An upper bound on the LS category in presence of the fundamental group

ALEXANDER DRANISHNIKOV

We prove that

$$\operatorname{cat}_{\mathrm{LS}} X \le \frac{1}{2} \left(\operatorname{cd}(\pi_1(X)) + \dim X \right)$$

for every CW complex X, where $cd(\pi_1(X))$ denotes the cohomological dimension of the fundamental group of X. We obtain this as a corollary of the inequality

 $\operatorname{cat}_{\mathrm{LS}} X \leq \frac{1}{2} (\operatorname{cat}_{\mathrm{LS}}(u_X) + \dim X),$

where $u_X: X \to B\pi_1(X)$ is a classifying map for the universal covering of X.

55M30

1 Introduction

The reduced *Lusternik–Schnirelmann category* (briefly LS category) $\operatorname{cat_{LS}} X$ of a topological space X is the minimal number n such that there is an open cover $\{U_0, \ldots, U_n\}$ of X by n + 1 contractible sets in X. We note that the LS category is a homotopy invariant. The Lusternik–Schnirelmann category has many applications. Perhaps the most famous is the classical Lusternik–Schnirelmann theorem — see Cornea, Lupton, Oprea and Tanré [5] — which states that $\operatorname{cat_{LS}} M$ gives a low bound for the number of critical points on a manifold M of any smooth not necessarily Morse function. This theorem was used by Lusternik and Schnirelmann in their solution of Poincaré's problem on the existence of three closed geodesics on a 2–sphere [14]. In modern time the LS category was used in the proof of the Arnold conjecture on symplectomorphisms; see Rudyak [17].

The LS category is a numerical homotopy invariant which is difficult to compute. Even to get a reasonable bound for cat_{LS} very often is a serious problem. In this paper we discuss only upper bounds. For nice spaces, such as CW complexes, it is an easy observation that cat_{LS} $X \leq \dim X$. In the 1940s Grossman [11] (and independently in the 1950s GW Whitehead [19]; see [5]) proved that, for simply connected CW complexes, cat_{LS} $X \leq \frac{1}{2} \dim X$.

In the presence of the fundamental group the LS category can be equal to the dimension. In fact, $\operatorname{cat}_{LS} X = \dim X$ if and only if X is essential in the sense of Gromov. This was proven for manifolds by Dranishnikov, Katz and Rudyak [13]. For general CW complexes we refer to Proposition 2.6 of this paper. We recall that an *n*-dimensional complex X is called *inessential* if a map $u_X \colon X \to B\pi_1(X)$ that classifies its universal cover can be deformed to the (n-1)-skeleton $(B\pi_1(X))^{(n-1)}$. Otherwise, it is called *essential*. Typical examples of essential CW complexes are aspherical manifolds.

Rudyak conjectured that in the case of a free fundamental group there should be a Grossman–Whitehead-type inequality, at least for closed manifolds. There were partial results towards Rudyak's conjecture by Dranishnikov, Katz and Rudyak [9] and Strom [18], until it was settled in Dranishnikov [6]. Later it was shown in Dranishnikov [7] (also see the followup by Oprea and Strom [15]) that the Grossman– Whitehead-type estimate holds for complexes with the fundamental group having small cohomological dimension. Namely, it was shown that $\operatorname{cat}_{LS} X \leq \operatorname{cd}(\pi_1(X)) + \frac{1}{2} \dim X$.

Clearly, this upper bound is far from being optimal for fundamental groups with sufficiently large cohomological dimension. Indeed, for the product of an aspherical *m*-manifold *M* with the complex projective space we have $\operatorname{cat}_{LS}(M \times \mathbb{C}P^n) = m + n$ but our upper bound is $m + \frac{1}{2}(m + 2n) = \frac{3}{2}m + n$. Moreover, our bound fails to be useful for complexes with $\operatorname{cd}(\pi_1(X)) \ge \frac{1}{2} \dim X$. The desirable bound here is

$$\operatorname{cat}_{\mathrm{LS}} X \le \frac{1}{2}(\operatorname{cd}(\pi_1(X)) + \dim X).$$

Such an upper bound was proven in [9] for the systolic category, a differential geometry relative of the LS category. Nevertheless, for the classical LS category a similar estimate was missing until now.

In this paper we prove the desirable upper bound. We obtain such a bound as a corollary of the inequality

$$\operatorname{cat}_{\mathrm{LS}} X \le \frac{1}{2}(\operatorname{cat}_{\mathrm{LS}}(u_X) + \dim X),$$

where $u_X: X \to B\pi_1(X)$ is a classifying map for the universal covering of X. We note that this inequality gives a meaningful upper bound on the LS category for complexes with any fundamental group. Also we note that the new upper bound gives the optimal estimate for the above example $M \times \mathbb{C}P^n$, the product of an aspherical manifold and the complex projective space. Namely,

$$\operatorname{cat}_{\mathrm{LS}}(M \times \mathbb{C}P^n) \le \frac{1}{2}(m + (m + 2n)) = m + n.$$

The author is thankful to the referee for valuable remarks.

