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An upper bound on the LS category
in presence of the fundamental group

ALEXANDER DRANISHNIKOV

We prove that
catLS X � 1

2

�
cd.�1.X //C dim X

�
for every CW complex X, where cd.�1.X // denotes the cohomological dimension
of the fundamental group of X. We obtain this as a corollary of the inequality

catLS X � 1
2
.catLS.uX /C dim X /;

where uX W X ! B�1.X / is a classifying map for the universal covering of X.

55M30

1 Introduction

The reduced Lusternik–Schnirelmann category (briefly LS category) catLS X of a topo-
logical space X is the minimal number n such that there is an open cover fU0; : : : ;Ung

of X by nC 1 contractible sets in X. We note that the LS category is a homotopy
invariant. The Lusternik–Schnirelmann category has many applications. Perhaps the
most famous is the classical Lusternik–Schnirelmann theorem — see Cornea, Lupton,
Oprea and Tanré [5] — which states that catLS M gives a low bound for the number
of critical points on a manifold M of any smooth not necessarily Morse function.
This theorem was used by Lusternik and Schnirelmann in their solution of Poincaré’s
problem on the existence of three closed geodesics on a 2–sphere [14]. In modern time
the LS category was used in the proof of the Arnold conjecture on symplectomorphisms;
see Rudyak [17].

The LS category is a numerical homotopy invariant which is difficult to compute. Even
to get a reasonable bound for catLS very often is a serious problem. In this paper
we discuss only upper bounds. For nice spaces, such as CW complexes, it is an easy
observation that catLS X � dim X. In the 1940s Grossman [11] (and independently
in the 1950s G W Whitehead [19]; see [5]) proved that, for simply connected CW
complexes, catLS X � 1

2
dim X .
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3602 Alexander Dranishnikov

In the presence of the fundamental group the LS category can be equal to the dimension.
In fact, catLS X D dim X if and only if X is essential in the sense of Gromov. This
was proven for manifolds by Dranishnikov, Katz and Rudyak [13]. For general CW
complexes we refer to Proposition 2.6 of this paper. We recall that an n–dimensional
complex X is called inessential if a map uX W X!B�1.X / that classifies its universal
cover can be deformed to the .n�1/–skeleton .B�1.X //

.n�1/ . Otherwise, it is called
essential. Typical examples of essential CW complexes are aspherical manifolds.

Rudyak conjectured that in the case of a free fundamental group there should be
a Grossman–Whitehead-type inequality, at least for closed manifolds. There were
partial results towards Rudyak’s conjecture by Dranishnikov, Katz and Rudyak [9]
and Strom [18], until it was settled in Dranishnikov [6]. Later it was shown in Dran-
ishnikov [7] (also see the followup by Oprea and Strom [15]) that the Grossman–
Whitehead-type estimate holds for complexes with the fundamental group having small
cohomological dimension. Namely, it was shown that catLS X � cd.�1.X //C

1
2

dim X .

Clearly, this upper bound is far from being optimal for fundamental groups with
sufficiently large cohomological dimension. Indeed, for the product of an aspherical
m–manifold M with the complex projective space we have catLS.M �CPn/DmCn

but our upper bound is mC 1
2
.mC 2n/D 3

2
mC n. Moreover, our bound fails to be

useful for complexes with cd.�1.X //�
1
2

dim X . The desirable bound here is

catLS X � 1
2
.cd.�1.X //C dim X /:

Such an upper bound was proven in [9] for the systolic category, a differential geometry
relative of the LS category. Nevertheless, for the classical LS category a similar estimate
was missing until now.

In this paper we prove the desirable upper bound. We obtain such a bound as a corollary
of the inequality

catLS X � 1
2
.catLS.uX /C dim X /;

where uX W X!B�1.X / is a classifying map for the universal covering of X. We note
that this inequality gives a meaningful upper bound on the LS category for complexes
with any fundamental group. Also we note that the new upper bound gives the optimal
estimate for the above example M �CPn , the product of an aspherical manifold and
the complex projective space. Namely,

catLS.M �CPn/� 1
2
.mC .mC 2n//DmC n:

The author is thankful to the referee for valuable remarks.
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2 Preliminaries

The proof of the new upper bound for catLS X is based on a further modification of
the Kolmogorov–Ostrand multiple cover technique [6]. That technique was extracted
by Ostrand from the work of Kolmogorov on the 13th Hilbert problem [16]. Also in
this paper we make use of the following well-known fact:

Proposition 2.1 Let f W X ! Y be a homotopy domination. Then catLS Y � catLS X.

