acyclic) cofibrations, since it takes
G –CW complexes to spaces admitting the structure of H –CW complexes.

When X is the .H;G/–bispace G, the functor X �G . � / is precisely the forgetful
functor from G –spaces to H –spaces.

We also want to be able to change X. We define a map � W X! X0 over .ˇ; ˛/ to be
a weak equivalence if XM ! ..ˇ; ˛/�X0/M is a weak equivalence of spaces for all
subgroups M of H �G with M \ .1�G/D 1.

Corollary 4.7 A weak equivalence � W X! X0 over .ˇ; ˛/ between cofibrant objects
induces an equivalence of the two constructions: with notation as above ,

��W ˛�FH 0 ŒX
0;Y 0/ '�! FH ŒX; ˇ

�Y 0/

is a Serre weak equivalence of G –spaces.

4.5 N –spectra over A

All of the above needs to be repeated for diagrams of spectra.

Definition 4.8 If A is a W–set, then D, an N –spectrum over A, is a collection

fD.a/ 2 �WaSpO
j a 2Ag;

where �WaSpO is indexed over a universe obtained by restricting from a complete
N –universe, along with the data:
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� For each n 2N , a map nmW D.a/!D.p.n/a/ of �Wa –spectra over the group
homomorphism cn�1 W �Wa !

�Wp.n/a (where ch is the left conjugation map
ch.g/D hgh�1 ).

� The map em is the identity and the maps are transitive in that nmn0m D .nn0/m

for all n; n0 2N .

The idea is to define sections as before by the formula

�.A;D/.V / WD
Y
a2A

D.a/.V /:

To see that the above construction gives an N –spectrum, we want to recognize the
sections as a product of coinduced N –spectra. If A is a transitive N –space with
associated conjugacy class .H / and we choose a representative subgroup H, the
construction FH ŒN; � / extends to orthogonal spectra. If V is a representation of N ,
we may view it as a representation of H by restriction and define

FH ŒN;D/.V / WD FH ŒN;D.V //:

The structure N –map

SV 0
^FH ŒN;D.V

00//! FH ŒN;D.V
0
˚V 00//

has adjunct the H –map

SV 0
^FH ŒN;D.V

00//! SV 0
^FH ŒH;D.V

00//D SV 0
^D.V 00/!D.V 0˚V 00/:

The results of this construction for various representatives of the conjugacy class are
related by the maps nm , as required.

The construction makes it obvious that the objectwise suspension spectrum functor
from N –spaces over a set to N –spectra over a set gives a natural equivalence

FH ŒN; †
1D/Š†1FH ŒN;D/:

It follows that we have the spectrum level analogue of Lemma 4.4. We also want to
consider smash products; see Section 4.6 for a brief discussion.

Lemma 4.9 The spectrum of sections has the properties:

(�0) �.A;D/ is an N –spectrum.
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(�1) The natural map

�

�a
i

Ai ;D

�
Š
�!

Y
i

�.Ai ;D/

is a homeomorphism.

(�2) On a W–orbit, this is naturally isomorphic to coinduction

�.W =K;D/Š F zK ŒN;D.eK//;

(�3) if D is a diagram of commutative rings then �.AID/ is a commutative ring
N –spectrum.

Next we observe that the definition is homotopically well behaved. We need to establish
analogues of the results for spaces. It is well known [17, Section V.2] that for orthogonal
spectra the functor FH ŒN; � / is a right Quillen functor with left adjoint restriction.

We give the category of N –spectra over A the projective model structure, so that
weak equivalences and fibrations are pointwise weak equivalences and fibrations of
T –spectra. Note that it suffices to require these conditions at only one point in each
orbit. Furthermore, the cofibrant objects are in particular pointwise cofibrant.

Lemma 4.10 The sections functor � is a right Quillen functor when the category of
N –spectra over A is equipped with the projective model structure.

Proof The sections functor is a product of functors to N –spectra of the form F zK ŒN; � /;
this functor takes weak equivalences of H –spectra to weak equivalences of N –spectra.
Hence � preserves all weak equivalences.

Similarly the functor F zK ŒN; � / takes fibrations of H –spectra to fibrations of N –spectra.

4.6 Duals and smash products

For X an N –spectrum over A, we define a dual DX that is also an N –spectrum
over A. We define DX by D.X.a//D F.X.a/; yf S/, using a fibrant replacement of
the sphere spectrum without further comment. The structure maps of X induce the
structure maps of DX,

X.a/
nm
�!X.p.n/a/; F.X.a/; yf S/

n�m
 � F

�
X.p.n/a/; yf S

�
:
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Furthermore, X.p.n/a/Š p.n/�X.a/, so

F
�
X.p.n/a/; yf S

�
D F.p.n/�X.a/; yf S/D p.n/�F.X.a/; yf S/

and, taking n�1
m D n�m , we obtain the requisite structure maps. If X is cofibrant, then

each X.a/ is cofibrant and hence DX is a homotopically meaningful construction.

More straightforwardly, there is a smash product X ^X 0 of N –spectra over A, defined
by taking smash products pointwise,

.X ^X 0/.a/DX.a/^X 0.a/:

The following result follows immediately from the definitions and the fact that coin-
duction preserves commutative rings.

Lemma 4.11 If X is an N –spectrum over A consisting of commutative ring spectra
then the N –spectrum �.AIX / is a commutative ring spectrum.

Since the positive stable model structure on N –spectra over A is defined objectwise,
it extends to the level of commutative rings.

Lemma 4.12 There is a model structure of commutative ring objects in N –spectra
over A.

Proof Let A be a transitive W–set, A D W =K . Then, if D is an N –spectrum
over A, D.eK/ is a zK–spectrum. Consider the positive stable model structure on
zK–spectra. This right-lifts to the projective model structure on N –spectra over A, with

generating cofibrations and acyclic cofibrations given by the W–equivariant coproduct
over A of the generating cofibrations and acyclic cofibrations of the positive stable
model structure on zK–spectra. We can then lift this model structure to the level of
commutative rings, noting that the free commutative ring functor sends coproducts to
smash products.

A general W–set A is a coproduct of transitive sets Ai for i in some indexing set I.
The category of N –spectra over A is then the product of the categories of N –spectra
over Ai for i 2 I. We use the product model structure on N –spectra over A and on
commutative ring objects in N –spectra over A.

4.7 T –fixed points

If D is an N –spectrum over A, then we can understand T –fixed points of the spectrum
of sections directly.
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Proposition 4.13 There is an equivalence

�.A;D/T ' �.A;DT /:

Proof Since fixed points commute with products, we need only deal with the case of
a transitive W–set ADW =Wa , and then

F �Wa
Œ �W ;D/T ' FWa

ŒW;D.a/T /' F ŒW =Wa;D.a/
T /:

5 The N–equivariant pullback cube

Where possible we start all constructions at the space level and then take suspension
spectra.

First we consider an action of W on a set A, and for each a we can find a �Wa –space
D.a/ such that, for n 2N , we have an isomorphism

nmW D.p.n/a/
Š
�! n�D.a/;

where em D Id and n0mn00m D .n
0n00/m .

5.1 First examples

Example 5.1 We may consider the set ADF of finite subgroups of T . The group W

acts on F and a chosen subgroup F is fixed by WF . The normalizer of the subgroup F

is �WF D p�1.WF /. If we use a functorial construction (such as the bar construction)
to make universal spaces EH and we define EhH i as the mapping cone

EŒ�H �C!EŒ�H �C!EhH i

in �WF –spaces, then
c�

n�1EhH i DEhH n
i

and the maps nm can all be taken to be the identity. Accordingly this gives an N –space
Eh�i over F.

Building on this example we may construct an N –spectrum over F of functional
dual DEh�i.

Example 5.2 Starting with the previous example, Eh�i, taking suspension spectra
gives an N –spectrum over F. We may then take the fibrewise dual to obtain DEh�i.
More precisely, the value at H is the �WH –spectrum DEhH i and we still have
c�

n�1DEhH i DDEhH ni.
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Taking sections we obtain the N –spectrum

�.F ;DEh�i/'DEFC:

Example 5.3 We may consider the set AD†c of connected closed subgroups of T .
Once again, if K is a subgroup of the torus, it is fixed by WK � W . Choosing a
complete N –universe U we may form the �WK –space

S1V .K /
D

[
W KD0

SW ;

where W runs over finite-dimensional �WK –subrepresentations of U. A little represen-
tation theory verifies that the geometric isotropy consists precisely of the subgroups
containing K . This explains the notation. Pulling back along n induces a bijection
nmW fW jW

K D 0g ! fW 0 jW K n

D 0g, and hence n�S1V .K / D S1V .K n/ . This
therefore gives an N –space S1V .�/ over †c .

We can of course restrict attention to the set †c
d

subgroups of dimension d and we
then have a T –equivalence

�.†c
d ;S

1V .�//'T

Y
K2†c

d

S1V .K /:

The map S0! S1V .K / induces a map of N –spectrum over †c (or †c
d

) from the
constant diagram at S0 to S1V .�/ .

This N –spectrum over †c is an EG
1–ring spectrum by [9, Corollary 4.8]. Since

EG
1–ring spectra are the commutative monoids in orthogonal G –spectra, we consider

S1V .�/ as a commutative ring spectrum.

Example 5.4 We may again consider the W–set AD †c of connected closed sub-
groups of a torus T . Since the subgroup K is fixed by WK , the set F=K of subgroups
of T with finite image in T=K is a family of subgroups of �WK . Evidently conju-
gation by n gives a bijection F=K Š

�! F=Kn , and hence c�
n�1EF=KC DEF=Kn

C .
Accordingly the assignment of EF=KC to K defines an N –space EF=.�/C over †c .

