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An upper bound on the LS category
in presence of the fundamental group

ALEXANDER DRANISHNIKOV

We prove that
catrs X < 3 (cd(r (X)) + dim X)

for every CW complex X, where cd(r1 (X)) denotes the cohomological dimension
of the fundamental group of X. We obtain this as a corollary of the inequality

catps X < %(cath (uy) + dim X),

where uy: X — Bm(X) is a classifying map for the universal covering of X.

55M30

1 Introduction

The reduced Lusternik—Schnirelmann category (briefly LS category) catp s X of a topo-
logical space X is the minimal number 7 such that there is an open cover {Uy, ..., Uy}
of X by n+ 1 contractible sets in X. We note that the LS category is a homotopy
invariant. The Lusternik—Schnirelmann category has many applications. Perhaps the
most famous is the classical Lusternik—Schnirelmann theorem — see Cornea, Lupton,
Oprea and Tanré [5] — which states that caty g M gives a low bound for the number
of critical points on a manifold M of any smooth not necessarily Morse function.
This theorem was used by Lusternik and Schnirelmann in their solution of Poincaré’s
problem on the existence of three closed geodesics on a 2—sphere [14]. In modern time
the LS category was used in the proof of the Arnold conjecture on symplectomorphisms;
see Rudyak [17].

The LS category is a numerical homotopy invariant which is difficult to compute. Even
to get a reasonable bound for cat;g very often is a serious problem. In this paper
we discuss only upper bounds. For nice spaces, such as CW complexes, it is an easy
observation that catpg X' < dim X. In the 1940s Grossman [11] (and independently
in the 1950s G W Whitehead [19]; see [5]) proved that, for simply connected CW
complexes, caty g X < %dim X.
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3602 Alexander Dranishnikov

In the presence of the fundamental group the LS category can be equal to the dimension.
In fact, catps X =dim X if and only if X is essential in the sense of Gromov. This
was proven for manifolds by Dranishnikov, Katz and Rudyak [13]. For general CW
complexes we refer to Proposition 2.6 of this paper. We recall that an n—dimensional
complex X is called inessential if amap uy: X — Bmy(X) that classifies its universal
cover can be deformed to the (n—1)—skeleton (Br;(X))®~D . Otherwise, it is called
essential. Typical examples of essential CW complexes are aspherical manifolds.

Rudyak conjectured that in the case of a free fundamental group there should be
a Grossman—Whitehead-type inequality, at least for closed manifolds. There were
partial results towards Rudyak’s conjecture by Dranishnikov, Katz and Rudyak [9]
and Strom [18], until it was settled in Dranishnikov [6]. Later it was shown in Dran-
ishnikov [7] (also see the followup by Oprea and Strom [15]) that the Grossman—
Whitehead-type estimate holds for complexes with the fundamental group having small
cohomological dimension. Namely, it was shown that caty g X < cd(m{(X))+ % dim X.

Clearly, this upper bound is far from being optimal for fundamental groups with
sufficiently large cohomological dimension. Indeed, for the product of an aspherical
m-manifold M with the complex projective space we have catps(M x CP") =m+n
but our upper bound is m + %(m +2n) = %m + n. Moreover, our bound fails to be
useful for complexes with cd(ry (X)) > % dim X . The desirable bound here is

catpg X < %(cd(m (X)) +dim X).

Such an upper bound was proven in [9] for the systolic category, a differential geometry
relative of the LS category. Nevertheless, for the classical LS category a similar estimate
was missing until now.

In this paper we prove the desirable upper bound. We obtain such a bound as a corollary
of the inequality
catpg X < %(cath (uy) +dim X),

where uy: X — Bmq(X) is a classifying map for the universal covering of X. We note
that this inequality gives a meaningful upper bound on the LS category for complexes
with any fundamental group. Also we note that the new upper bound gives the optimal
estimate for the above example M x CP", the product of an aspherical manifold and
the complex projective space. Namely,

cat s(M x CP™) < %(m + (m+2n)) =m+n.

The author is thankful to the referee for valuable remarks.