2 Preliminaries

The proof of the new upper bound for $\operatorname{cat}_{LS} X$ is based on a further modification of the Kolmogorov–Ostrand multiple cover technique [6]. That technique was extracted by Ostrand from the work of Kolmogorov on the 13th Hilbert problem [16]. Also in this paper we make use of the following well-known fact:

Proposition 2.1 Let $f: X \to Y$ be a homotopy domination. Then $\operatorname{cat}_{LS} Y \leq \operatorname{cat}_{LS} X$.

Proof Let $s: Y \to X$ be a left homotopy inverse to f, ie $f \circ s \sim 1_Y$. Let U_0, \ldots, U_k be an open cover of X by sets contractible in X. One can easily check that $s^{-1}(U_0), \ldots, s^{-1}(U_k)$ is an open cover by sets contractible in Y.

Let $\mathcal{U} = \{U_{\alpha}\}_{\alpha \in A}$ be a family of sets in a topological space X. The *multiplicity* of \mathcal{U} (or the *order*) at a point $x \in X$, denoted by $\operatorname{Ord}_{X} \mathcal{U}$, is the number of elements of \mathcal{U} that contain x. A family \mathcal{U} is a cover of X if $\operatorname{Ord}_{X} \mathcal{U} \neq 0$ for all x.

Definition 2.2 A family \mathcal{U} of subsets of X is called a k-cover, with $k \in \mathbb{N}$, if every subfamily of \mathcal{U} that consists of k sets forms a cover of X.

The following is obvious (see [6]):

Proposition 2.3 A family \mathcal{U} that consists of *m* subsets of *X* is an (n+1)-cover of *X* if and only if $\operatorname{Ord}_{x} \mathcal{U} \ge m - n$ for all $x \in X$.

Let K be a simplicial complex. By definition, the dual to the m-skeleton $K^{(m)}$ is a subcomplex L = L(K, m) of the barycentric subdivision βK that consists of simplices of βK which do not intersect $K^{(m)}$. Note that βK is naturally embedded in the join product $K^{(n)} * L$. Then the following is obvious:

Proposition 2.4 For any *n*-dimensional complex *K* the complement $K \setminus K^{(m)}$ to the *m*-skeleton is homotopy equivalent to an (n-m-1)-dimensional complex *L*.

Proof The complex *L* is the dual to $K^{(m)}$. Clearly, dim L = n - m - 1. The complement $K \setminus K^{(m)}$ can be deformed to *L* along the field of intervals defined by the embedding $\beta K \subset K^{(n)} * L$.

Let $f: X \to Y$ be a continuous map. We recall that the LS category of f, $\operatorname{cat}_{LS} f$, is the smallest number k such that X can be covered by k + 1 open sets U_0, \ldots, U_k so that the restriction $f|_{U_i}: U_i \to Y$ of f to each of them is null-homotopic. Clearly,

$$\operatorname{cat}_{\mathrm{LS}} f \leq \operatorname{cat}_{\mathrm{LS}} X, \operatorname{cat}_{\mathrm{LS}} Y.$$

We denote by $u_X: X \to B\pi$, $\pi = \pi_1(X)$, a map that classifies the universal covering $p: \tilde{X} \to X$ of X. Thus, p is the pullback of the universal covering $q: E\pi \to B\pi$. Here $B\pi$ is any aspherical CW complex with the fundamental group π . Thus, any map $u: X \to B\pi$ that induces an isomorphism of the fundamental groups is a classifying map.

The following proposition is proven in [8, Proposition 4.3]:

Proposition 2.5 A classifying map $u_X: X \to B\pi$ of the universal covering of a CW complex X can be deformed into the *d*-skeleton $B\pi^{(d)}$ if and only if $\operatorname{cat}_{\mathrm{LS}}(u_X) \leq d$.

The following proposition for closed manifolds was proven by Katz and Rudyak [13], although it was already known to Berstein in a different equivalent formulation [1].

Proposition 2.6 For an *n*-dimensional CW complex X, $\operatorname{cat}_{LS} X = n$ if and only if X is essential.

Proof Suppose that X is essential. By Proposition 2.5 we obtain that $\operatorname{cat}_{LS}(u_X) > n-1$. Thus, $\operatorname{cat}_{LS} X \ge \operatorname{cat}_{LS}(u_X) \ge n$ and, since dim X = n, $\operatorname{cat}_{LS} X = n$.