Taking functional duals we obtain the N –spectrum DEF=.�/C over †c . The co-
commutative diagonal of the space EF=KC induces a commutative ring structure on
the dual. This ring structure is compatible with the structure maps c�

n�1DEF=KC D
DEF=Kn

C . It follows that the N –spectrum DEF=.�/C over †c is a diagram of
commutative rings.
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Our main diagram of N –spectra (given in Definition 5.9) is built from diagrams of
the form DEF=.�/C by repeatedly applying the sections functor and localising at the
diagram S1V .�/ .

5.2 Posets

We now want to consider a partially ordered set † with an action of W , and a dimension
function such that if s < t then dim s < dim t . We might want to insist that the poset
has a maximal element G and the dimension is determined by the length of chain to G,
but in any case we want the W–action to preserve dimension.

This enables us to construct numerous W–sets, starting with the set †i of elements
of dimension i . We may consider the poset †0 of flags .H0 >H1 > � � �>Hs/ in †.
This is again a W–set, as is the set †s of flags of length s , and the set †.d0>d1>���>ds/

of flags of length s with a specified dimension vector dim Hi D di .

Furthermore, if K is an object of † and e � dim K , we have the W–set

†e�K D fL jL�K and dim LD eg

and we note that this is a WK –set.

If D is a �WK –spectrum over †e�K , then applying sections gives a �WK –spectrum
�.†e�K ;D/. We now let K run through elements of dimension d . We require in
addition that the first section spectrum satisfies the functoriality as K varies, namely
that there are isomorphisms

(|) nmW �.†e�K ;D/
Š
�! n��.†

e�K n�1 ;D/

which compose functorially. We may then iterate the construction. Indeed, if e � d �

dim H , we consider the functor

†d�H 3K 7! �.†e�K ;D/;

and note that it is a �WH –spectrum over †d�H .

One way to ensure the additional property (|) is to require that D is defined and�WH –equivariant on all dimension e elements �H.

To display the iterated sections compactly we use the calculus-style notation

�.A 3 aID.a//D �.A;D/

to display the names of elements.
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Lemma 5.5 If D is a �WH –spectrum over †e�H with e � d � dim H, then there is
a natural diagonal map

�.†e�H 3LID.L//! �
�
†d�H 3KI�.†e�K 3LID.L//

�
;

arising since in the domain there is just one factor for each L �H with dim LD e ,
whereas on the right there is one for each chain L � K � H with dim L D e and
dim K D d .

5.3 Dimensional coefficient systems

We iterate the sections construction, smashing each stage with S1V .�/ from Example
5.3 and taking fibrant replacements in commutative ring spectra. As taking sections,
smashing with commutative rings and taking fibrant replacements preserve commutative
rings, it follows that each stage in this iteration will be a fibrant commutative ring
spectrum.

It will be clear from the definitions that the final stage will be a fibrant commutative
ring N –spectrum which forgets to the same T –spectrum as in Section 3.2.

Suppose that E is a commutative ring �WK –spectrum over †e�K . Then we can
form a new diagram of commutative ring spectra over †e�K which at place L takes
value S1V .L/ ^E.L/. We define LV E to be the functorial fibrant replacement of
this object in the category of �WK –spectrum over †e�K of Lemma 4.12. We write
.LV E/.L/D LV .L/E.L/ to help remind us that we want S1V .L/ at place L.

For a K of dimension d , we have seen that

�.†e�K 3L; LV .L/E.L//

is also a commutative ring object. Allowing K to vary, we have commutative ring
objects over the diagram †d�H ,

�.†e�K 3L; LV .L/E.L// and LV .K /�.†e�K 3L; LV .L/E.L//:

We may then define

�.†e�d�H IL;E/ WD �
�
†d�H 3KI LV .K /�.†e�K 3L; LV .L/E.L//

�
:
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Definition 5.6 Given a dimension vector dD .d0; d1; : : : ; ds/ and D an N –spectrum
over †, we may define the iterated localized sections of D at d as

�.†d IL;D/ WD �
�
†d0
3H0I LV .H0/�

�
†d1�H0

3H1I : : :

: : :LV .Hs�1/�.†ds�Hs�1
3HsI LV .Hs/Ds.Hs// : : :

��
:

We are most interested in the case where D is the N –spectrum over †c given by
D.K/ WDDEF=KC (recall that †c is the poset of connected subgroups of T ).

5.4 Face maps

For a fixed D, we want to turn �.†d IL;D/ into a diagram over the poset of flags
in †c . We need to explain how inclusions of dimensional faces d ! e induce maps
of sections

�.†d IL;D/! �.†e IL;D/:

The following two constructions will cover what we need.

Construction 5.7 Let E be an N –spectrum over † and d be a dimension vector
formed from e by omitting the i vertex where i is not the last vertex. Using Lemma 5.5
and the natural transformation Id! LV .�/ (coming from the definition of a fibrant
replacement and the maps S0! S1V .�/ ), we have the composite map

�.†e�H 3LI E.L//! �
�
†d�H 3KI �.†e�K 3LI E.L//

�
! �

�
†d�H 3KI LV .K /�.†e�K 3LI E.L//

�
:

We note that the first map is a diagonal map. If a is the dimension preceding i and b

is the one after (so that a> i > b ), then, in the domain, if we pick H of dimension a,
each object L of dimension b contained in H occurs only once, but, in the codomain,
it occurs once for each flag H >K >L with dim K D i .

Construction 5.8 The second construction will only be used to add on a new final
vertex

d D .d0; d1; : : : ; ds/! .d0; d1; : : : ; ds; dsC1/D e:

In this case we assume that we have a map of N –spectra over †ds�Hs�1

LV .Hs/D.Hs/! LV .Hs/�.†dsC1�Hs
3HsC1I LV .HsC1/D.HsC1//:
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By applying the same sequence of functors to domain and codomain, this gives a map

�.†d IL;D/! �.†e IL;D/:

5.5 The N –equivariant pullback cube

We define the cube of interest to the other sections of this paper. We give the definition
first, then verify that this is a cubical diagram of N –spectra.

For b a point of the cube, let d.b/D .d0; : : : ; ds/ be the dimension vector of b , the
set fj j bj D 1g arranged in decreasing order.

Definition 5.9 The definition

zRtop.b0; : : : ; br /D �.†
c
d .b/IL;DEF=.�/C/

gives a cubical diagram of commutative ring N –spectra.

We know by Lemma 4.9 that each term is a commutative ring N –spectrum. Moreover,
each term is fibrant, as one operation is to apply a fibrant replacement functor and the
sections functor is a right Quillen functor by Lemma 4.10. It is routine to check that
this construction lifts the version for T –spectra to the level of N –spectra.

Lemma 5.10 Let i� denote the forgetful from N –spectra to T –spectra. The diagram
of T –spectra i� zRtop is objectwise fibrant and is weakly equivalent to the diagram zR
of T –spectra of Section 3.

We must also define the maps of this cubical diagram. Construction 5.7 supplies all
the face maps which do not involve changing the final vertex. When adding the final
vertex, we may suppose dim Hs D ds , and by Construction 5.8 it suffices to observe
that there is a map

DE.F=Hs/C! �.†dsC1�Hs
3HsC1I LV .HsC1/DE.F=HsC1/C/:

The basic ingredient is the map

�W DE.F=Hs/C!
Y

HsC1�Hs

dim HsC1DdsC1

DE.F=HsC1/C

whose components are inflations

DE.F=Hs/C!DE.F=HsC1/C:

The map � is composed with the natural transformation Id! LV .�/ in each factor.
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We also need to check that it does not matter which order we add vertices in. There
are essentially three cases, according to how many of the added pair of vertices are
last. We suppose given dimension vectors d � e � f where e is formed by adding
one vertex to d and f is formed by adding one vertex to e . We suppose a is the
lowest dimension (last vertex) of d . In the first case the added vertices are i and j

with i < j < a; in the second they are i and j with i < a < j ; in the third they
are i and j with a< i < j . We therefore need to consider the commutativity of the
diagrams suggested by

a //

��

i; a

��

a //

��

i; a

��

a //

��

a; i

��

j ; a // i; j ; a a; j // i; a; j a; j // a; i; j

In the first and second cases, commutation is clear from the unit axiom and the universal
property of the product. In the final case, there is the additional ingredient that the
composite of inflation maps

DEF=HC!DEF=KC!DEF=LC

is equal to the direct inflation map DEF=HC ! DEF=LC (where dim L D a,
dim K D b and dim H D c ), which we deal with in Section 5.6.

5.6 Composites of inflation maps

In this subsection we consider the inflation maps in more detail, observing that with
an appropriate set of details we can ensure actual functoriality (rather than just up to
homotopy).

To start, note that the construction takes the family F=K of subgroups of T=K . This is
also a family of subgroups of WN.K/DNN.K/=K , and, viewing it in this way, we may
form the universal WN.K/–space EF=K and then the WN.K/–spectrum DEF=KC .
We then inflate this to form the NN.K/–spectrum inf DEF=KC . For most of the
paper we omit the notation for inflation, but in this subsection the additional notation is
necessary so that we can be clear (the point is that this spectrum is generally inequivalent
to the spectrum D inf EF=KC formed by taking the NN.K/–equivariant dual).

Now suppose that we have an inclusion L � K of connected subgroups of T . We
consider the induced map

inf DEF=KC! inf DEF=LC:
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The first thing to say is that the first spectrum is an NN.K/–spectrum and the second is
an NN.L/–spectrum, so the most we can hope is for a map which is NN.K/\NN.L/–
equivariant. For brevity, we write

N 0 DNN.K �L/DNN.K/\NN.L/

for this simultaneous normalizer, and note that it is a finite extension of T .

Next, we note that if we are more careful about the ambient equivariance in the
dualization, we have a rational equivalence

inf DWN.K /EF=KC ' inf DN 0=K EF=KC

of N 0–spectra, and similarly for L. On that basis we may omit subscripts for dualization
in other sections.