Proof Let sW Y !X be a left homotopy inverse to f , ie f ıs � 1Y . Let U0; : : : ;Uk

be an open cover of X by sets contractible in X. One can easily check that s�1.U0/; : : : ,
s�1.Uk/ is an open cover by sets contractible in Y .

Let U D fU˛g˛2A be a family of sets in a topological space X. The multiplicity of U
(or the order) at a point x 2 X, denoted by Ordx U , is the number of elements of U
that contain x . A family U is a cover of X if Ordx U ¤ 0 for all x .

Definition 2.2 A family U of subsets of X is called a k –cover, with k 2N , if every
subfamily of U that consists of k sets forms a cover of X.

The following is obvious (see [6]):

Proposition 2.3 A family U that consists of m subsets of X is an .nC1/–cover of X

if and only if Ordx U �m� n for all x 2X.

Let K be a simplicial complex. By definition, the dual to the m–skeleton K.m/ is a
subcomplex LDL.K;m/ of the barycentric subdivision ˇK that consists of simplices
of ˇK which do not intersect K.m/ . Note that ˇK is naturally embedded in the join
product K.n/ �L. Then the following is obvious:

Proposition 2.4 For any n–dimensional complex K the complement K nK.m/ to
the m–skeleton is homotopy equivalent to an .n�m�1/–dimensional complex L.

Proof The complex L is the dual to K.m/ . Clearly, dim L D n � m � 1. The
complement K nK.m/ can be deformed to L along the field of intervals defined by
the embedding ˇK �K.n/ �L.

Algebraic & Geometric Topology, Volume 19 (2019)



3604 Alexander Dranishnikov

Let f W X ! Y be a continuous map. We recall that the LS category of f , catLS f , is
the smallest number k such that X can be covered by kC 1 open sets U0; : : : ;Uk so
that the restriction f jUi

W Ui! Y of f to each of them is null-homotopic. Clearly,

catLS f � catLS X; catLS Y:

We denote by uX W X !B� , � D �1.X /, a map that classifies the universal covering
pW zX ! X of X. Thus, p is the pullback of the universal covering qW E� ! B� .
Here B� is any aspherical CW complex with the fundamental group � . Thus, any map
uW X ! B� that induces an isomorphism of the fundamental groups is a classifying
map.

The following proposition is proven in [8, Proposition 4.3]:

Proposition 2.5 A classifying map uX W X ! B� of the universal covering of a CW
complex X can be deformed into the d –skeleton B�.d/ if and only if catLS.uX /� d .

The following proposition for closed manifolds was proven by Katz and Rudyak [13],
although it was already known to Berstein in a different equivalent formulation [1].

Proposition 2.6 For an n–dimensional CW complex X, catLS X D n if and only if
X is essential.

Proof Suppose that X is essential. By Proposition 2.5 we obtain that catLS.uX />n�1.
Thus, catLS X � catLS.uX /� n and, since dim X D n, catLS X D n.

The implication in the other direction can be derived from the proof of Theorem 4.4
in [8]. Here we give the sketch of the proof. Let uX W X ! B�.n�1/ be a classifying
map. To prove the inequality catLS X �n�1 it suffices to show that the Ganea–Schwarz
fibration pX

n�1
W Gn�1.X /!X admits a section. Since the fiber of the Ganea–Schwarz

fibration pB�
n�1

is .n�2/–connected, it admits a section over B�.n�1/ and, hence, the
map uX admits a lift f W X !Gn�1.B�/. Then the map p0 in the pullback diagram

Gn�1.X /
q
// Z

p0

��

u0
X
// Gn�1.B�/

pB�
n�1
��

X
uX

// B�

admits a section sW X !Z . Here pX
n�1
D p0 ıq . Since X is n–dimensional, to show

that s has a lift with respect to q it suffices to prove that the homotopy fiber F of the
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An upper bound on the LS category in presence of the fundamental group 3605

map q is .n�1/–connected. Note that the homotopy exact sequence of the fibration

F ! .pX
n�1/

�1.x0/
u0
�! .pB�

n�1/
�1.y0/;

where u0 is the restriction of u0
X
ı q to the fiber .pX

n�1
/�1.x0/ coincides with the

homotopy exact sequence of the fibration

F !�n�.X /
��.uX /
����! �n�.B�/

obtained from the loop map �.uX / turned into a fibration by taking the iterated
join product. Since �0.�uX / D 0, we obtain �i.�n�uX / D 0 for i � n (see
[8, Proposition 2.4] or [10, Proposition 3.3]) and hence �i.F /D 0 for i � n� 1.