The implication in the other direction can be derived from the proof of Theorem 4.4 in [8]. Here we give the sketch of the proof. Let $u_X: X \to B\pi^{(n-1)}$ be a classifying map. To prove the inequality $\operatorname{cat}_{\mathrm{LS}} X \leq n-1$ it suffices to show that the Ganea–Schwarz fibration $p_{n-1}^X: G_{n-1}(X) \to X$ admits a section. Since the fiber of the Ganea–Schwarz fibration $p_{n-1}^{B\pi}$ is (n-2)–connected, it admits a section over $B\pi^{(n-1)}$ and, hence, the map u_X admits a lift $f: X \to G_{n-1}(B\pi)$. Then the map p' in the pullback diagram

$$\begin{array}{ccc} G_{n-1}(X) \xrightarrow{q} Z \xrightarrow{u'_X} G_{n-1}(B\pi) \\ & p' & p_{n-1}^{B\pi} \\ & X \xrightarrow{u_X} B\pi \end{array}$$

admits a section s: $X \to Z$. Here $p_{n-1}^X = p' \circ q$. Since X is *n*-dimensional, to show that s has a lift with respect to q it suffices to prove that the homotopy fiber F of the

map q is (n-1)-connected. Note that the homotopy exact sequence of the fibration

$$F \to (p_{n-1}^X)^{-1}(x_0) \xrightarrow{u'} (p_{n-1}^{B\pi})^{-1}(y_0),$$

where u' is the restriction of $u'_X \circ q$ to the fiber $(p_{n-1}^X)^{-1}(x_0)$ coincides with the homotopy exact sequence of the fibration

$$F \to *_n \Omega(X) \xrightarrow{*\Omega(u_X)} *_n \Omega(B\pi)$$

obtained from the loop map $\Omega(u_X)$ turned into a fibration by taking the iterated join product. Since $\pi_0(\Omega u_X) = 0$, we obtain $\pi_i(*_n \Omega u_X) = 0$ for $i \le n$ (see [8, Proposition 2.4] or [10, Proposition 3.3]) and hence $\pi_i(F) = 0$ for $i \le n-1$. \Box

3 Multiple covers of polyhedra

For a point $x \in X$ in a CW complex X, by d(x) we denote the dimension of the open cell e containing x. We call a subset $A \subset X$ in a CW complex X r-deformable if A can be deformed in X to the r-skeleton $X^{(r)}$. A deformation $H: A \times I \to X$ to the 0-skeleton $X^{(0)}$ is called *monotone* if d(H(x,t)) is a monotonically decreasing function of t for all $x \in A$.

Proposition 3.1 Let X be a connected simplicial complex of dimension $\leq (r+1)N-1$. Then for any $m \geq N$ there exists an open cover $\mathcal{U} = \{U_1, \ldots, U_m\}$ of X by r-deformable sets such that $\operatorname{Ord}_X \mathcal{U} \geq m-k+1$ for every $k \leq N$ and all $x \in X^{((r+1)k-1)}$. Equivalently, the restriction of \mathcal{U} to the ((r+1)k-1)-skeleton is a k-cover.

Moreover, for r = 0 we may assume that each set U_i is monotone r –deformable.

Proof It suffices to prove the proposition for complexes with dim X = (r + 1)N - 1. We do it by induction on n. For N = 1 the statement is obvious. Suppose that it holds true for $N - 1 \ge 1$. We prove it for N by induction on m. First we establish the base of induction by proving the statement for m = N. By the external induction applied to $X^{((r+1)(N-1)-1)}$ with m = N - 1 there is an open cover $\mathcal{U} = \{U_1, \ldots, U_{N-1}\}$ of $X^{((r+1)(N-1)-1)}$ such that each U_i is r-deformable and $\operatorname{Ord}_X \mathcal{U} \ge (N-1)-k+1 = N-k$ for all $x \in X^{((r+1)k-1)}$. We can enlarge each U_i to an r-deformable open in X set $U'_i \subset X$.

Let $G = \bigcup_{i=1}^{N-1} U'_i$. Since the complement $X \setminus X^{((r+1)(N-1)-1)}$ is homotopy equivalent to an *r*-dimensional complex (see Proposition 2.4), $Z_0 = X \setminus G$ is *r*-deformable.

Since Z_0 is closed, we can find an open enlargement W_0 to an *r*-deformable set whose closure does not intersect $X^{((r+1)(N-1)-1)}$. Thus, the cover $\{U'_1, \ldots, U'_{N-1}, W_0\}$ satisfies the condition of the proposition for k = N.

Consider the set

$$Z_1 = \{ x \in X^{((r+1)(N-1)-1)} \mid \operatorname{Ord}_x \mathcal{U} = 1 \}.$$

Clearly, Z_1 is closed. By the induction assumption Z_1 does not intersect the skeleton $X^{((r+1)(N-2)-1)}$. Since the complement,

$$X^{((r+1)(N-1)-1)} \setminus X^{((r+1)(N-2)-1)}$$

is homotopy equivalent to an r-dimensional complex, Z_1 is r-deformable in the skeleton $X^{((r+1)(N-1)-1)}$. Let W_1 be an enlargement of Z_1 to an open r-deformable in X set such that the closure \overline{W}_1 does not intersect $\overline{W}_0 \cup X^{((r+1)(N-2)-1)}$. Note that the cover $\{U'_1, \ldots, U'_{N-1}, W_0 \cup W_1\}$ satisfies the condition of the proposition with k = N and k = N - 1.