Now the N 0–map

inf DWN.K /EF=KC! inf DWN.L/EF=LC

is defined as follows. Since L � K we may inflate from N 0=K to N 0=L and then
inflate the whole map to N 0. This is the inflation of a map

inf DN 0=K EF=KC!DN 0=LEF=LC;

which is the adjunct of

EF=LC ^ inf DN 0=K EF=KC!EF=KC ^ inf DN 0=K EF=KC

D inf .EF=KC ^DN 0=K EF=KC/
inf.ev/
���! S0:

Now suppose we have cotoral inclusions and consider L�K �H. The map

infDWN.H /EF=HC! infDWN.L/EF=LC

for the inclusion L�K is NN.K�L/–equivariant, but if we restrict to NN.H�K�L/,
the defining conditions on the adjunct are satisfied by the adjunct of

inf DWN.H /EF=HC! inf DWN.K /EF=KC! inf DWN.L/EF=LC:

Accordingly, the inflation maps are functorial, as required.

5.7 Passage to cubical diagrams

The results of Sections 4 and 5 allow us to move from a localization of N –spectra to a
cellularization of modules over our cubical diagram of rings.

Algebraic & Geometric Topology, Volume 19 (2019)



An algebraic model for rational toral G –spectra 3569

Definition 5.11 We let K D fN=LC ^ zRtop j L � Tg denote the cells of the model
category zRtop–mod–LeTN SQ.NSpO/.

Note that fN=L jL� Tg is a set of generators for toral N –spectra and it forgets to a
set of generators for T –spectra. Applying the functor .�/^ zRtop to this set gives K .
The objects of K are small in the homotopy category of zRtop–mod–LeTN SQ.NSpO/

by a similar argument to that above [1, Proposition 3.2.5].

Proposition 5.12 The adjunction ..�/^ zRtop; lim/ induces a Quillen equivalence

LeTN SQ.NSpO/'Q K–cell–zRtop–mod–LeTN SQ.NSpO/:

Proof As zRtop forgets to zR by Lemma 5.10 and in each category the weak equiv-
alences are defined via a forgetful functor to a model category constructed from
T –spectra, we may lift the Quillen equivalence of [13, Corollary 6.3] to the level of
N –spectra.

6 Passage to torus fixed points

The purpose of this section is to understand the homotopy groups of the T –fixed points
of the rings zRtop.b0; : : : ; br / of Definition 5.9.

Notice that taking T –fixed points objectwise to zRtop will move us from a diagram
of commutative ring N –spectra to a diagram Rtop of commutative ring W–spectra,
where W DN=T is a finite group. Recalling that each term is fibrant, we see that the
answer will be homotopically meaningful. Accordingly, we consider the diagram

Rtop.b0; : : : ; br / WD zRtop.b0; : : : ; br /
T

of W–spectra. Taking T –fixed points objectwise gives an adjunction

finf
N
W W Rtop–mod–Le1SQ.W SpO/� zRtop–mod–LeTN SQ.NSpO/ W‰T

by the results of [11].

Proposition 6.1 The adjunction .finf
N
W ; ‰

T / induces a Quillen equivalence

Rtop–mod–Le1SQ.W SpO/'Q
zRtop–mod–LeTN SQ.NSpO/

and hence an equivalence between the cellularized categories

KT –cell–Rtop–mod–Le1SQ.W SpO/'Q K–cell–zRtop–mod–LeTN SQ.NSpO/:
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Proof By Lemma 5.10, the cube zRtop forgets to the cube zR, so it follows that Rtop

forgets to the cube RD zRT . In each category the weak equivalences are defined via a
forgetful functor to a model category constructed from T –spectra, so we can lift the
T –spectrum equivalence of [13, Theorem 7.6] to the level of N –spectra.

The next step is to replace the underlying category Le1SQ.W SpO/ with W–objects in
HQ–modules in symmetric spectra: HQ–modŒW �. We do so by a series of strong
symmetric monoidal Quillen equivalences, each of which will create a new cube of
commutative ring spectra by applying either the left or right adjoint as appropriate. For
simplicity we will keep the same notation Rtop for the cube of ring spectra throughout.

The first step is to use a combination of changing the model structure and changing the
universe on W–spectra to construct a Quillen equivalence between Le1SQ.W SpO/ and
SpO

QŒW �, W–objects in orthogonal spectra. The key is to recognize that in both model
categories the weak equivalences are defined by forgetting to nonequivariant spectra.
Thus this equivalence of categories is also a Quillen equivalence. Moreover it lifts to a
Quillen equivalence between Rtop–mod–Le1SQ.W SpO/ and Rtop–mod–SpO

QŒW �.

The second step is the (zigzag) of Quillen equivalences between the model categories
SpO

QŒW � and HQ–modŒW � given by forgetting to rational symmetric spectra and
applying .�/^HQ lifts to give a Quillen equivalence between the model categories
Rtop–mod–SpO

QŒW � and Rtop–mod–.HQ–modŒW �/. We summarize this in the follow-
ing result:

Proposition 6.2 There is a zigzag of strong symmetric monoidal Quillen equivalences

Rtop–mod–Le1SQ.W SpO/'Q Rtop–mod–.HQ–modŒW �/:

This zigzag induces a zigzag of Quillen equivalences

KT –cell–Rtop–mod–Le1SQ.W SpO/'Q KT –cell–Rtop–mod–.HQ–modŒW �/:

7 Passage to algebra and formality

We have shown that the category of N –spectra is equivalent to the cellularization of
modules over a diagram Rtop of commutative ring spectra with W–action. Recall that
this diagram has a shape of a punctured cube.

There are various choices for which category these commutative rings (ie vertices
of Rtop ) lie in, but we have arranged the rest of the account so that they are rings in
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the category .HQ–mod/ŒW � of objects of HQ–mod with W–action. Recall that W

is a finite group and, by naturality, Shipley’s work [19] extends to give a symmetric
monoidal Quillen equivalence between HQ–modŒW � and chain complexes of QŒW �–
modules, denoted by QŒW �–dmod. Moreover, this result implies that a diagram of
rational commutative ring spectra with a W–action Rtop gives rise to a diagram of
rational commutative DGAs Rt D‚Rtop with W–action (due to the functoriality of ‚,
which is the derived functor from Shipley’s theorem [19] from topology to algebra).

Proposition 7.1 There is a Quillen equivalence

Rtop–mod–.HQ–modŒW �/'Q Rt –mod–QŒW �–dmod

between the category of module spectra Rtop–mod and the category of differential
graded modules Rt –mod. Furthermore, there is a zigzag of Quillen equivalences

KT –cell–Rtop–mod–.HQ–modŒW �/'Q Kt –cell–Rt –mod–QŒW �–dmod

between the cellularizations of these model categories.

The second statement in the proposition uses the cellularization principle — see [10,
Corollary 2.8] — with Kt the (derived) image of KT under the Quillen equivalences
of the first part of the statement.

We have shown that the category of rational N –spectra is equivalent to the cellulariza-
tion of modules over a suitable diagram of commutative DGAs in QŒW �–modules. On
the other hand, we know very little about the diagram except its homology and that the
terms are commutative. The purpose of this section is to show that this determines the
diagram up to equivalence.

The structure of the argument is precisely the same as in [13, Section 9], but we need
to ensure that the maps may be taken to be W–equivariant.

All the homologies are constructed from cohomology rings H�.BK/ for K � T . As
a ring this is polynomial, but it has an action of the subgroup WK of W fixing K .
Taking both structures into account, it is the symmetric algebra on a finite-dimensional
rational representation UK of WK ,

H�.BK/D Symm.UK /:

Whenever H�.BK/ occurs in Ra WD H�.Rt / D H�.‚Rtop/, it comes in a product
over subgroups of that dimension, and in that product all conjugates H�.BKw/ also
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occur. Taking into account the W–action this gives the QW–algebra

HomWK
.W;H�.BK//D HomWK

.W;Symm.UK//:

Lemma 7.2 The W–twisted commutative ring HomWK
.W;Symm.UK// is strongly

intrinsically formal in the sense that if A is another such DGA with this cohomology,
then there is a homology isomorphism

HomWK
.W;Symm.UK//

'
�!A:

Proof First note that H�.A/ D HomWK
.W;Symm.UK// has a quotient module

HomWK
.W;UK /, and hence there is an epimorphism

Z.A/!Z.A/=B.A/DH�.A/! HomWK
.W;UK /:

By Maschke’s theorem, this is split and we may choose a submodule

HomWK
.W;UK /�Z.A/:

The QWK –module map UK !Z.A/ extends to a map

Symm.UK /!Z.A/

of commutative WK –algebras, which we may extend to QŒW �–algebra map

HomWK
.W;Symm.UK//!Z.A/;

inducing a homology isomorphism, as required.

After this lemma, the rest of the strategy of [13] can be implemented in the same way.
There are two points worth commenting on. Firstly, whenever a factor H�.BK/ occurs,
so do all H�.BKw/. Secondly, whenever a set EK of Euler classes is inverted, we
may use representations fixed by WK (for example by inducing the representations V

of T with V K D 0 to �WK ). We illustrate the method with the two smallest examples.

Example 7.3 (the torus of rank 1) In this case the only possible Weyl group W is of
order 2. This necessarily normalizes every subgroup, so that every term in the productQ

n H�.BT=Cn/ is invariant. The only change brought about by the action is that W

negates the polynomial generator in the terms H�.BT=Cn/.

After that, the argument proceeds precisely as in the torus case from [13]:
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Rt

��

Rt .0; 1/ //

��

Rt .1; 1/

��

Rt .1; 0/oo

��

yR1

��

Q
i Rt .0; 1/i //

Q
i Rt .0; 1/i ˝Rt .0;1/Rt .1; 1/

��

Rt .1; 0/oo

yR2

Q
i Rt .0; 1/i // E�1

Q
i Rt .0; 1/i ˝Rt .0;1/Rt .1; 1/ Rt .1; 0/oo

Ra

OO

OF //

OO

E�1OF

OO

Qoo

OO

Rtop .DEFC/T // .S1V .T/ ^DEFC/T .S1V .T//Too

We start with the cofibrant diagram Rt of commutative rings as in the top row. Extending
along the top left-hand vertical we form the second row. The upward maps from the
two outer vertices of Ra on the bottom row can then be defined. The Euler classes are
defined by the image of Ra.0; 1/, and those are inverted to form the third row, after
which the middle vertical can be filled in.