Algebraic & Geometric Topology, Volume 19 (2019)



An upper bound on the LS category in presence of the fundamental group 3603

2 Preliminaries

The proof of the new upper bound for catps X is based on a further modification of
the Kolmogorov—Ostrand multiple cover technique [6]. That technique was extracted
by Ostrand from the work of Kolmogorov on the 13™ Hilbert problem [16]. Also in
this paper we make use of the following well-known fact:

Proposition 2.1 Let f: X — Y be a homotopy domination. Then caty s Y < catrs X.

Proof Lets: Y — X be aleft homotopy inverse to f,ie fos~ 1y. Let Uy,..., U
be an open cover of X by sets contractible in X. One can easily check that s~ (Uj), .. .,
s~1(Uy) is an open cover by sets contractible in Y. O

Let U = {Uy }qc4 be a family of sets in a topological space X. The multiplicity of U
(or the order) at a point x € X, denoted by Ordy U, is the number of elements of U/
that contain x. A family U/ is a cover of X if Ordyx U # 0 for all x.

Definition 2.2 A family ¢/ of subsets of X is called a k—cover, with k € N, if every
subfamily of ¢/ that consists of k sets forms a cover of X.

The following is obvious (see [6]):

Proposition 2.3 A family U that consists of m subsets of X is an (n+1)—cover of X
ifand only if Ordx U > m —n forall x € X.

Let K be a simplicial complex. By definition, the dual to the m—skeleton K 0m) s a
subcomplex L = L(K,m) of the barycentric subdivision SK that consists of simplices
of K which do not intersect K . Note that SK is naturally embedded in the join
product K () % L. Then the following is obvious:

Proposition 2.4 For any n—dimensional complex K the complement K \ K™ to
the m—skeleton is homotopy equivalent to an (n—m—1)—dimensional complex L.

Proof The complex L is the dual to K™ . Clearly, dimL =n—m — 1. The

complement K \ K™ can be deformed to L along the field of intervals defined by
the embedding SK € K™ x L. O
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Let f: X — Y be a continuous map. We recall that the LS category of f, cat g f, is
the smallest number & such that X can be covered by k + 1 open sets Uy, ..., Ui so
that the restriction f|y,: U; — Y of f to each of them is null-homotopic. Clearly,

catrs f <catrs X,catyg Y.

We denote by uy: X — Bx, m = m1(X), a map that classifies the universal covering
p: X — X of X. Thus, p is the pullback of the universal covering ¢: Ex — Br.
Here B is any aspherical CW complex with the fundamental group 7. Thus, any map
u: X — B that induces an isomorphism of the fundamental groups is a classifying
map.

The following proposition is proven in [8, Proposition 4.3]:

Proposition 2.5 A classifying map uy: X — Bn of the universal covering of a CW
complex X can be deformed into the d —skeleton B7?) if and only if cat s(uy) <d.

The following proposition for closed manifolds was proven by Katz and Rudyak [13],
although it was already known to Berstein in a different equivalent formulation [1].

Proposition 2.6 For an n—dimensional CW complex X, caty s X = n if and only if
X is essential.

Proof Suppose that X is essential. By Proposition 2.5 we obtain that cat s(uy) >n—1.
Thus, catps X > cat;s(uy) > n and, since dim X =n, cat; s X = n.

The implication in the other direction can be derived from the proof of Theorem 4.4
in [8]. Here we give the sketch of the proof. Let uy: X — Bx ™1 be a classifying
map. To prove the inequality catp.s X <n—1 it suffices to show that the Ganea—Schwarz
fibration p};Y_ 1+ Gp—1(X) — X admits a section. Since the fiber of the Ganea-Schwarz
fibration pf _”1 is (n—2)—connected, it admits a section over Brn—1 and, hence, the
map uy admits a lift /: X — G,_1(Bm). Then the map p’ in the pullback diagram

q u'y
Gn—l(X) — 7 — Gn_l(BT[)

ux
X —— Bnm

admits a section s: X — Z. Here prf(_ , = P'oq. Since X is n—dimensional, to show
that s has a lift with respect to ¢ it suffices to prove that the homotopy fiber F of the
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map ¢ is (n—1)—connected. Note that the homotopy exact sequence of the fibration