Next we consider

$$Z_2 = \{ x \in X^{((r+1)(N-2)-1)} \mid \operatorname{Ord}_X \mathcal{U} = 2 \}$$

and similarly define an open set W_2 and so on up to W_{N-1} . By the construction each set W_i is *r*-deformable and the closures \overline{W}_i are disjoint. Therefore, the union $U'_N = W_0 \cup \cdots \cup W_{N-1}$ is *r*-contractible. Then the cover U'_0, \ldots, U'_N satisfies all the conditions of the proposition for all $k \leq N$.

The proof of the inductive step is very similar to the above. Assume that the statement of the proposition holds for N and $m-1 \ge N$. We prove it for N and m. Let $\mathcal{U} = \{U_1, \ldots, U_{m-1}\}$ be an open cover of X by r-deformable sets such that for any $k \le N$ the restriction of \mathcal{U} to $X^{((r+1)k-1)}$ is a k-cover. Thus, $\operatorname{Ord}_x \mathcal{U} \ge$ (m-1)-N+1=m-N for all x. Let

$$Z_0 = \{ x \in X \mid \operatorname{Ord}_x \mathcal{U} = m - N \}.$$

By the induction assumption, $Z_0 \cap X^{((r+1)(N-1)-1)} = \emptyset$. Thus, Z_0 is *r*-deformable in *X*. We consider an open *r*-deformable neighborhood W_0 of Z_0 for which $\overline{W}_0 \cap X^{(r+1)(N-1)-1} = \emptyset$.

Next we consider the closed set

$$Z_1 = \{ x \in X^{((r+1)(N-1)-1)} \mid \operatorname{Ord}_x \mathcal{U} = m - N + 1 \}.$$

By the induction assumption, Z_1 does not intersect $X^{((r+1)(N-2)-1)}$. As above, we define an *r*-deformable set W_1 with

$$\overline{W}_1 \cap (\overline{W}_0 \cup X^{((r+1)(N-2)-1)}) = \emptyset$$

and so on. We define $U_m = W_0 \cup \cdots \cup W_{N-1}$. Then the condition of the proposition is satisfied for all k with $\mathcal{U}' = \{U_1, \ldots, U_{m-1}, U_m\}$.

Now we revise our proof for r = 0 in order to verify the extra condition of the proposition. Note that dim $X \leq N-1$ in this case. In the proof of the base of induction on m the enlargements U'_i can be chosen monotone deformable to U_i . Hence, each U'_i is monotone 0-deformable. Since W_0 lives in the complement to the (N-2)-skeleton, it is monotone 0-deformable. The set W_1 can be chosen monotone deformable to the monotone 0-deformable set $W_1 \cap X^{(N-2)} \subset X^{(N-2)} \setminus X^{(N-3)}$. Thus, W_1 is monotone 0-deformable and so on. As the result we obtain that the set $U'_N = W_0 \cup \cdots \cup W_{N-1}$ is monotone 0-deformable. In the proof of inductive step the same argument shows that the set $U_m = W_0 \cup \cdots \cup W_{N-1}$ is monotone 0-deformable.

3.1 Borel construction

Let a group π act on spaces X and E with the projections onto the orbit spaces $q_X: X \to X/\pi$ and $q_E: E \to E/\pi = B$. Let $q_{X \times E}: X \times E \to X \times_{\pi} E = (X \times E)/\pi$ denote the projection onto the orbit space of the diagonal action of π on $X \times E$. Then there is a commutative diagram, called the *Borel construction* [2],

$$\begin{array}{c} X \xleftarrow{\operatorname{pr}_{X}} X \times E \xrightarrow{\operatorname{pr}_{2}} E \\ q_{X} \downarrow \qquad q \downarrow \qquad q_{E} \downarrow \\ X/\pi \xleftarrow{p_{E}} X \times_{\pi} E \xrightarrow{p_{X}} B \end{array}$$

If π is discrete and the actions are free and proper, then all projections in the diagram are locally trivial bundles with the structure group π . Then the fiber of p_X is homeomorphic to X and the fiber of p_E is homeomorphic to E. For any invariant subset $Q \subset X$ the map p_X defines the pair of bundles $p_X: (X \times_{\pi} E, Q \times_{\pi} E) \to B$ with the stratified fiber (X, Q) and the structure group π .

If X/π and *B* are CW complexes for proper free actions of the discrete group π , their CW structures define a natural CW structure on $X \times_{\pi} E$ as follows: First, *X* and *E*, being covering spaces, inherit CW structures from X/π and *B*, respectively. Since the diagonal action of π on $X \times E$ preserves the product CW complex structure

on $X \times E$ and takes cells to cells homeomorphically, the orbit space $X \times_{\pi} E$ receives the induced CW complex structure.