Example 7.4 (the torus of rank 2) In this case there are various possible Weyl groups,
and most of them permute both the finite subgroups and those of dimension 1. For
example, if G D SU.3/, the Weyl group W Š†3 acts on LT as the reduced natural
representation. Amongst subgroups of the maximal torus, the only proper nontrivial
subgroup fixed by W is the central subgroup of order 3, and in most cases, where
WK ¤ 1 it acts nontrivially on H�.BT=K/. Nonetheless, this additional structure is
entirely compatible with the formality argument from [13].

It is too typographically complicated to display the full argument in the way we did for
rank 1, but it still seems worth displaying Ra and zRtop (recall that Rtop D zRT

top ):Q
F QŒc; d �

))uuQ
H E�1

H

Q
F QŒc; d �

))

E�1
G

Q
F QŒc; d �

uu

E�1
G

Q
H E�1

H

Q
F QŒc; d �

Q
H

Q
zH

QŒc�

>>

// E�1
G

Q
H

Q
zH

QŒc�

OO

Qoo

XX
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In the process of proving formality we will need to change individual rings in the
diagram. Such a change at a given place i of a diagram affects rings in places of the
diagram that receive a map from i . For example a change of the ring at the top vertex
only affects the three other points not on the bottom face, and then the change of the
ring at the middle vertex on the bottom face only affects the central vertex.

The subgroups F run through finite subgroups, the subgroups H run through circle
subgroups, and the subgroups zH run through subgroups with identity component H.
The polynomial rings QŒc; d � are the cohomology rings of B.G=F / (all different but
isomorphic), and the polynomial rings QŒc� are the cohomology rings of B.G= zH /.
The polynomial ring Q is the cohomology ring of B.G=G/.

The above diagram is obtained by taking homotopy groups of the following diagram
zRtop of ring G –spectra:

DEFC

((uuQ
H S1V .H /^DEFC

))

S1V .G/^DEFC

vv

S1V .G/^
Q

H S1V .H /^DEFC

Q
H S1V .H /^DEF=HC

??

// S1V .G/^
Q

H S1V .H /^DEF=HC

OO

S1V .G/oo

UU

In the case of toral N –spectra we follow the above strategy using Lemma 7.2 where
necessary.

Proposition 7.5 The formality argument above gives a zigzag of maps of diagrams of
commutative rings with W–action, that are objectwise homology equivalences, between

Ra D �
T
� .
zRtop/D ��.Rtop/DH�.Rt /

and Rt . Hence there is a zigzag of Quillen equivalences

Rt –mod–QŒW �–dmod'Q Ra–mod–QŒW �–dmod:

Once again we can apply the derived functors of the above zigzag of Quillen equiva-
lences to obtain a set of cells Ka and we get the following corollary:
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Corollary 7.6 There is a zigzag of Quillen equivalences

Kt –cell–Rt –mod–QŒW �–dmod'Q Ka–cell–Ra–mod–QŒW �–dmod

between the cellularizations of the model categories in Proposition 7.5.

8 The algebraic models

The remainder of the paper focuses on simplifying the category

Ka–cell–Ra–mod–QŒW �–dmod:

We begin by introducing the algebraic structures needed for this simplification. More
details can be found in [13; 8; 7].

Over the years, different but equivalent algebraic models were defined for the category
of rational torus spectra. The point of this section is not to provide details on them,
as that was already done in [13; 8], but to give some intuition on how they are built.
In summary this section states that all the constructions of [13] are well behaved and
compatible with the additional Weyl group actions. Although this is true and rather
elementary, it takes some time and notation to explain. Accordingly, we have cut this
section to the minimum, leaving only enough for the reader to be able to cross-check
with [8] and verify claims made elsewhere in this paper.

The important thing to keep in mind is that an algebraic model for rational torus
spectra is a special full subcategory of the category of modules over a diagram of
rings. Variations on the algebraic model come from different choices of the shape of
this diagram (and corresponding changes in the rings) and we will discuss some of
the possibilities below. All the equivalences of categories linking different choices of
the algebraic models are given by exact functors and thus having an injective model
structure on one of the choices of the algebraic model gives Quillen equivalent injective
model structures on all the others, using the left-lifting technique of [14] and the fact
that cofibrations are exactly the monomorphisms and weak equivalences are exactly
homology isomorphisms.

When we are interested in the algebraic model for rational toral N –spectra (where
the maximal torus T is normal in N with W D N=T ), all different choices of the
algebraic models for the torus can be “upgraded” to include the W–action and model
rational toral N –spectra (see [7]). Some of these models are easier to construct than the
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others and that has to do with the fact that W in some cases might act on the diagram
of rings itself. However, our approach is to start from the easiest case, where W fixes
the objects of the diagram and acts on the ring at each point of the diagram. This
category is denoted by dAf

d
.N; toral/ (here the subscript and superscript indicate how

the diagram of rings is built, as we explain below).

As in the case of a torus, the injective model structure again exists on all equivalent
categories. It is in fact left-lifted from the case of the torus using the forgetful functor
forgetting the W–action and landing in the algebraic model for a torus. These forgetful
functors all preserve limits and colimits and, since all the categories discussed here are
locally presentable, they have both adjoints, thus they can be used to left-lift the model
structures.

Unfortunately, the situation gets much more complicated when one is interested in
the algebraic model for rational toral G–spectra, where the maximal torus T is not
necessary normal in G. The paper [7] presents such a model, but this time only one
option for the diagram of rings is available, due to the complications coming from
different Weyl group actions acting in different places of a diagram. This algebraic
model is denoted by dAfa .G; toral/.

The strategy is to give an algebraic model for rational toral N –spectra and then use the
final passage of restriction and coinduction both in topology and in algebra to provide
an algebraic model for rational toral G–spectra. To do that step in algebra, however,
both categories have to be built using the same shape of diagram of rings, because only
then the comparison functors are defined in [7]. Thus we need to use a different (but
equivalent and Quillen equivalent) algebraic model for rational toral N –spectra, to the
one mentioned above, namely dAfa .N; toral/. For this reason we recall below several
different algebraic models for rational T –spectra and rational toral N –spectra and
adjoint pairs between them. We begin with the case of a torus.

8.1 Models for the torus

Following [8], we introduce a number of terms, leading to the algebraic model for the
torus. The basic idea is that we are considering categories of modules over diagrams of
rings. We consider a number of diagram shapes:

� †c , the diagram of connected subgroups of T.

� †d , the poset f0; 1; : : : ; rg.
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� †a , the category of all subgroups of T with cotoral inclusions, ie the inclusions
K!H such that H=K is a torus.

The subscripts stand for connected, dimension and all subgroups, respectively.

We make contravariant diagrams of rings on these categories:

� Ra given by Ra.G=K/DH�.BT=K/.

� Rc given by Rc.G=K/D
Q

K2F=K H�.BT=K/.

� Rd given by Rd .m/D
Q

dim KDm H�.BT=K/.

The maps in these diagrams are all built from the maps H�.BT=K/!H�.BT=L/

for L�K � T .

For each of the above posets, we have an associated poset of flags: finite-length
sequences of elements in decreasing order. We denote these by †fc , †f

d
and †fa . We

also have poset diagrams of pairs (flags of length 2) †p
c , †p

d
and †p

a . We may also
extend our diagrams of rings to flag posets (and pair posets); we refer the reader to [8]
for details.

In the earlier sections our diagram was always a punctured cube of dimension d ; we
can now recognize this as †f

d
, the poset of flags on nonempty subsets of f0; 1; : : : ; rg,

and the diagram of rings Ra as R
f

d
.

To obtain the algebraic model, we add restrictions on to the kinds of modules that we
consider. The starting point is that modules must be quasicoherent and extended (qce)
and F –continuous. These are substantial restrictions on the type of objects that can
arise. The precise definitions of these terms are given in [8], but understanding these
terms is not required for the current paper.

Remark 8.1 Once we fix a diagram of rings, say †fa , the algebraic model for the
rational T –spectra is given by the full subcategory on F –continuous qce differential
modules over the diagram of rings R

f
a . We denote it by dAfa .T /. Thus we have

dAfa .T /D qce–Rf
a –dmod:

Similarly, we can define other algebraic models for the case of the torus. We summarize
the various categories that will appear in later sections. For more details (including
what “pqce” means below) see [8].

� dAp
a .T / is the category of F –continuous qce differential modules over R

p
a ,

where the diagram is pairs in †a .
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� dAfa .T / is the category of F –continuous qce differential modules over R
f
a ,

where the diagram is flags in †a .

� dAp
c .T / is the category of qce differential modules over R

p
c , where the diagram

is pairs in †c .

� dAfc .T / is the category of qce differential modules over R
f
c , where the diagram

is flags in †c .

� dAf
d
.T / is the category of pqce differential modules over R

f

d
, where the

diagram is flags in †d .

As discussed at the start of the section, we need to know that the algebraic models for
the torus are locally presentable.

Lemma 8.2 All algebraic models for the torus are locally presentable categories.

Proof We prove that Ap
c .T / is locally presentable. This category is abelian by [8],

so it suffices to demonstrate that the category has a set of generators Ti . That is to say,
given two objects X and Y and two maps f;gW X ! Y with f ¤ g , there is an i

and a map Ti!X whose composites with the two maps f and g are distinct.

By quasicoherence, maps are determined by the part at the trivial group 1. In fact we
will show that there is a set of modules Ti such that any element x 2 X.1/ lies in a
submodule isomorphic to some Ti . In fact we will show that x lies in a submodule T

of X which is �–pointwise countably generated in the sense that, for each connected
subgroup K of T , �K T is a finitely generated module over OF=K . Because of
quasicoherence, this involves a little care, and we return to it after making an estimate.
We will not attempt to be economical in our estimates!