3 Multiple covers of polyhedra

For a point x 2X in a CW complex X, by d.x/ we denote the dimension of the open
cell e containing x . We call a subset A� X in a CW complex X r –deformable if
A can be deformed in X to the r –skeleton X .r/ . A deformation H W A� I !X to
the 0–skeleton X .0/ is called monotone if d.H.x; t// is a monotonically decreasing
function of t for all x 2A.

Proposition 3.1 Let X be a connected simplicial complex of dimension �.rC1/N�1.
Then for any m � N there exists an open cover U D fU1; : : : ;Umg of X by r –
deformable sets such that Ordx U�m�kC1 for every k�N and all x2X ..rC1/k�1/ .
Equivalently, the restriction of U to the ..rC1/k�1/–skeleton is a k –cover.

Moreover, for r D 0 we may assume that each set Ui is monotone r –deformable.

Proof It suffices to prove the proposition for complexes with dim X D .r C 1/N � 1.
We do it by induction on n. For N D 1 the statement is obvious. Suppose that it holds
true for N � 1� 1. We prove it for N by induction on m. First we establish the base
of induction by proving the statement for mDN . By the external induction applied
to X ..rC1/.N�1/�1/ with mDN � 1 there is an open cover U D fU1; : : : ;UN�1g of
X ..rC1/.N�1/�1/ such that each Ui is r –deformable and Ordx U � .N �1/�kC1D

N � k for all x 2 X ..rC1/k�1/ . We can enlarge each Ui to an r –deformable open
in X set U 0i �X.

Let G D
SN�1

iD1 U 0i . Since the complement X nX ..rC1/.N�1/�1/ is homotopy equiva-
lent to an r –dimensional complex (see Proposition 2.4), Z0DX nG is r –deformable.

Algebraic & Geometric Topology, Volume 19 (2019)



3606 Alexander Dranishnikov

Since Z0 is closed, we can find an open enlargement W0 to an r –deformable set whose
closure does not intersect X ..rC1/.N�1/�1/ . Thus, the cover fU 0

1
; : : : ;U 0

N�1
;W0g

satisfies the condition of the proposition for k DN .

Consider the set

Z1 D fx 2X ..rC1/.N�1/�1/
j Ordx U D 1g:

Clearly, Z1 is closed. By the induction assumption Z1 does not intersect the skeleton
X ..rC1/.N�2/�1/ . Since the complement,

X ..rC1/.N�1/�1/
nX ..rC1/.N�2/�1/

is homotopy equivalent to an r –dimensional complex, Z1 is r –deformable in the
skeleton X ..rC1/.N�1/�1/ . Let W1 be an enlargement of Z1 to an open r –deformable
in X set such that the closure W1 does not intersect W0 [X ..rC1/.N�2/�1/ . Note
that the cover fU 0

1
; : : : ;U 0

N�1
;W0[W1g satisfies the condition of the proposition with

k DN and k DN � 1.

Next we consider

Z2 D fx 2X ..rC1/.N�2/�1/
j Ordx U D 2g

and similarly define an open set W2 and so on up to WN�1 . By the construction
each set Wi is r –deformable and the closures Wi are disjoint. Therefore, the union
U 0

N
DW0 [ � � � [WN�1 is r –contractible. Then the cover U 0

0
; : : : ;U 0

N
satisfies all

the conditions of the proposition for all k �N .

The proof of the inductive step is very similar to the above. Assume that the statement
of the proposition holds for N and m � 1 � N. We prove it for N and m. Let
U D fU1; : : : ;Um�1g be an open cover of X by r –deformable sets such that for
any k � N the restriction of U to X ..rC1/k�1/ is a k –cover. Thus, Ordx U �
.m� 1/�N C 1Dm�N for all x . Let

Z0 D fx 2X j Ordx U Dm�N g:

By the induction assumption, Z0\X ..rC1/.N�1/�1/D∅. Thus, Z0 is r –deformable
in X. We consider an open r –deformable neighborhood W0 of Z0 for which
W0\X .rC1/.N�1/�1 D∅.