Lemma 3.2 Let \tilde{X} be the universal covering of an *n*-dimensional simplicial complex *X* with fundamental group $\pi = \pi_1(X)$. Suppose that the universal covering admits a classifying map $u: X \to B$ to a *d*-dimensional simplicial complex, $\pi_1(B) = \pi$. Let *E* be the universal covering of *B*. Then, for the *n*-skeleton,

$$\operatorname{cat}_{\mathrm{LS}}(\widetilde{X} \times_{\pi} E)^{(n)} \leq \frac{1}{2}(d+n),$$

where the CW complex structure on $\tilde{X} \times_{\pi} E$ is defined by the simplicial complex structures on X and B.

Proof Let $K = \tilde{X} \times_{\pi} E$. Since $(\tilde{X} \times E)^{(n)} = \bigcup_j \tilde{X}^{(n-j)} \times E^{(j)}$, we have

$$K^{(n)} = \bigcup_{j=0}^{d} \widetilde{X}^{(n-j)} \times_{\pi} E^{(j)}.$$

We show that $\operatorname{cat}_{\mathrm{LS}} K^{(n)} \leq d + \lfloor \frac{1}{2}(n-d) \rfloor = \lfloor \frac{1}{2}(d+n) \rfloor.$

Let $m = \lfloor \frac{1}{2}(d+n) \rfloor + 1$. We apply Proposition 3.1 to *B* with r = 0 to obtain an open cover $\mathcal{U} = \{U_1, \ldots, U_m\}$ by monotone 0-deformable in *B* sets with $\operatorname{Ord}_x \mathcal{U} \ge m - j$ for $x \in B^{(j)}$. We note that we apply Proposition 3.1 here with r = 0 and N = d + 1. Thus, we need to be sure that $m \ge d+1$, which is satisfied since $d \le n$. The substitution i = k - 1 helps to see the inequality $\operatorname{Ord}_x \mathcal{U} \ge m - i$ for $x \in B^{(j)}$.

Since $m > \frac{1}{2}(d+n)$, we have 2m-1 > d+n-1 and, hence, $2m-1 \ge n = \dim X$. Hence we can apply Proposition 3.1 with N = m and r = 1 to get an open cover $\mathcal{V} = \{V_1, \ldots, V_m\}$ of X by 1-deformable in X sets such that the restriction of \mathcal{V} to $X^{(2j-1)}$ is a *j*-cover for $j = 1, \ldots, k$, where k is the smallest integer satisfying the inequality $n \le 2k-1$.

For every $i \leq m$ we define

$$W_i = p_E^{-1}(V_i) \cap p_{\tilde{X}}^{-1}(U_i).$$

We claim that the collection of sets $\{W_1, \ldots, W_m\}$ covers $K^{(n)}$. Let $x \in \tilde{X}^{(n-j)} \times_{\pi} E^{(j)}$. Then the point $p_{\tilde{X}}(x) \in B^{(j)}$ is covered by at least m-j sets $U_{k_1}, \ldots, U_{k_{m-j}} \in \mathcal{U}$. Since \mathcal{V} restricted to $X^{(2(m-j)-1)}$ is an (m-j)-cover, the sets $V_{k_1}, \ldots, V_{k_{m-j}}$ cover $X^{(2(m-j)-1)}$. Note that $2(m-j)-1 \ge d+n+2-2j-1 \ge n-j$. Therefore, the point $p_E(x) \in X^{(n-j)}$ is covered by V_{k_s} for some $s \in \{1, \ldots, m-j\}$. Hence, $x \in W_{k_s}$.

3608

We note that $W_i = Q_i \times_{\pi} P_i \subset \tilde{X} \times_{\pi} E$, where $P_i = q_B^{-1}(U_i)$ and $Q_i = q_X^{-1}(V_i)$. Thus, its intersection with $K^{(n)}$ can be written as

$$W_i(n) = W_i \cap K^{(n)} = \bigcup_{j=1}^d Q_i(n-j) \times_{\pi} P_i(j),$$

where $P_i(k) = P_i \cap E^{(k)}$ and $Q_i(\ell) = Q_i \cap \widetilde{X}^{(\ell)}$.