Claim 1 The collection of �–pointwise countably generated objects of Ap
c .T / up to

isomorphism forms a set.

If R is any ring (such as OF=K ) the collection of modules M generated by n elements
is a set, because there is a short exact sequenceM

i2I

R
p
�!

nM
1

R!M ! 0:

Since R is a set, the number of submodules is a set, and so we may use subsets of
this as our indexing sets I. The collection of possible maps is

Q
i R, and hence a set.
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Taking the union of these sets as n runs through the natural numbers and a countable
set, we find a set of countably generated R–modules.

At each point K in the diagram this argument applies to show there is a set of countably
generated OF=K –modules �K T . There are countably many subgroups K so a choice
for a �K T at each K is still a set. Finally, these are related. In fact, if L�K , there
is an OF=L –map

�LT ! E�1
K=LOF=L˝OF=K

�K T:

There is only a set of such maps. Of course only a subset will satisfy the quasicoherence
and extendedness conditions, but we just needed an estimate.

Claim 2 Given any object X, the element x 2X.1/ lies in a �–pointwise countably
generated subobject of X.

We start with x 2 X.1/ and we will construct a �–pointwise finitely generated sub-
module Z �X containing x 2X.1/. For each connected subgroup K we have

ˇK
1 .x/D

nKX
iD1

�K
i ˝xK

i

for suitable numbers nK and elements �K
i 2 E�1

K
OF and xK

i 2 �
K X. Roughly

speaking we want to use the xK
i as our first guess for the generators of �K Z , but to

allow for the possibility of some cancellation, we do something a little more elaborate.
In fact we will get possibly different sets of generators for each complete flag

F D .1DK0 �K1 � � � � �Ks DK/

ending at K . Note that, by completeness, Ki is of dimension i . Now we proceed one
step at a time with

ˇ
K1

1
.x/D

nF;1X
iD1

�
F;1
i ˝x

F;1
i

and, for each term x
F;1
i ,

ˇ
K2

K1
.x

F;1
i /D

nF;2X
jD1

�
F;2;i
j ˝x

F;2
j ;

where nF;2 is taken large enough to deal with all the finite number of terms x
F;1
i .

The remaining steps are similar. The first approximation to �K Z is the countably
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generated OF=K –submodule

�K Z0 D hx
F;i
j j F; i; j i � �K X;

where F runs through all flags from 1 to K , 1 � i � dim K and 1 � j � nF;i . To
obtain something extended we take Z0.K/D E�1

K
OF ˝OF=K

�K Z0. There are maps
between these modules, but the result is not generally quasicoherent, so we will add
some more generators.

By quasicoherence of X, note that for any x 2 �K X and any L � K , there is a
representation V D V .y;L;K/ of T=L such that V K D 0 and e.V /x is in the image
of

ˇK
L W �

LX ! E�1
K=LOF=L˝OF=K

�K X:

We may therefore choose yK
L
.V / 2 �LX with ˇK

L
yK

L
D e.V /x . We use this to

increase the size of the modules Z0.L/.

In our case, for each F, i and j we choose V .F; i; j / and y.F; i; j / with

ˇ
KiC1

Ki
.y.F; i; j //D e.V .F; i; j //x

F;iC1
j :

Note that adding the generators y.F; i; j / to �Ki Z0 does not increase the size of
E�1

K=L
Z0.Ki/ since x

F;iC1
j is already present. However, it does ensure that ˇK

L

becomes surjective after the inversion of Euler classes.

We then take the countably generated OF=L –module

Z.L/DZ0.L/Chy.F; i; j / j 1� i � nL; K �L; 1� j � nF;ii:

The subobject Z is now quasicoherent, �–countably generated and contains x 2Z.1/.

This completes the proof of Claim 2, and hence shows Ap
c .T / is locally presentable.

Applying the functor D1˝ .�/ to the generators of Ap
c .T / gives a set of generators

for dAp
c .T /. As all other models are equivalent via exact equivalences, the result

holds.

Remark 8.3 In the case of rank 1, Greenlees [4] constructed so-called “wide spheres”,
which have the property that given x 2 X.1/ there is a wide sphere WS and a map
WS!X such that x is contained in the image. Wide spheres are visibly �–finitely
generated, and give a fairly explicit set of generators. We do not know if the set of
generators can be taken to be �–finitely generated in rank � 2.

The combinatorics of the footprint of an element x 2X.1/ is sufficiently complicated
that even enumerating the possible shapes of wide spheres in general is rather daunting.
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8.2 Models for the normalizer

The material in this section is a summary of [7, Section 6]. From now on, we will use �
to indicate any of the possible subscripts and superscripts described in the previous
section.

When working in the case of N , the Weyl group W DN=T acts on the diagrams †�

of the previous section, with the trivial action on †d . The diagram of rings comes
with an action of W that is compatible with this action on the poset. That is, given
a diagram of rings R over a poset †� and w 2W , there is a diagram of rings w�R
defined by w�R.E/DR.Ew/ and maps of diagrams wRW R! w�R satisfying the
expected rules on composition and units.

Note that as each object of †d is fixed by W , the value of a diagram of rings R at
some element will be a ring object in differential graded Q–modules with an action
of W , whereas on †a at each point of a diagram indexed by a subgroup K one will
only have an action of the subgroup of W that stabilizes K .

We may then define the category of modules over these diagrams of rings, denoted by
R�

�
–mod. As with rings we may ask that the modules are W–equivariant, so there are

maps wM W M ! w�M, where w�M.E/DM.Ew/ but with the action of R�
�
.E/

given by r �mD .rw/m. As usual, the maps wM should compose appropriately with
the identity 1M . We denote this category by R�

�
–mod�ŒW � and describe it as W–

equivariant modules over R�
�

. We may then consider such modules with differentials
(they are naturally graded as the rings are all graded), denoted by R�

�
–dmod and

R�
�

–dmod�ŒW �. A more thorough description of the categories with W–action is
given in [7, Section 4.A].

We now wish to describe the category Ra–mod–QŒW �–dmod in terms of these equi-
variant diagrams. This will make it easier to compare our work with the case of a
torus.

Lemma 8.4 The category of modules over R
f

d
DRa in QŒW �–dmod is equivalent to

the category of W–equivariant diagrams in R
f

d
–dmod,

Ra–mod–QŒW �–dmodDR
f

d
–mod–QŒW �–dmodŠR

f

d
–dmod�ŒW �:

Proof If R is a ring in a category C with a W–action, the category R–mod�ŒW � has
objects R–modules M with the additional structure of maps

wmW M ! w�M;
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where the R–module w�M has the R–action r.w�m/ D w�Œ.rw
�1

/m�. This is
exactly the same as saying that M is an R–module in the category of W–objects
in C . It is important here that W acts objectwise on objects in the right-hand side
category.

Remark 8.5 All additional conditions which go into defining algebraic models as
full subcategories on special R–modules (like pqce) are compatible with the action
of W described above and thus one can define W–equivariant versions of the algebraic
models for the rational torus spectra. This is done in detail in [7] and we list the
categories we will use below:

� dAp
a .N; toral/DdAp

a .T /
�ŒW � is the category of W–equivariant F –continuous

qce differential modules over R
p
a , where the diagram is pairs in †a .

� dAfc .N; toral/D dAfc .T /�ŒW � is the category of W–equivariant qce differen-
tial modules over R

f
c , where the diagram is flags in †c .

� dAf
d
.N; toral/D dAf

d
.T /�ŒW � is the category of W–equivariant pqce differ-

ential modules over R
f

d
, where the diagram is flags in †d .

Lemma 8.6 The forgetful functor

U W R�
�

–dmod�ŒW �!R�
�

–dmod

is faithful and has both adjoints.

Proof An object on the left-hand side is an object on the right-hand side with additional
structure given by the action maps for all w 2W . The functor U simply forgets this
additional structure. The forgetful functor has both adjoints since it is a functor between
locally presentable categories which preserves all limits and colimits.

Lemma 8.7 The forgetful functor

U W dA�
�
.N; toral/D dA�

�
.T /�ŒW �! dA�

�
.T /

is faithful and has both adjoints, where the category dA�
�
.N; toral/ stands for any

of the categories described in Remark 8.5 and dA�
�
.T / is its nonequivariant, torus

version.

Proof This follows from the previous result and the fact that both left and right adjoints
preserve additional conditions on objects (like pqce or F –continuous), thus they restrict
and corestrict to the algebraic models on both sides.
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Lemma 8.8 All categories dA�
�
.N; toral/ described in Remark 8.5 are locally pre-

sentable categories.

Proof These are abelian categories where filtered colimits are exact. One uses Lemmas
8.7 and 8.2 to show that there exists a categorical generator in dA�

�
.N; toral/.

8.3 Relations between the models

Since we mentioned different algebraic models for rational T –spectra it is time to
describe the relationships between them. We present here only the sketch of equivalences
between these categories; more details can be found in [8, Sections 10.A and 10.B]. In
effect, Sections 8.3, 8.4 and 8.5 amount to observing that the constructions there are
compatible with the W–action.

We briefly introduce the functors de
!

and e from the diagram

dAfa .T /Š dAp
a .T /

�qd
!

Š // dA
p
c .T /

e0oo

p
Š // dA

f
c .T /

f
oo

de
!

Š // dA
f

d
.T /

eoo

and another functor i . Given an object M 2 dAf
d
.T /, we can define a object eM

of dAfc .T / as follows. Let E D .K0 � � � � � Ks/ 2 †
f
c with dimension vector

d D .d0 > � � �> ds/ 2†
f

d
. Then

eM.K0 � � � � �Ks/D eEM.d0 > � � �> ds/;

where eE is the idempotent given by the projection R
f

d
.d/!R

f
c .E/ as the first term

is an iterated product which has a particular factor defined by E. The functor

i W dAfc .T /!Rf
c –dmod

is simply the inclusion and the functor

de
! W dA

f
c .T /! dAf

d
.T /

is a subfunctor of

d�W R
f
c –dmod!R

f

d
–dmod; d�.N /W d 7!