Next we consider the closed set

Z1 D fx 2X ..rC1/.N�1/�1/
j Ordx U Dm�N C 1g:

Algebraic & Geometric Topology, Volume 19 (2019)
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By the induction assumption, Z1 does not intersect X ..rC1/.N�2/�1/ . As above, we
define an r –deformable set W1 with

W1\ .W0[X ..rC1/.N�2/�1//D∅

and so on. We define Um DW0[ � � � [WN�1 . Then the condition of the proposition
is satisfied for all k with U 0 D fU1; : : : ;Um�1;Umg.

Now we revise our proof for r D 0 in order to verify the extra condition of the
proposition. Note that dim X �N �1 in this case. In the proof of the base of induction
on m the enlargements U 0i can be chosen monotone deformable to Ui . Hence, each U 0i
is monotone 0–deformable. Since W0 lives in the complement to the .N�2/–skeleton,
it is monotone 0–deformable. The set W1 can be chosen monotone deformable to the
monotone 0–deformable set W1\X .N�2/�X .N�2/nX .N�3/ . Thus, W1 is monotone
0–deformable and so on. As the result we obtain that the set U 0

N
DW0[ � � � [WN�1

is monotone 0–deformable. In the proof of inductive step the same argument shows
that the set Um DW0[ � � � [WN�1 is monotone 0–deformable.

3.1 Borel construction

Let a group � act on spaces X and E with the projections onto the orbit spaces
qX W X !X=� and qE W E!E=� DB. Let qX�E W X �E!X ��ED .X �E/=�

denote the projection onto the orbit space of the diagonal action of � on X �E. Then
there is a commutative diagram, called the Borel construction [2],

X

qX

��

X �E

q

��

prX
oo

pr2
// E

qE

��

X=� X �� E
pE
oo

pX
// B

If � is discrete and the actions are free and proper, then all projections in the diagram
are locally trivial bundles with the structure group � . Then the fiber of pX is homeo-
morphic to X and the fiber of pE is homeomorphic to E. For any invariant subset
Q � X the map pX defines the pair of bundles pX W .X �� E;Q�� E/! B with
the stratified fiber .X;Q/ and the structure group � .

If X=� and B are CW complexes for proper free actions of the discrete group � ,
their CW structures define a natural CW structure on X �� E as follows: First, X

and E , being covering spaces, inherit CW structures from X=� and B, respectively.
Since the diagonal action of � on X �E preserves the product CW complex structure
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on X �E and takes cells to cells homeomorphically, the orbit space X �� E receives
the induced CW complex structure.

Lemma 3.2 Let zX be the universal covering of an n–dimensional simplicial complex
X with fundamental group � D �1.X /. Suppose that the universal covering admits a
classifying map uW X ! B to a d –dimensional simplicial complex, �1.B/D � . Let
E be the universal covering of B. Then, for the n–skeleton,

catLS. zX �� E/.n/ � 1
2
.d C n/;

where the CW complex structure on zX �� E is defined by the simplicial complex
structures on X and B.

Proof Let K D zX �� E. Since . zX �E/.n/ D
S

j
zX .n�j/ �E.j/ , we have

K.n/
D

d[
jD0

zX .n�j/
�� E.j/:

We show that catLS K.n/ � d C
�

1
2
.n� d/

˘
D
�

1
2
.d C n/

˘
.

Let mD
�

1
2
.dCn/

˘
C1. We apply Proposition 3.1 to B with r D 0 to obtain an open

cover U D fU1; : : : ;Umg by monotone 0–deformable in B sets with Ordx U �m� j

for x 2 B.j/ . We note that we apply Proposition 3.1 here with r D 0 and N D d C 1.
Thus, we need to be sure that m�dC1, which is satisfied since d �n. The substitution
i D k � 1 helps to see the inequality Ordx U �m� i for x 2 B.j/ .

Since m> 1
2
.d C n/, we have 2m� 1> d C n� 1 and, hence, 2m� 1� nD dim X.

Hence we can apply Proposition 3.1 with N D m and r D 1 to get an open cover
V D fV1; : : : ;Vmg of X by 1–deformable in X sets such that the restriction of V
to X .2j�1/ is a j –cover for j D 1; : : : ; k , where k is the smallest integer satisfying
the inequality n� 2k � 1.