F— (pX )7 (x0) 5 (pB7) 7 (no),

where u' is the restriction of uy o ¢ to the fiber ( pf_ 1)_1 (xg) coincides with the
homotopy exact sequence of the fibration

*Q(ux)
—_—

F — %,Q2(X) *, Q(Bm)

obtained from the loop map Q(uy) turned into a fibration by taking the iterated
join product. Since mo(Quy) = 0, we obtain 7;(x,Quy) = 0 for i < n (see
[8, Proposition 2.4] or [10, Proposition 3.3]) and hence 7;(F) =0 fori <n—1. O

3 Multiple covers of polyhedra

For a point x € X in a CW complex X, by d(x) we denote the dimension of the open
cell e containing x. We call a subset A C X in a CW complex X r-deformable if
A can be deformed in X to the r—skeleton X ). A deformation H: Ax I — X to
the O—skeleton X is called monotone if d(H(x,t)) is a monotonically decreasing
function of ¢ for all x € 4.

Proposition 3.1 Let X be a connected simplicial complex of dimension < (r+1)N —1.
Then for any m > N there exists an open cover U = {Uy,..., Uy} of X by r—
deformable sets such that Ordy U >m—k +1 forevery k <N and all x € X (" +Dk=1)
Equivalently, the restriction of U to the ((r+1)k—1)—skeleton is a k —cover.

Moreover, for r = 0 we may assume that each set U; is monotone r —deformable.

Proof It suffices to prove the proposition for complexes with dim X = (r + 1) N — 1.
We do it by induction on n. For N =1 the statement is obvious. Suppose that it holds
true for N —1 > 1. We prove it for N by induction on m. First we establish the base
of induction by proving the statement for 71 = N. By the external induction applied
to X(+DWN=D=1) with m = N — 1 there is an open cover U = {Uy, ..., Un—;} of
X (+D(N=1=1) gych that each U; is r—deformable and Ord, U > (N —1)—k +1 =
N —k for all x € X(r+Dk=1) \We can enlarge each U; to an r—deformable open
in X set U/ C X.

Let G = UII\;_II U/. Since the complement X \ X (r+DWN=D=1) 5 homotopy equiva-

lent to an r—dimensional complex (see Proposition 2.4), Zo = X \ G is r —deformable.
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Since Z is closed, we can find an open enlargement Wy to an r —deformable set whose
closure does not intersect X ("+DWN=D=1) " Thyg the cover {U.....UyN_1. Wo}
satisfies the condition of the proposition for k = N.

_1’

Consider the set

Z; ={x e XCHDN=D=-D 1 0p4, 1/ = 1}.
Clearly, Z is closed. By the induction assumption Z; does not intersect the skeleton
X (+DN=2)=1 Gince the complement,

Y CH+DN=D=D\ y(+DN-2)-1)

is homotopy equivalent to an r—dimensional complex, Z; is r—deformable in the
skeleton X (C+DWN=D=1 et W, bean enlargement of Z to an open » —deformable
in X set such that the closure Wl does not intersect Wg U X (+DWN=2)=1 Note

that the cover {U 1’ s ]/V—l , Wo U W1 } satisfies the condition of the proposition with
k=Nand k=N —-1.

Next we consider
Zy = {x e X(CTDWN=D=D 1 0pd, ¢ = 2}

and similarly define an open set W, and so on up to Wy _;. By the construction
each set W; is r—deformable and the closures W; are disjoint. Therefore, the union
U]’V = WoU---UWp_; is r—contractible. Then the cover Ué, e, U]’V satisfies all
the conditions of the proposition for all k£ < N.

The proof of the inductive step is very similar to the above. Assume that the statement
of the proposition holds for N and m — 1 > N. We prove it for N and m. Let
U ={Uy,...,Uy—1} be an open cover of X by r—deformable sets such that for
any k < N the restriction of U to X +Dk=1 ¢ 4 k_cover. Thus, Ord, U >
(m—1)—N+1=m—N forall x. Let

Zo={xe X |OrdyU=m—N}.