To complete the proof we show that each set $W_i(n)$ is contractible in $K^{(n)}$. We consider a monotone deformation $h_t: U_i \to B$ of U_i to $B^{(0)}$. Let $\tilde{h}_t: P_i \to E$ be the lifting of h_t . Thus, \tilde{h}_t is a π -equivariant deformation of P_i to $E^{(0)}$. Then $1_{\widetilde{X}} \times h_t: \widetilde{X} \times P_i \to \widetilde{X} \times E$ is a π -equivariant deformation and, hence, it defines a deformation of the orbit space $\bar{h}_t: \widetilde{X} \times_{\pi} P_i \to K$ which is a lift of h_t with respect to $p_{\widetilde{X}}$. Since each skeleton $\widetilde{X}^{(i)}$ is π -invariant, the deformation \bar{h}_t preserves the filtration of the fibers \widetilde{X} of the bundle $p_{\widetilde{X}}$ by the skeleta. For the same reason, \bar{h}_t moves the set $Q_i(n-j) \times_{\pi} P_i$ within $Q_i(n-j) \times_{\pi} B$. Since h_t is monotone, \bar{h}_t deforms $W_i(n)$ within $K^{(n)}$ to the set

$$Q_i \times_{\pi} E^{(0)} \subset \widetilde{X} \times_{\pi} E^{(0)} = p_{\widetilde{X}}^{-1}(B^{(0)}) \cong \coprod_{b \in B^{(0)}} \widetilde{X}.$$

Since V_i is 1-deformable in X, so is Q_i in \tilde{X} . Since \tilde{X} is simply connected, Q_i is contractible in \tilde{X} . Thus, we obtain that the set

$$Q_i \times_{\pi} E^{(0)} \cong \coprod_{b \in B^{(0)}} Q_i \subset \coprod_{b \in B^{(0)}} \widetilde{X}$$

is 0-deformable in $\widetilde{X} \times_{\pi} E^{(0)} \subset K^{(n)}$. Therefore, $W_i(n)$ is 0-deformable in $K^{(n)}$. Since K is connected, $W_i(n)$ is contractible in $K^{(n)}$.

Thus, $\operatorname{cat}_{\mathrm{LS}} K^{(n)} \le m - 1 = \left\lfloor \frac{1}{2}(d+n) \right\rfloor \le \frac{1}{2}(d+n).$

4 Main result

Theorem 4.1 For every simplicial complex *X* there is the inequality

$$\operatorname{cat}_{\operatorname{LS}} X \leq \frac{1}{2} (\operatorname{cat}_{\operatorname{LS}}(u_X) + \dim X),$$

where $u_X: X \to B\pi$ is a classifying map for the universal cover of X.

Proof Let dim X = n and cat_{LS} $(u_X) = d$. In the proof we use the notation $B = B\pi$, $B^d = B\pi^{(d)}$ and $E = E\pi$, $E^d = E\pi^{(d)}$. By Proposition 2.5 we may assume that the map u_X lands in B^d . Consider the diagram generated by the Borel construction,

Since *E* is contractible, the map p_E is a homotopy equivalence. Let *g* be its homotopy inverse. Applying the homotopy lifting property we may assume that *g* is a section of p_E . Then the map $p_{\tilde{X}}$ is homotopic to $p_{\tilde{X}} \circ g \circ p_E$. Note that the map $p_{\tilde{X}} \circ g: X \to B$ is a classifying map for *X*. Thus, it is homotopic to the map $u_X: X \to B$, whose image is in B^d . Therefore, $p_{\tilde{X}}: \tilde{X} \times_{\pi} E \to B$ is homotopic to a map with image in B^d . Let $p_t: \tilde{X} \times_{\pi} E \to B$ be such a homotopy. Thus, $p_0 = p_{\tilde{X}}$ and $p_1(\tilde{X} \times_{\pi} E) \subset B^d$. Let $\bar{p}_t: \tilde{X} \times_{\pi} E \to \tilde{X} \times_{\pi} E$ be the lift of p_t with $\bar{p}_0 = \text{id}$. Then $\bar{p}_1(\tilde{X} \times_{\pi} E) \subset \tilde{X} \times_{\pi} E^d$.

First, we note that $s = \overline{p}_1 \circ g: X \to \widetilde{X} \times_{\pi} E^d$ is a homotopy section of p_{E^d} . Indeed, the homotopy $h_t = p_E \circ \overline{p}_t \circ g: X \to X$ joins $h_0 = p_E \circ \overline{p}_0 \circ g = p_E \circ g = 1_X$ with $h_1 = p_E \circ \overline{p}_1 \circ g = p_{E^d} \circ \overline{p}_1 \circ g = p_{E^d} \circ s$.

We may assume that *B* is a simplicial complex. Let $K = \tilde{X} \times_{\pi} E^d$. We consider the CW complex structure on *K* defined by the simplicial complex structures on *X* and *B*. Next we show that the restriction $(p_{E^d})|_{K^{(n)}} \colon K^{(n)} \to X$ is a homotopy domination. Since dim X = n, there is a homotopy $s_t \colon X \to K$ with $s_0 = s$ and $s_1(X) \subset K^{(n)}$. Then the homotopy $q_t = p_{E^d} \circ s_t \colon X \to X$ joins $q_0 = p_{E^d} \circ s \sim 1_X$ with $q_1 = p_{E^d} \circ s_1 = (p_{E^d})|_{K^{(n)}} \circ s_1$.