Y
F2†

f
c

dim FDd

N.F /:

Remark 8.9 One of the most important features of all the functors above is that they
are exact. Combining this with the fact that they are equivalences of categories ensures
that they all preserve and create both monomorphisms and homology isomorphisms.
This will be crucial for establishing model structures later in the paper.

Algebraic & Geometric Topology, Volume 19 (2019)



3584 David Barnes, John Greenlees and Magdalena Kędziorek

Remark 8.10 It is clear from the definition that de
!

, i and e commute with the
W–action and thus extend to the level of models for rational toral N –spectra:

dAfa .N; toral/
p�qd

!

// dAfc .N; toral/
e0f
oo

de
!

// dAf
d
.N; toral/:

eoo

Note that we avoid using diagrams based on pairs †p
�

for N , as these do not work
correctly in the toral case (normalizers are not functorial in subgroups, whereas they
are functorial in flags).

8.4 Forgetful functors

We consider the forgetful functors from toral models of N –spectra to models for the
torus:

dAfa .N; toral/
p�qd

!

//

U
��

dAfc .N; toral/
e0f
oo

de
!

//

U
��

dAf
d
.N; toral/

e
oo

U
��

dAfa .T /
p�qd

!

// dAfc .T /
e0f

oo

de
!

// dAf
d
.T /

e
oo

We define U to be the functor which forgets the action of the Weyl group,

U W R
f

d
–dmod�ŒW �� R

f

d
–dmod W

L
W :

This functor has a right adjoint (analogous to induction) which sends a module M

to the equivariant module which at a flag F takes a value of a skewed product of W

with M,
L

W M.F / D
L
w2W .w

�M /.F /, where w�M.F / is M.Fw/ but with
the action given by � ı .w˝ 1/W Rf

d
.F /˝M.Fw/!M.Fw/. The functor

L
W is

also left adjoint to U as finite coproducts and products coincide (just as induction and
coinduction agree for finite groups). These functors preserve various structures like
p, qce and F –continuous and hence pass from categories of modules to the algebraic
models.

In particular, an object M of category R
f
�

–dmod�ŒW � can be described as an ob-
ject UM of R

f
�

–dmod with extra structure: maps UM ! w�UM in the category
R
f
�

–dmod for each w 2W (such that these maps should be unital and compatible
with composition).
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Remark 8.11 The fact that
L

W is both the left and right adjoint to the forgetful
functor U allows us to obtain a retraction using the counit and unit,

M !
L

W UM !M:

This is a more complicated version of the following retraction for modules over QŒW �:

A // hom.QŒW �;UA/ //
L

W UA // A;

a
� // .w 7! wa/; .w;m/w2W

� //
P
w2W

1

jW j
wm;

f
� // .w; f .w�1//w2W ;

where
L

W M DQŒW �˝M is the direct sum of jW j–copies of M, with W–action
permuting the factors.

8.5 The torsion functor

The aim of this section is to complete the following diagram by constructing the
adjunction marked with dashed arrows so that U commutes with vertical left and right
adjoints:

R
f

d
–dmod�ŒW � U //

�
f

d
��

R
f

d
–dmod

�
f

d
��

dAf
d
.N; toral/

d�ie

OO

U // dAf
d
.T /

d�ie

OO

To do this, we first refer to the construction of this adjunction at the torus level (no
W–action) and then lift it from there. We present a diagram that contains the various
categories and functors we will need. The back square describes the situation without
W–action:

dAfc .T /
de

!

//

i ��

dAf
d
.T /

e
oo

R
f
c –dmod

d�
//

�
f
c

OO

R
f

d
–dmod

e
oo

dAfc .T /�ŒW �
de

!

//

i
��

U

bb

dAf
d
.T /�ŒW �

e
oo

U

bb

R
f
c –dmod�ŒW �

d�
//

�
f
c

OO

U

bb

R
f

d
–dmod�ŒW �

e
oo

U

bb
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The starting place is the top-left adjunction.

Lemma 8.12 [7, Theorem 11.1] There is an adjoint pair

i W dAfc .T /� Rf
c –dmod W�fc ;

where i is the inclusion functor and �fc is its right adjoint.

The adjunction .d�ie; �
f

d
/ was defined in [8, Section 11.C] going around the solid

arrows of the back square. To be more precise, �f
d

at the T level was defined by passing
round the diagram �

f

d
D de

!
�
f
c e . With this definition, �f

d
has a left adjoint d�ie .

We plan to do the same in the front square describing the situation with the W–action.
To do that, we need to show that the dashed functors exist. It is clear that the dashed
functor

i W dAfc .T /!Rf
c –dmod

(which forgets the pqce structure) commutes precisely with the functors w� . It follows
that �fc commutes with w� up to a natural isomorphism. In fact, checking the definition
from [8, Section 11], one can show that it commutes precisely.

Now we may extend �
f
c to R

f
c –dmod�ŒW � as follows. Let M be an object of

R
f
c –dmod�ŒW �, we define an element of dAfc .T /�ŒW � as follows. At E we take

.�
f
c UM /.E/ with (skewed) W–action given by

�
f

d
U.wM /.E/W .�

f

d
UM /.E/! .�

f

d
Uw�M /.E/D w�.�

f

d
UM /.E/:

It is routine to check that this defines a skewed W–action and hence we get an object of
dAfc .T /�ŒW �. We then define �f

d
at the level of diagrams with W–action by passing

round the diagram �
f

d
D de

!
�
f
c e . This has adjoint d�ie .

9 Model structures and Quillen equivalences

Collecting results of the previous section we have a commuting diagram (see Figure 2),
where the two bottom vertical adjunctions on both sides are equivalences of categories.
The horizontal functors U commute with both left and right vertical functors. Recall
that Ra from Section 7 is the diagram of rings R

f

d
. The aim of this section is to establish

model categories on the left-hand side of this diagram. We will keep adding information
about model structures and Quillen equivalences to this diagram as we proceed. At the
starting point there are model structures only on R

f

d
–dmodii and dAfc .T /i , which
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R
f

d
–dmod�ŒW � U //

�
f

d
��

R
f

d
–dmodiioo

oo

�
f

d
��

dAf
d
.N; toral/

d�ie

OO

U //

e
��

dAf
d
.T /

d�ie

OO

oo

oo

e
��

dAfc .N; toral/

de
!

OO

U //

e0f
��

dAfc .T /i

de
!

OO

oo

oo

e0f
��

dAfa .N; toral/

p�qd
!

OO

U // dAfa .T /

p�qd
!

OO

oo

oo

Figure 2: Diagram of model categories.

is indicated by subscripts i i and i . The model structures on both categories are
injective model structures, where cofibrations are objectwise monomorphisms and
weak equivalences are objectwise homology isomorphisms.

We refer to R
f

d
–dmodii as having the doubly injective model structure as this model

structure is the diagram-injective model structure — see [12, Section 3] — on diagrams
of categories of chain complexes each equipped with the injective model structure.

A key input to our approach is that the functors in the diagram above are exact, with
the exception of the two functors labelled �f

d
.

9.1 First row of the diagram

Lemma 9.1 Any category of generalized diagrams of R–modules indexed on a punc-
tured cube with the doubly injective model structure is right proper.

Proof The projective model structure on R–modules is right proper and there is a
doubly projective model structure on generalized diagrams of R–modules. The doubly
projective model structure has fibrations and weak equivalences defined objectwise. As
pullbacks are constructed objectwise, it is right proper. Every fibration in the doubly
injective model structure is in particular a fibration in the doubly projective model
structure.

It follows from the lemma above that the category of R
f

d
–dmodii is right proper.

Proposition 9.2 Both categories R
f

d
–dmod�ŒW � and R

f

d
–dmod are locally pre-

sentable.
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Proof We show that R
f

d
–dmod�ŒW � is locally presentable; the other follows similarly.

It is clearly an abelian category. Recall that the forgetful functor R
f

d
–dmod�ŒW �!

R
f

d
–dmod is faithful and Rx is a categorical generator for Rx–mod. Using the notation

Kx for the left adjoint to the evaluation functor at x , evx W R�–mod!Rx–mod, andL
W .�/ the left adjoint to U, the categorical generator is given by

L
x Kx˚

L
W Rx .

Lemma 9.3 There exists a left-induced model structure on the categoryR
f

d
–dmod�ŒW �

from the doubly injective model structure R
f

d
–dmodii using the adjunction

R
f

d
–dmod�ŒW �

U //
R
f

d
–dmodii :oo

We use the notation R
f

d
–dmod�ŒW �ii for this new model structure. The adjunction

above becomes a Quillen pair and the left adjoint preserves all fibrations, and thus
fibrant objects.

Proof This follows from [14, Theorem 2.2.1]. Since both categories are locally
presentable and R

f

d
–dmodii is a cofibrantly generated model structure with all objects

cofibrant, we just need to check that there is a good cylinder object for any object in
R
f

d
–dmod�ŒW �.

The cylinder object in R
f

d
–dmodii is given by tensoring with Q˚Q! Cyl.Q/!Q

(notice that the tensoring is done objectwise). The same construction gives a cylinder
object in R

f

d
–dmod�ŒW �ii .

Notice that the lifted model structure on R
f

d
–dmod�ŒW � is the doubly injective model

structure, because U forgets the W–action so it creates monomorphisms and homology
isomorphisms.