By the induction assumption, Zg N X +DIN=D=1 — & Thus, Z, is r—deformable
in X. We consider an open r—deformable neighborhood Wy of Z, for which
Wo N X+DW=D=1 _

Next we consider the closed set

Z1 ={x e XC+DN=-D-D 104, t/ =m — N + 1}.
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By the induction assumption, Z; does not intersect X (r+DWN=2)-1) ' Ag above, we
define an r—deformable set W; with

Wi 0 (Wo U X CHDN=2-D) _ &5

and so on. We define U,, = Wy U---U Wx_1. Then the condition of the proposition
is satisfied for all k with 4’ ={Uq, ..., Up—1,Upn}.

Now we revise our proof for » = 0 in order to verify the extra condition of the
proposition. Note that dim X' < N —1 in this case. In the proof of the base of induction
on m the enlargements U/ can be chosen monotone deformable to U; . Hence, each U/
is monotone 0—deformable. Since W lives in the complement to the (N —2)—skeleton,
it is monotone O—deformable. The set W; can be chosen monotone deformable to the
monotone 0—deformable set W; NX (N-2) c x(N-2) \X (N=3)  Thus, W, is monotone
0—deformable and so on. As the result we obtain that the set U I/V =WoU.--UWn_1
is monotone 0—deformable. In the proof of inductive step the same argument shows
that the set U,, = Wy U---U Wy _1 is monotone 0—deformable. a

3.1 Borel construction

Let a group m act on spaces X and E with the projections onto the orbit spaces
gx: X > X/mand qg: E—> E/m=B. Letqyxg: XXE > Xx E=(XXE)/=n
denote the projection onto the orbit space of the diagonal action of w on X x E. Then
there is a commutative diagram, called the Borel construction [2],

Y2 xyxg- 22, F

R

X/nZE X x, E-25 B

If 7 is discrete and the actions are free and proper, then all projections in the diagram
are locally trivial bundles with the structure group 7. Then the fiber of px is homeo-
morphic to X and the fiber of pg is homeomorphic to E. For any invariant subset
Q C X the map py defines the pair of bundles py: (X X, E, Q Xz E) — B with
the stratified fiber (X, Q) and the structure group 7.

If X/n and B are CW complexes for proper free actions of the discrete group ,
their CW structures define a natural CW structure on X x, E as follows: First, X
and E, being covering spaces, inherit CW structures from X /7 and B, respectively.
Since the diagonal action of mw on X x E preserves the product CW complex structure
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on X x E and takes cells to cells homeomorphically, the orbit space X x, E receives
the induced CW complex structure.

Lemma 3.2 Let X be the universal covering of an n—dimensional simplicial complex
X with fundamental group m = m1(X). Suppose that the universal covering admits a
classifying map u: X — B to a d —dimensional simplicial complex, w1(B) = m. Let
E be the universal covering of B. Then, for the n—skeleton,

catrs(X x E)™ < 1(d +n),

where the CW complex structure on X x5 E is defined by the simplicial complex
structures on X and B.

Proof Let K = X x, E. Since (X x E)® = U; X®=1) x EU) | we have

d
K® = ) #0=D x, ED,
j=0

We show that cat s K™ <d + [1(n—d)| = |1(d +n)].

Let m = L%(d —i—n)J + 1. We apply Proposition 3.1 to B with » = 0 to obtain an open
cover U = {Uy, ..., Uy} by monotone 0—deformable in B sets with Ord, U > m — j
for x € BU). We note that we apply Proposition 3.1 here with r =0 and N = d + 1.
Thus, we need to be sure that m1 > d + 1, which is satisfied since d <n. The substitution
i =k —1 helps to see the inequality Ordy & > m —i for x € B,

Since m > %(d—l—n), we have 2m —1>d +n—1 and, hence, 2m—1>n = dim X.
Hence we can apply Proposition 3.1 with N = m and r = 1 to get an open cover
YV ={Vi,...,Vn} of X by I-deformable in X sets such that the restriction of V
to X@=1D jsa j—cover for j =1,...,k, where k is the smallest integer satisfying
the inequality n <2k —1.