For every i �m we define

Wi D p�1
E .Vi/\p�1

zX
.Ui/:

We claim that the collection of sets fW1; : : : ;Wmg covers K.n/. Let x2 zX .n�j/��E.j/.
Then the point p zX .x/ 2 B.j/ is covered by at least m� j sets Uk1

; : : : ;Ukm�j
2 U .

Since V restricted to X .2.m�j/�1/ is an .m�j /–cover, the sets Vk1
; : : : ;Vkm�j

cover
X .2.m�j/�1/ . Note that 2.m�j /�1�dCnC2�2j �1�n�j . Therefore, the point
pE.x/ 2X .n�j/ is covered by Vks

for some s 2 f1; : : : ;m� j g. Hence, x 2Wks
.
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We note that Wi DQi �� Pi �
zX �� E , where Pi D q�1

B
.Ui/ and Qi D q�1

X
.Vi/.

Thus, its intersection with K.n/ can be written as

Wi.n/DWi \K.n/
D

d[
j

Qi.n� j /�� Pi.j /;

where Pi.k/D Pi \E.k/ and Qi.`/DQi \
zX .`/ .

To complete the proof we show that each set Wi.n/ is contractible in K.n/ . We consider
a monotone deformation ht W Ui ! B of Ui to B.0/ . Let zht W Pi !E be the lifting
of ht . Thus, zht is a � –equivariant deformation of Pi to E.0/ . Then 1 zX�ht W

zX�Pi!

zX �E is a � –equivariant deformation and, hence, it defines a deformation of the orbit
space xht W

zX �� Pi!K which is a lift of ht with respect to p zX . Since each skeleton
zX .i/ is � –invariant, the deformation xht preserves the filtration of the fibers zX of the

bundle p zX by the skeleta. For the same reason, xht moves the set Qi.n� j /�� Pi

within Qi.n� j /�� B. Since ht is monotone, xht moves Qi.n� j /�� P .j/ within
Qi.n� j /�� B.j/ �K.n/ for all j . Thus, xht deforms Wi.n/ within K.n/ to the set

Qi �� E.0/
� zX �� E.0/

D p�1
zX
.B.0//Š

a
b2B.0/

zX :

Since Vi is 1–deformable in X, so is Qi in zX. Since zX is simply connected, Qi is
contractible in zX. Thus, we obtain that the set

Qi �� E.0/
Š

a
b2B.0/

Qi �

a
b2B.0/

zX

is 0–deformable in zX �� E.0/ �K.n/ . Therefore, Wi.n/ is 0–deformable in K.n/ .
Since K is connected, Wi.n/ is contractible in K.n/ .

Thus, catLS K.n/ �m� 1D
�

1
2
.d C n/

˘
�

1
2
.d C n/.

4 Main result

Theorem 4.1 For every simplicial complex X there is the inequality

catLS X � 1
2
.catLS.uX /C dim X /;

where uX W X ! B� is a classifying map for the universal cover of X.
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Proof Let dim X D n and catLS.uX /D d . In the proof we use the notation B DB� ,
Bd D B�.d/ and E DE� , Ed DE�.d/ . By Proposition 2.5 we may assume that
the map uX lands in Bd . Consider the diagram generated by the Borel construction,

X zX �� E
pE

oo
p zX

// B

X zX �� Ed
p

Ed
oo

�

OO

p zX j
// Bd

�

OO

Since E is contractible, the map pE is a homotopy equivalence. Let g be its homotopy
inverse. Applying the homotopy lifting property we may assume that g is a section
of pE . Then the map p zX is homotopic to p zX ıgıpE . Note that the map p zX ıgW X!

B is a classifying map for X. Thus, it is homotopic to the map uX W X ! B, whose
image is in Bd . Therefore, p zX W

zX��E!B is homotopic to a map with image in Bd .
Let pt W

zX��E!B be such a homotopy. Thus, p0Dp zX and p1. zX��E/�Bd . Let
xpt W
zX ��E! zX ��E be the lift of pt with xp0D id. Then xp1. zX ��E/� zX ��Ed .

First, we note that s D xp1 ıgW X ! zX �� Ed is a homotopy section of pEd . Indeed,
the homotopy ht D pE ı xpt ıgW X !X joins h0D pE ı xp0 ıgD pE ıgD 1X with
h1 D pE ı xp1 ıg D pEd ı xp1 ıg D pEd ı s .