It is clear that the left adjoint U is a left Quillen functor. What we need to show is
that it also preserves all fibrations. To do that we will show that its left adjoint is a left
Quillen functor. Take a cofibration f in R

f

d
–dmodii . Applying the left adjoint L and

then U sends f to
L
jW j f , which is a cofibration. Thus L.f / is a cofibration by the

definition of lifted model structure on R
f

d
–dmod�ŒW �. Same argument works for an

acyclic cofibration. Thus L is a left Quillen functor and U preserves all fibrations.

Proposition 9.4 The doubly injective model structure on R
f

d
–dmod�ŒW �ii is right

proper.

Proof The right-lifted model structure on R
f

d
–dmod�ŒW � from R

f

d
–dmodii also

exists, and is right proper as R
f

d
–dmodii is right proper. In this case every fibration
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in the left-lifted model structure is in particular a fibration in the right-lifted model
structure, which finishes the proof.

Because both model structures R
f

d
–dmodii and R

f

d
–dmod�ŒW �ii are right proper, we

can cellularize both categories. We choose to cellularize the first one at the derived
images of the cells N=KC , where K � T in G, and the right-hand side at the set of
cells T=KC for every K�T . We call these sets N=TCDKa and T=TC , respectively.
Recall that Ra from Section 7 is the diagram of rings R

f

d
.

Lemma 9.5 The adjunction

N=TC–cell–R
f

d
–dmod�ŒW �ii

U // T=TC–cell–R
f

d
–dmodiiL

W

oo

is a Quillen pair, where both functors preserve all cofibrations, fibrations and weak
equivalences. Moreover, U reflects all weak equivalences.

Proof To show that U is a left Quillen functor we will use the cellularization principle
[10, Theorem 2.7] and an observation that the model structures

T=TC–cell–R
f

d
–dmodii ; U.N=TC/–cell–R

f

d
–dmodii

are the same. This follows from the fact that for K � T , U.N=KC/D
L
jW j T=KC ,

where N=KC and T=KC denote the derived images of these cells in the algebraic
model and W DN=T is a finite group. In fact, N=KC D

L
W T=KC , hence

ŒN=KC;A�
W
Š ŒT=KC;UA�

where the left-hand side denotes maps in the homotopy category of R
f

d
–dmod�ŒW �ii

and the right-hand side is maps in the homotopy category of R
f

d
–dmodii . It follows

immediately that U preserves and reflects all weak equivalences.

The left adjoint of U and the right adjoint of U are the same: a direct sum of finitely
many copies of the input with a suitable W–action. This functor preserves all fibrations,
cofibrations and weak equivalences as U does.

9.2 Right-hand side of the diagram

By [13, Proposition 11.3] there is an injective model structure on the category dAfc .T /i
with weak equivalences the homology isomorphisms and cofibrations the monomor-
phisms. (The category used in the reference is Ap

c .T /, which is equivalent to Af
d
.T /

by [8, Corollary 10.1], so it is routine to check that the equivalences are exact.)
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The two adjoint pairs linking dAfc .T / with dAfa .T / and dAf
d
.T / are equivalences

of categories where all the functors are exact. Using these functors we can transfer the
injective model structure dAfc .T /i to both dAfa .T / and dAf

d
.T /. Since all functors

are exact, they preserve monomorphisms and homology isomorphisms; moreover, they
are equivalences of categories so they create both of these classes. It follows that
all three of these categories have injective model structures: ones where the weak
equivalences are the homology isomorphisms and cofibrations are the monomorphisms.

Furthermore, the adjunctions linking dAfc .T / with dAfa .T / and dAf
d
.T / are Quillen

equivalences.

The fact that e on the right-hand side is also a right Quillen functor (since de
!

is exact)
and [13, Proposition 11.5] implies that the remaining adjunction .d�ie; �

f

d
/ on the

right-hand side of the diagram is also a Quillen equivalence:

N=TC–cell–R
f

d
–dmod�ŒW �ii

U //

�
f

d

��

T=TC–cell–R
f

d
–dmodiioo

�
f

d
QE

��

dAf
d
.N; toral/

d�ie

OO

U //

e

��

dAf
d
.T /i

d�ie

OO

oo

e

��

dAfc .N; toral/

de
!

OO

U //

e0f

��

dAfc .T /i

de
! QE

OO

oo

e0f

��

dAfa .N; toral/

p�qd
!

OO

U //
dAfa .T /i

QEp�qd
!

OO

oo

9.3 Left-hand side of the diagram

By the same argument as in [13, Section 11] there exists an injective model structure
on the category dAfc .N; toral/ with weak equivalences the homology isomorphisms,
cofibrations the monomorphisms and fibrations the surjections with injective kernel.

The same argument as in the previous subsection shows that there exist injective model
structures on the categories dAf

d
.N; toral/ and dAfa .N; toral/. With these model

structures the adjunctions between them are Quillen equivalences.
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With these model structures on the left-hand side of the diagram, the horizontal adjunc-
tions are Quillen pairs. To check this, it is enough to note that the forgetful functors U

preserve all (acyclic) cofibrations. In fact, the forgetful functors U in the second, third
and fourth rows create all weak equivalences and cofibrations in the model structures
on the left-hand side of the diagram.

It remains to show the following:

Proposition 9.6 The adjunction

dAf
d
.N; toral/i

d�ie
// N=TC–cell–R

f

d
–dmod�ŒW �ii

�
f

d

oo

is a Quillen equivalence.

Proof First we need to show the adjunction is a Quillen pair. Notice that the forgetful
functors commute with both adjoints d�ie and �f

d
in the following square:

N=TC–cell–R
f

d
–dmod�ŒW �ii U //

�
f

d
��

T=TC–cell–R
f

d
–dmodii

�
f

d
��

dAf
d
.N; toral/i

d�ie

OO

U // dAf
d
.T /i

d�ie

OO

Take a cofibration (a monomorphism) f 2 dAf
d
.N; toral/i . As .d�ie/ ıU is a left

Quillen functor, we know that U.d�ie.f // D d�ie.U.f // is a cofibration. HenceL
W U.d�ie.f // is a cofibration in dAf

d
.N; toral/i . Since d�ie.f / is a retract ofL

W U.d�ie.f // by Remark 8.11, it follows that d�ie.f / is a cofibration. For the
acyclic cofibrations we again use the relation U ı d�ie D d�ie ıU along with the
fact that U preserves and reflects weak equivalences at each level (at the top level this
follows from Lemma 9.5). Thus d�ie is a left Quillen functor.

To show that the adjunction is a Quillen equivalence we need to show that for any X in
dAf

d
.N; toral/i and fibrant Y in N=TC–cell–R

f

d
–dmod�ŒW �ii , a map f W d�ie.X /!

Y is a weak equivalence in N=TC–cell–R
f

d
–dmod�ŒW �ii if and only if its adjoint

f [W X ! �
f

d
.Y / is a weak equivalence in dAf

d
.N; toral/i .

A map f W d�ie.X /! Y is a weak equivalence in N=TC–cell–R
f

d
–dmod�ŒW �ii if

and only if
U.f /W U.d�ie.X //D d�ie.U.X //! U.Y /
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is a weak equivalence in dAf
d
.T /i . Since U preserves fibrant objects by Lemma 9.5,

U.Y / is fibrant. So U.f / is a weak equivalence in dAf
d
.T /i if and only if its adjoint

U.f /[W U.X /! �
f

d
.U.Y //

is a weak equivalence in T=TC–cell–R
f

d
–dmodii because the adjunction .d�ie; �

f

d
/

is a Quillen equivalence on the right-hand side of the diagram. Since U.f /[ D U.f [/,
this happens if and only if f [ is a weak equivalence in dAf

d
.N; toral/i , which finishes

the proof.

Collecting all results from above we obtain the algebraic model for rational toral N –
spectra. In fact, we obtain three equivalent algebraic models in this situation, depending
on the choice of the indexing diagram category, which we so far indicated by a subscript
and superscript in the notation. We omit this indication in the following summary.

Theorem 9.7 There is a zigzag of Quillen equivalences between rational toral N –
spectra and an algebraic model dA.N; toral/ with the injective model structure,

LeTN SQ.NSpO/'Q dA.N; toral/:

Now we are ready to pass to the model for rational toral G–spectra. Notice that to
obtain an algebraic model for rational toral N –spectra it was not necessary to discuss
other models than the one indexed on dimension and flags dAf

d
.N; toral/, since that

is the one we can relate directly to the passage from topology. However, the indexing
diagram of this sort for rational toral G–spectra has not been established. The only
model for that discussed in [7] is indexed on flags and all (toral) subgroups. Thus to
link the model for N –spectra to the model for G –spectra using [7] we had to consider
dAfa .N; toral/.

10 Passage to the algebraic model for G –spectra

In this section we complete the proof of our main theorem.

Theorem 10.1 There is a zigzag of Quillen equivalences between rational toral G–
spectra and an algebraic model dAfa .G; toral/ with the injective model structure,

LeTG
SQ.GSpO/'Q dAfa .G; toral/;

where Afa .G; toral/ is as defined in [7].

Algebraic & Geometric Topology, Volume 19 (2019)



An algebraic model for rational toral G –spectra 3593

The principal remaining ingredient is the formality of the objects we use to cellularize,
which is proved using the Adams spectral sequence of [7], but there are also some
model categorical foundations before we begin.

10.1 Proper preliminaries

Before we proceed, we need to establish the formal framework.

Lemma 10.2 The model categories

dAfc .N; toral/i ; dAfa .N; toral/i and dAf
d
.N; toral/i

are right proper.

Proof In the model structure dAfc .T /i fibrations are in particular objectwise surjec-
tions, by construction of the model structure in [13, Proposition 11.3], and pullbacks
in dAfc .T / are calculated objectwise. Thus dAfc .T /i is right proper and, since
dAfc .N; toral/i is the left-lifted model structure from dAfc .T /i , it is also right proper.
It is clear that right-properness is preserved by equivalences of categories which
are also Quillen equivalences between dAfc .N; toral/i and both dAfa .N; toral/i and
dAf

d
.N; toral/i . Thus all three categories are right proper.