For every i < m we define

Wi = pg' (V) N p3 (Uy).
We claim that the collection of sets { W7, ..., Wy} covers K M Let xe X Xg E 0,
Then the point p (x) € BUY) is covered by at least m — j sets Uys oo Uk, €U
Since V restricted to X 2m=)=1) jgan (m— j)—cover, the sets Vieys s Vi, cover
X @m=)=1 Note that 2(m— j)—1>d +n+2—2j—1>n— j. Therefore, the point
pE(x) € X7 is covered by Vi, for some s € {1,...,m— j}. Hence, x € W, .

Algebraic & Geometric Topology, Volume 19 (2019)
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We note that W; = Q; xx P; C X x5 E, where P; = q3'(U;) and Q; = q5' (Vi).
Thus, its intersection with K (™ can be written as

d
Wi(n) = Win K =) Qi(n—j) xx Pi(j),
J

where Pi(k) = PiNE® and 0;() = 0; N X©.

To complete the proof we show that each set W; (n) is contractible in K™ . We consider
a monotone deformation /;: U; — B of U; to BO Leth +: Pi — E be the lifting
of /1;. Thus, h ¢ 1s a w—equivariant deformation of P; to E ©) . Then 1 ixh ¢ X X P; —
XxEisa m —equivariant deformation and, hence, it defines a deformation of the orbit
space h ¢ X Xz P; — K which is a lift of /; with respect to p 7 Since each skeleton
X@ is 7—invariant, the deformation /; preserves the filtration of the fibers X of the
bundle p 5 by the skeleta. For the same reason, h; moves the set Qi(n—j) % P;
within Q;(n— j) x5 B. Since h; is monotone, /i; moves Q;(n— j) x5 PY) within
Qi(n—j)xz BY) c K™ forall j. Thus, &; deforms W;(n) within K™ to the set
Qixx EQ C X5z E@ =p'(BO) = [] ¥.
beBO)

Since V; is 1-deformable in X, sois Q; in X. Since X is simply connected, Q; is
contractible in X. Thus, we obtain that the set

0 EQ= [[ 0ic [[ ¥

beBO® beB©)

is 0—deformable in X x; E©@ c K®  Therefore, Wj(n) is 0—deformable in K™ .
Since K is connected, W;(n) is contractible in K.

Thus, catLSK(”)Sm—1=L%(d+n)J 5%(d+n). O
4 Main result

Theorem 4.1 For every simplicial complex X there is the inequality
cat;g X < %(catLS (uyx) +dim X),

where uy: X — B is a classifying map for the universal cover of X.
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Proof Let dim X = and cat s(ux) = d. In the proof we use the notation B = B,
B =Bn@ and E = En, E¢ = Ex@, By Proposition 2.5 we may assume that
the map uy lands in B . Consider the diagram generated by the Borel construction,

~ y 2
X<”—EX><,,E—X>B

2l
X CEL§ Xy Ed B4

Since E is contractible, the map pg is a homotopy equivalence. Let g be its homotopy
inverse. Applying the homotopy lifting property we may assume that g is a section
of pg. Then the map p  is homotopic to p yogo pg. Note that the map p yog: X —
B is a classifying map for X. Thus, it is homotopic to the map uy: X — B, whose
image is in B4 . Therefore, P XxzE— Bis homotopic to a map with image in BY.
Let p;: )?x,,E — B be such a homotopy. Thus, po = p  and pl()?an) C B Let
P2 X xz E — X x5 E be the lift of p; with po =id. Then py(X xx E) C X x5 E4.
First, we note that s = pjog: X — X xy E9isa homotopy section of pga. Indeed,
the homotopy h; = pgpo p;og: X — X joins hg = ppopoog = pgpog = ly with
hy =pgop1og=pgaop1og=pgaos.

We may assume that B is a simplicial complex. Let K = X x EY. We consider
the CW complex structure on K defined by the simplicial complex structures on X
and B. Next we show that the restriction (pga)|gw: K® — X is a homotopy
domination. Since dim X = n, there is a homotopy s;: X — K with s¢ = s and
51(X) € K™ Then the homotopy ¢; = ppa©s;: X — X joins g = pgaos~ ly
with g1 = pgaosy = (pga)|gm os1.