Therefore, by Proposition 2.1, $\operatorname{cat}_{LS} X \leq \operatorname{cat}_{LS} K^{(n)}$. Lemma 3.2 implies

$$\operatorname{cat}_{\mathrm{LS}} X \le \frac{1}{2}(d+n).$$

Corollary 4.2 For any CW complex X,

$$\operatorname{cat}_{\mathrm{LS}} X \leq \frac{1}{2} \big(\operatorname{cd}(\pi_1(X)) + \dim X \big).$$

Proof We note that every CW complex is homotopy equivalent to a simplicial complex of the same dimension. By the Eilenberg–Ganea theorem, $\pi = \pi_1(X)$ has a classifying complex $B\pi$ of dimension equal to $cd(\pi)$ whenever $cd(\pi) \neq 2$ (see [4]). Thus, if $cd(\pi) \neq 2$, the result immediately follows from Theorem 4.1.

In the case when $cd(\pi) = 2$ one can find a classifying complex $B\pi$ of dimension three [4]. Then obstruction theory implies that there is a map $r: B\pi \to B\pi^{(2)}$ which is the identity on the 1-skeleton. It is easy to check that r induces an isomorphism of the fundamental groups: obviously it is surjective, and the kernel of $r_*: \pi_1(B) \to$ $\pi_1(B\pi^{(2)})$ is trivial. In particular, its composition with a classifying map $r \circ u_X: X \to$ $B\pi^{(2)}$ is a classifying map and we can apply Theorem 4.1 to it. \Box

Theorem 4.3 For any locally trivial bundle $p: E \rightarrow B$ with a simply connected fiber *F* and an aspherical base *B*,

$$\operatorname{cat}_{\mathrm{LS}} E \leq \dim B + \frac{1}{2} \dim F.$$

Proof By Corollary 4.2,

$$\operatorname{cat}_{\mathrm{LS}} E \leq \frac{1}{2} \left(\operatorname{cd}(\pi_1(E)) + \dim E \right) = \frac{1}{2} \left(\operatorname{cd}(\pi_1(B)) + \dim B + \dim F \right)$$
$$\leq \frac{1}{2} \left(2 \dim B + \dim F \right) = \dim B + \frac{1}{2} \dim F.$$

When B is an aspherical manifold we obtain an upper bound

$$\operatorname{cat}_{\mathrm{LS}} E \leq \operatorname{cat}_{\mathrm{LS}} B + \frac{1}{2} \dim F.$$

Therefore, for every aspherical *n*-manifold *M* the LS category of the total manifold of an S^3 -fibration $f: N \to M$ is at most n + 1. For principal S^3 -bundles the same estimate was obtained in [12]. For nonprincipal S^3 -bundles the old upper bound was only n + 2, just in view of the fact that *N* is inessential. A concrete example would be the total space *N* of the pullback of the nonprincipal S^3 -bundle (we refer to [3] for the proof of nonprincipality) $h: SO(5) \times_{SO(4)} S^3 \to S^4$ via an essential map of a 4-torus $g: T^4 \to S^4$. I don't see how to get our estimate cat_{LS} $N \le 5$ by any other means.

In the case when additionally $\operatorname{cat}_{LS} F = \frac{1}{2} \dim F$, like for $F = \mathbb{C}P^n$, we have a Hurewicz-type formula for cat_{LS} ,

$$\operatorname{cat}_{\operatorname{LS}} E \leq \operatorname{cat}_{\operatorname{LS}} B + \operatorname{cat}_{\operatorname{LS}} F.$$

We recall that for general fibrations the Hurewicz-type formula does not hold. The best-known estimate for general locally trivial bundles is

$$\operatorname{cat}_{\mathrm{LS}} E \leq (\operatorname{cat}_{\mathrm{LS}} B + 1)(\operatorname{cat}_{\mathrm{LS}} F + 1) - 1;$$

see [5]. Note that fibrations with the fiber $\mathbb{C}P^n$ can be produced by projectivization of the spherical bundles of complex vector bundles.

Alexander Dranishnikov

4.1 *r*-Connected universal cover

We recall a classical result that for an r-connected, n-dimensional complex X,

$$\operatorname{cat}_{\operatorname{LS}} X \leq \frac{n}{r+1}.$$

If $X = B \times Y$ with *r*-connected *Y*, we have

$$\operatorname{cat}_{\operatorname{LS}} X \leq \operatorname{cat}_{\operatorname{LS}} B + \frac{\dim Y}{r+1} = \operatorname{cat}_{\operatorname{LS}} B + \frac{n-\dim B}{r+1}$$
$$\leq \operatorname{cat}_{\operatorname{LS}} B + \frac{n-\operatorname{cat}_{\operatorname{LS}} B}{r+1} = \frac{r \operatorname{cat}_{\operatorname{LS}} B+n}{r+1}.$$

Below we obtain a similar estimate for general X.