We may assume that B is a simplicial complex. Let K D zX �� Ed . We consider
the CW complex structure on K defined by the simplicial complex structures on X

and B. Next we show that the restriction .pEd /jK .n/ W K.n/ ! X is a homotopy
domination. Since dim X D n, there is a homotopy st W X ! K with s0 D s and
s1.X /�K.n/ . Then the homotopy qt D pEd ı st W X !X joins q0 D pEd ı s � 1X

with q1 D pEd ı s1 D .pEd /jK .n/ ı s1 .

Therefore, by Proposition 2.1, catLS X � catLS K.n/ . Lemma 3.2 implies

catLS X � 1
2
.d C n/:

Corollary 4.2 For any CW complex X,

catLS X � 1
2

�
cd.�1.X //C dim X

�
:

Proof We note that every CW complex is homotopy equivalent to a simplicial complex
of the same dimension. By the Eilenberg–Ganea theorem, � D�1.X / has a classifying
complex B� of dimension equal to cd.�/ whenever cd.�/ ¤ 2 (see [4]). Thus, if
cd.�/¤ 2, the result immediately follows from Theorem 4.1.
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In the case when cd.�/ D 2 one can find a classifying complex B� of dimension
three [4]. Then obstruction theory implies that there is a map r W B�! B�.2/ which
is the identity on the 1–skeleton. It is easy to check that r induces an isomorphism
of the fundamental groups: obviously it is surjective, and the kernel of r�W �1.B/!

�1.B�
.2// is trivial. In particular, its composition with a classifying map r ıuX W X !

B�.2/ is a classifying map and we can apply Theorem 4.1 to it.

Theorem 4.3 For any locally trivial bundle pW E ! B with a simply connected
fiber F and an aspherical base B,

catLS E � dim BC 1
2

dim F:

Proof By Corollary 4.2,

catLS E � 1
2

�
cd.�1.E//C dim E

�
D

1
2

�
cd.�1.B//C dim BC dim F

�
�

1
2
.2 dim BC dim F /D dim BC 1

2
dim F:

When B is an aspherical manifold we obtain an upper bound

catLS E � catLS BC 1
2

dim F:

Therefore, for every aspherical n–manifold M the LS category of the total manifold
of an S3 –fibration f W N !M is at most nC 1. For principal S3 –bundles the same
estimate was obtained in [12]. For nonprincipal S3 –bundles the old upper bound was
only nC 2, just in view of the fact that N is inessential. A concrete example would
be the total space N of the pullback of the nonprincipal S3 –bundle (we refer to [3]
for the proof of nonprincipality) hW SO.5/�SO.4/ S3! S4 via an essential map of a
4–torus gW T 4! S4 . I don’t see how to get our estimate catLS N � 5 by any other
means.

In the case when additionally catLS F D 1
2

dim F , like for F D CPn , we have a
Hurewicz-type formula for catLS ,

catLS E � catLS BC catLS F:

We recall that for general fibrations the Hurewicz-type formula does not hold. The
best-known estimate for general locally trivial bundles is

catLS E � .catLS BC 1/.catLS F C 1/� 1I

see [5]. Note that fibrations with the fiber CPn can be produced by projectivization of
the spherical bundles of complex vector bundles.
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4.1 r –Connected universal cover

We recall a classical result that for an r –connected, n–dimensional complex X,

catLS X �
n

rC1
:

If X D B �Y with r –connected Y , we have

catLS X � catLS BC
dim Y

rC1
D catLS BC

n�dim B

rC1

� catLS BC
n� catLS B

r C 1
D

r catLS BC n

r C 1
:

Below we obtain a similar estimate for general X.

In the proof of the main result we applied our technical proposition (Proposition 3.1)
with r D 0 and r D 1. Using Proposition 3.1 with r D 0 and arbitrary r > 0 brings
the following:

Lemma 4.4 Suppose that zX is the universal covering of an n–dimensional simplicial
complex X where the fundamental group � D �1.X / is r –connected. Assume that
zX admits a classifying map to an d –dimensional complex B with �1.B/D � . Let E

be the universal covering of B. Then

catLS. zX �� E/.n/ �
rdCn

rC1
:

This lemma brings the following generalization of Theorem 4.1:

Theorem 4.5 For every simplicial complex X with r –connected universal cover zX,
there is the inequality

catLS X �
r catLS.uX /C dim X

r C 1
;

where uX W X ! B� is a classifying map for the universal cover of X.

Corollary 4.6 For any CW complex X with r –connected universal covering zX,

catLS X �
r cd.�1.X //C dim X

r C 1
:
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