Therefore, by Proposition 2.1, cat s X < cat s K ™) Lemma 3.2 implies

catpg X < %(d + n). O

Corollary 4.2 For any CW complex X,

catrs X < 3(cd(rry (X)) + dim X).
Proof We note that every CW complex is homotopy equivalent to a simplicial complex
of the same dimension. By the Eilenberg—Ganea theorem, = = 771 (X)) has a classifying

complex Bm of dimension equal to cd(;r) whenever cd(rr) # 2 (see [4]). Thus, if
cd(r) # 2, the result immediately follows from Theorem 4.1.
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In the case when cd() = 2 one can find a classifying complex Bm of dimension
three [4]. Then obstruction theory implies that there is a map r: Bwr — Br® which
is the identity on the 1-skeleton. It is easy to check that r induces an isomorphism
of the fundamental groups: obviously it is surjective, and the kernel of r«: 7;(B) —
71 (B @) is trivial. In particular, its composition with a classifying map rouy: X —
Brn® isa classifying map and we can apply Theorem 4.1 to it. a

Theorem 4.3 For any locally trivial bundle p: E — B with a simply connected
fiber F and an aspherical base B,

cats E < dim B + 1 dim F.

Proof By Corollary 4.2,
cat g E < %(cd(nl (E)) +dimE) = %(Cd(ﬂ] (B)) + dim B + dim F)
< 3(2dim B 4+ dim F) = dim B + J dim F. O

When B is an aspherical manifold we obtain an upper bound
catpg F <catys B + % dim F.

Therefore, for every aspherical n—manifold M the LS category of the total manifold
of an S3—fibration f: N — M is at most n + 1. For principal S3—bundles the same
estimate was obtained in [12]. For nonprincipal S3—bundles the old upper bound was
only n + 2, just in view of the fact that N is inessential. A concrete example would
be the total space N of the pullback of the nonprincipal S3—bundle (we refer to [3]
for the proof of nonprincipality) /: SO(5) xso(4) S 3  §* via an essential map of a
4—torus g: T* — S*. I don’t see how to get our estimate cat;s N < 5 by any other
means.

In the case when additionally catps F' = %dim F, like for F = CP", we have a
Hurewicz-type formula for caty g,

catys £ <catyg B +cat; g F.

We recall that for general fibrations the Hurewicz-type formula does not hold. The
best-known estimate for general locally trivial bundles is

catp s £ < (catps B+ 1)(catys F+1)—1;

see [5]. Note that fibrations with the fiber CP”" can be produced by projectivization of
the spherical bundles of complex vector bundles.
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4.1 r-Connected universal cover

We recall a classical result that for an r —connected, n—dimensional complex X,

n

<
caps X < P

If X = B xY with r—connected Y, we have

dimY n—dim B
< - = R ——
catp s X <caty g B+ 1 =catis B + 1
n—cati s B catts B+n
<cat s B+ Ls b _reaus S+ .
r+1 r+1

Below we obtain a similar estimate for general X.

In the proof of the main result we applied our technical proposition (Proposition 3.1)
with r =0 and r = 1. Using Proposition 3.1 with » = 0 and arbitrary r > 0 brings
the following:

Lemma 4.4 Suppose that X is the universal covering of an n—dimensional simplicial
complex X where the fundamental group & = (X)) is r —connected. Assume that
X admits a classifying map to an d —dimensional complex B with m{(B) =n. Let E
be the universal covering of B. Then

rd+n

(n) < I
cath(Xx E) Tl

This lemma brings the following generalization of Theorem 4.1:

Theorem 4.5 For every simplicial complex X with r —connected universal cover X,
there is the inequality

cat X<rcath(uX)+dimX
Ls X = Fo1 )

where uy: X — B is a classifying map for the universal cover of X.

Corollary 4.6 For any CW complex X with r —connected universal covering X,

red(my (X)) +dim X

trs X <
catrs = r+1
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