Now that we know that every model category on the left-hand side of Figure 2 is
right proper, we can cellularize them. To obtain an algebraic model of rational toral
G–spectra we need to cellularize the algebraic model dAfa .N; toral/i at the set of
derived images in dAfa .N; toral/i of cells G=KC where K � T ; see Figure 1 in the
introduction.

The last step of the comparison is the simplification of this nonexplicit algebraic model
given by G=TC–cell–dAfa .N; toral/i to obtain a model dAfa .G; toral/ from [7] with
the injective model structure.

This happens in two stages. The first one is to recognize that the cells given by
the derived images of G=KC where K � T are formal in dAfa .N; toral/i . That
is, each cell is weakly equivalent to its own homology in dAfa .N; toral/i . We can
thus keep track of the objects we use to cellularize, since they are identified by their
homology alone. Below we will use the notation G=KC for the derived image in
dA.N; toral/ or dA.G; toral/ of topological G=KC . The second step is recognising
that this cellularization of the algebraic model for toral N –spectra is Quillen equivalent
to the injective model structure on dAfa .G; toral/.
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10.2 Formality of G=KC

We want to show that the cells G=KC are formal in dAfa .N; toral/i . It is a bit simpler
to first show that the coinduced “cells” FK .GC;S

0/ are formal in dAfa .G; toral/i .
We will come back to the original problem in Lemma 10.7.

We consider the context in which we have a homology functor �A
� on a triangulated

category, and a convergent Adams spectral sequence

Exts;tA .�
A
� .X /; �

A
� .Y //) ŒX;Y �t�s:

As in [6] the observation is that if Exts;tA .M;M / has a vanishing line of slope 1 (in
the sense that it is zero for s > t � s ), then M is intrinsically formal. Indeed, if
�A
� .X /Š �

A
� .X

0/ŠM in the Adams spectral sequence

Exts;t .�A
� .X /; �

A
� .X

0//) ŒX;X 0�t�s;

the identity map in Ext0;0 is an infinite cycle and hence is represented by a map
f W X !X 0. Since f� is the identity, it is an isomorphism and f is an equivalence by
the Whitehead theorem.

We are considering the G–spectrum X D FK .GC;S
0/ where K � T . This is

coinduced from T :

FK .GC;S
0/' FT .GC;FK .TC;S

0//' FT .GC; †
L.T ;K /T=KC/;

where L.T ;K/DTeK T=K is the tangent space to T=K at the identity coset. In alge-
bra, which is to say in the abelian models A.G; toral/ and A.N; toral/DA.T /�ŒW �,
we have the corresponding statement. Indeed, induction and corestriction correspond
to the adjunction

��W A.G; toral/� A.N; toral/ W‰

as in [7, Corollary 7.11]. That paper also describes both homology functors �A.G/
�

and �A.N/
� , which we use below.

Lemma 10.3 [7, Proposition 11.12] We have

�
A.G/
� .FK .GC;S

0//D‰�
A.N/
� .FK .NC;S

0//:

For brevity, we simplify notation and write

MG.K/D �
A.G/
� .FK .GC;S

0//;
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so that the lemma states
MG.K/D‰MN.K/:

Recall that �A.N/
� .X / is the same as �A.T/

� .X /, but with the action of W remembered.

Proposition 10.4 The object MG.K/ has a vanishing line of slope 1, and hence is
intrinsically formal.

Proof First we note that, by [7, Lemma 14.2], we have

�
A.N/
� .FT .NC;A//Š �

A.T/
� .A/ŒW �:

Since MT .K/ has a vanishing line of slope 1 by [6, Corollary 3.39], it follows that
MN.K/ has a vanishing line of slope 1.

Considering the proof, the injective resolution of MT .K/ described in [6] has the
property that the sth term is a sum of injectives †2sfK .H�.BT=K//. It follows that
if N is .�1/–connected, then Exts;t .N;MT .K// has a vanishing line of slope 1. This
applies with N DMG.K/.

Recall from [7] that ‰ is an exact right adjoint, so the adjunction passes to Ext.

Lemma 10.5 There are isomorphisms

Exts;tA.G;toral/.L; ‰M /Š Exts;tA.N;toral/.��L;M /Š Exts;tA.T/.��L;M /W :

Proof Since ‰ is a right adjoint, it takes injectives to injectives. Since it is exact, it
takes injective resolutions to injective resolutions.

Applying this lemma to the case in hand, we conclude

Exts;tA.G;toral/.MG.K/;MG.K//Š Exts;tA.T/.��‰MN.K/;MN.K//
W :

Remark 10.6 To show formality for cells of the form G=KC in dA.G; toral/i , we
start with G=KC D FN.GC; †

L.G;N/N=KC/ (with L.G;N/ the tangent space rep-
resentation) and proceed as before. We now work with

MN.K/D �
A.N/
� .†L.G;N/N=KC/D �

A.T/
� .†L.G;N/N=KC/ŒW �:

This has vanishing line of slope 1 over T because suspension preserves this property;
indeed, we may simply suspend the resolution and note that the shifts in the suspensions
are the same in domain and codomain and hence preserve the vanishing line.
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Now we come back to formality in dA.N; toral/i .

Lemma 10.7 The cells G=KC are intrinsically formal in dA.N; toral/i .

Proof We proved that G=KC is intrinsically formal in dA.G; toral/i . It is of the
form ‰MN.K/ for some MN.K/ 2 dA.N; toral/i . Thus it is enough to show that
if ‰MN.K/ is intrinsically formal in dA.G; toral/i then ��‰MN.K/ is intrinsically
formal in dA.N; toral/i , since we know that �� corresponds to restriction.

Take P 2 dA.N; toral/i with the same homology as ��‰MN.K/. The unit of the
adjunction is an isomorphism by [7, Corollary 7.11], so ‰��‰MN.K/Š‰MN.K/.
Hence ‰MN.K/ and ‰P have the same homology in dA.G; toral/i and since
‰MN.K/ was formal, ‰MN.K/'‰P. Thus ��‰MN.K/' ��‰P.

Since the unit of the adjunction .��; ‰/ is an isomorphism, the counit is an isomorphism
on an object of the form ��X, by the triangle equality:

��‰.��X /
���X

// ��X

D

xx

��X

���Š

OO

The functor �� is exact, hence

H�P ŠH���‰MN.K/Š ��H�‰MN.K/:

It follows that the counit on H�P is an isomorphism. As ‰ is also exact, it follows
that the counit ��‰P ! P is a homology isomorphism. Thus we have shown that

��‰MN.K/' ��‰P ' P:

10.3 Algebraic model for rational toral G –spectra

In this section we omit subscripts a and superscripts f from the notation, since we
only consider indexing diagrams built out of flags and all (toral) subgroups.

Before we pass to dA.G; toral/ we need two more results, which will allow us to
recognize cellular equivalences in dA.G; toral/ with respect to the set of cells G=KC

for K � T as precisely homology isomorphisms.
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Lemma 10.8 All elements of the set of cells G=KC for K � T in dA.G; toral/ are
homotopically compact.

Proof First notice that by [7, Proposition 16.2] there is a derived functor

� !
W A.T /!A.G; toral/

which models the induction functor on spectra and is left adjoint to �� at the derived
level. Since �� is also a left adjoint at the derived level, it commutes with coproducts.
Thus G=KC Š � !.T=KC/ in A.G; toral/ for any K � T and since T=KC were
homotopically compact in dA.T /, their images under the derived functor � ! are as
well. We used here the formality of the cells in both models.

Lemma 10.9 The set G=TC of cells G=KC for K � T in dA.G; toral/ is a set of
generators for the injective model structure on dA.G; toral/.

Proof We will use here the name “cellular equivalence” for a weak equivalence in the
model category G=TC–cell–dA.G; toral/ and we will show that cellular equivalences
are homology isomorphisms.

By the use of mapping cones, it is enough to show that if an object X is cellularly
trivial (ie ŒG=KC;X �A.G;toral/ D 0 for all K � T ) then H�X D 0. Using the derived
functor � !W A.T /!A.G; toral/ from [7, Proposition 16.2] which models the induction
functor on spectra, we get that

0D ŒG=KC;X �
A.G;toral/

D Œ� !.T=KC/;X �
A.G;toral/

D ŒT=KC; ��.X /�
A.T/

and, by [13, Theorem 12.1], H�.��.X //D 0. Notice that �� is an exact functor and
that implies that H�.X /D 0, which finishes the proof.

Finally, we move to dA.G; toral/.

Theorem 10.10 The adjunction

��W dA.G; toral/� dA.N; toral/ W‰

is a Quillen pair when both categories are considered with the injective model structures.
It becomes a Quillen equivalence, after we cellularize the left-hand side at ��.G=KC/
where K � T ,

��W G=TC–cell–dA.N; toral/� dA.G; toral/ W‰:

Algebraic & Geometric Topology, Volume 19 (2019)



3598 David Barnes, John Greenlees and Magdalena Kędziorek

Proof The adjunction is a Quillen pair with respect to injective model structures on both
sides, since both adjoints at the level of abelian categories (A.G; toral/ and A.N; toral/)
are exact, thus �� preserves monomorphisms and homology isomorphisms.

Moreover, since the unit of the adjunction at the level of abelian categories is an
isomorphism by [7, Corollary 7.11] and ‰ is exact (and thus preserves all homology
isomorphisms) it follows that the derived unit is a weak equivalence.

We use the cellularization principle [10] to show that this adjunction becomes a Quillen
equivalence after cellularization of the right-hand side at ��.G=KC/ where K � T .
By Lemma 10.9 the set G=KC where K � T is a set of generators for the injective
model structure on dA.G; toral/, so we only need to show that the derived counit on
��.G=KC/ is a weak equivalence. This follows from the same argument regarding the
counit as the one in the proof of Lemma 10.7.

Finally, collecting all results from above we have completed the proof of Theorem 10.1
to obtain the algebraic model for rational toral G –spectra.
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