In the proof of the main result we applied our technical proposition (Proposition 3.1) with r = 0 and r = 1. Using Proposition 3.1 with r = 0 and arbitrary r > 0 brings the following:

Lemma 4.4 Suppose that \tilde{X} is the universal covering of an *n*-dimensional simplicial complex *X* where the fundamental group $\pi = \pi_1(X)$ is *r*-connected. Assume that \tilde{X} admits a classifying map to an *d*-dimensional complex *B* with $\pi_1(B) = \pi$. Let *E* be the universal covering of *B*. Then

$$\operatorname{cat}_{\operatorname{LS}}(\widetilde{X} \times_{\pi} E)^{(n)} \leq \frac{rd+n}{r+1}.$$

This lemma brings the following generalization of Theorem 4.1:

Theorem 4.5 For every simplicial complex X with r –connected universal cover \widetilde{X} , there is the inequality

$$\operatorname{cat}_{\operatorname{LS}} X \le \frac{r \operatorname{cat}_{\operatorname{LS}}(u_X) + \dim X}{r+1}$$

where $u_X: X \to B\pi$ is a classifying map for the universal cover of X.

Corollary 4.6 For any CW complex X with r –connected universal covering \tilde{X} ,

$$\operatorname{cat}_{\mathrm{LS}} X \le \frac{r \operatorname{cd}(\pi_1(X)) + \dim X}{r+1}$$

References

- I Berstein, On the Lusternik–Schnirelmann category of Grassmannians, Math. Proc. Cambridge Philos. Soc. 79 (1976) 129–134 MR
- [2] A Borel, Seminar on transformation groups, Annals of Mathematics Studies 46, Princeton Univ. Press (1960) MR
- [3] **P Bouwknegt**, **J Evslin**, **V Mathai**, *Spherical T-duality*, *II: An infinity of spherical T-duals for non-principal* SU(2)*-bundles*, J. Geom. Phys. 92 (2015) 46–54 MR
- [4] KS Brown, Cohomology of groups, Graduate Texts in Mathematics 87, Springer (1982) MR
- [5] O Cornea, G Lupton, J Oprea, D Tanré, Lusternik–Schnirelmann category, Mathematical Surveys and Monographs 103, Amer. Math. Soc., Providence, RI (2003) MR
- [6] AN Dranishnikov, On the Lusternik–Schnirelmann category of spaces with 2– dimensional fundamental group, Proc. Amer. Math. Soc. 137 (2009) 1489–1497 MR
- [7] A Dranishnikov, *The Lusternik–Schnirelmann category and the fundamental group*, Algebr. Geom. Topol. 10 (2010) 917–924 MR
- [8] A N Dranishnikov, *The LS category of the product of lens spaces*, Algebr. Geom. Topol. 15 (2015) 2983–3008 MR
- [9] A N Dranishnikov, M G Katz, Y B Rudyak, Cohomological dimension, self-linking, and systolic geometry, Israel J. Math. 184 (2011) 437–453 MR
- [10] A Dranishnikov, R Sadykov, On the LS-category and topological complexity of a connected sum, Proc. Amer. Math. Soc. 147 (2019) 2235–2244 MR
- [11] DP Grossman, An estimation of the category of Lusternik–Shnirelman, C. R. (Doklady) Acad. Sci. URSS 54 (1946) 109–112 MR
- [12] N Iwase, M Mimura, T Nishimoto, Lusternik–Schnirelmann category of non-simply connected compact simple Lie groups, Topology Appl. 150 (2005) 111–123 MR
- [13] MG Katz, YB Rudyak, Lusternik–Schnirelmann category and systolic category of low-dimensional manifolds, Comm. Pure Appl. Math. 59 (2006) 1433–1456 MR
- [14] L Lusternik, L Schnirelmann, Sur le probleme de trois geodesiquesfermees sur les surfaces de genus 0, C. R. Acad. Sci. Paris Sér. I Math. 189 (1929) 269–271
- [15] J Oprea, J Strom, Lusternik–Schnirelmann category, complements of skeleta and a theorem of Dranishnikov, Algebr. Geom. Topol. 10 (2010) 1165–1186 MR
- [16] P A Ostrand, Dimension of metric spaces and Hilbert's problem 13, Bull. Amer. Math. Soc. 71 (1965) 619–622 MR
- [17] Y B Rudyak, On analytical applications of stable homotopy (the Arnold conjecture, critical points), Math. Z. 230 (1999) 659–672 MR

- [18] **J Strom**, *Lusternik–Schnirelmann category of spaces with free fundamental group*, Algebr. Geom. Topol. 7 (2007) 1805–1808 MR
- [19] G W Whitehead, *The homology suspension*, from "Colloque de topologie algébrique", Georges Thone, Liège (1957) 89–95 MR

Department of Mathematics, University of Florida Gainesville, FL, United States

dranish@math.ufl.edu

Received: 12 June 2018 Revised: 18 February 2019