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On equivariant and motivic slices

DREW HEARD

Let k be a field with a real embedding. We compare the motivic slice filtration of a
motivic spectrum over Spec.k/ with the C2–equivariant slice filtration of its equivari-
ant Betti realization, giving conditions under which realization induces an equivalence
between the associated slice towers. In particular, we show that, up to reindexing, the
towers agree for all spectra obtained from localized quotients of MGL and MR ,
and for motivic Landweber exact spectra and their realizations. As a consequence, we
deduce that equivariant spectra obtained from localized quotients of MR are even
in the sense of Hill and Meier, and give a computation of the slice spectral sequence
converging to ��;�BPhni=2 for 1� n�1 .

14F42, 55P91; 18E30, 55N20, 55P42

1 Introduction

The slice filtration in equivariant or motivic homotopy theory is an analog of the
Postnikov filtration in ordinary homotopy theory that takes into account the more
complicated structure of these categories. In the equivariant setting, the slice filtration
was used by Hill, Hopkins, and Ravenel [11] to give a stunning solution of the Kervaire
invariant one problem, while in motivic homotopy theory it has been used to construct
a version of the Atiyah–Hirzenbruch spectral sequence for KGL, the motivic spectrum
representing algebraic K–theory; see Levine [19]. More recently, the motivic slice
spectral sequence has been used by Röndigs, Spitzweck, and Østvær [35] to compute
the first Milnor–Witt stem of the motivic sphere spectrum over a general field. These
results indicate the fundamental importance of the slice filtration in both motivic and
equivariant homotopy theory.

As is well known, there are many similarities between the stable motivic homotopy
category over Spec.R/ and the C2–equivariant motivic category; indeed, there is a
Betti realization functor Re from the former to the latter, and one can ask about the
relation between the slice filtration for a motivic spectrum E , and the corresponding C2–
equivariant slice filtration of Re.E/. A priori there is no reason that these should be re-
lated, as they are evidently defined differently; for example, the motivic slice functors are
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3642 Drew Heard

triangulated, while the equivariant ones are not. On the other hand, Betti realization takes
the motivic spectrum KGL representing algebraic K–theory to Atiyah’s real K–theory
spectrum KR, and the nonzero motivic and equivariant slices are given respectively by

sq.KGL/'†2q;qMZ and P
2q
2q KR'†2q;q�HZ

for q 2 Z. This notation will be explained more in Sections 3 and 5 respectively;
however the main point to note is that Betti realization takes †2q;qMZ to †2q;q�HZ,
so that Betti realization takes the qth motivic slice of KGL to the 2qth slice of KR.

Our main result implies the stronger statement that, up to reindexing, Betti realization
induces an equivalence between the slice towers of KGL and KR. More generally, in
Theorem 5.15 we give precise conditions on when Betti realization is compatible with
the slice towers of a motivic spectrum E and its realization Re.E/. These conditions are
satisfied when EDMGL, the motivic spectrum representing algebraic cobordism, and
its p–local variant MGL.p/ , or more generally by quotients and localizations of these
by elements coming from the Lazard ring via the natural morphism L!MGL. We
call these motivic spectra localized quotients of MGL (see Definition 3.4 for a precise
definition). This definition also makes sense in the C2–equivariant context, where the
role of MGL is played by real cobordism MR. A specialization of Theorem 5.15 is
then the following.

Theorem 1.1 Let k�R be a field, Emot 2SH .k/ a localized quotient of MGL, and
Eequiv its C2–equivariant Betti realization. Then, for all q 2 Z, there are equivalences

Re.sq.Emot//
'
�! P

2q
2q .E

equiv/;

and the odd slices of Eequiv vanish.

As with the case of KGL above (which is a special case), we in fact prove that Betti
realization induces an equivalence between the slice towers of Emot and Eequiv ; for a
precise statement, see Theorem 5.16. Using work of Hill, Hopkins, and Ravenel we
deduce the following corollary on the bigraded homotopy groups of Eequiv .

Corollary 1.2 Let Eequiv be a localized quotient of MR. Then

�2k�1;kE
equiv
D 0

for all k 2 Z.

Such a result was previously known for quotients of BPR by work of Greenlees and
Meier [6, Corollary 4.6], but they proceed by direct computation, whereas our result is
a consequence of the computation of the slices of Eequiv .
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The comparison theorem gives a morphism of exact couples between the motivic and
equivariant slice spectral sequences, and hence a morphism of spectral sequences. Now
suppose k is a real closed field. Using that there is an injection ��;�MF2!��;�HF2
from the motivic cohomology of a point to the equivariant cohomology of a point, one
can leverage the existing equivariant computations to give computations in motivic
homotopy theory. We take this up in Section 6.2 where, as an example, we compute
��;�BPhni=2 for 0�n�1, at least up to extension. The case nD1 was previously
known by work of Yagita [46]. When nD 1 we recover, up to a nontrivial extension
problem, the computation of the mod 2 algebraic K–theory of R by Suslin [40].

Outline of the proof The proof of our main theorem works by first passing through
various different slices filtrations on the motivic stable homotopy category. Many mo-
tivic spectra of interest (including localized quotients of MGL) are cellular, meaning
that they can be constructed out of colimits and extensions of the bigraded motivic
spheres Sa;b for a; b 2 Z. A consequence of the computations of the slices of the
sphere spectrum is that if a motivic spectrum is cellular, then so are its slices. In
Section 3.3 we construct the analog of Voevodsky’s slice filtration on the cellular
motivic category, and show that for any cellular spectrum, the slices and cellular slices
agree; see Theorem 3.16.

There is an alternative to Voevodsky’s slice filtration known as the very effective slice
filtration; see Bachmann [3] and Spitzweck and Østvær [39]. In Section 4 we introduce
the cellular version of this slice filtration, and give conditions on when this agrees with
the effective slice filtration. In particular, we show in Propositions 4.3 and 4.11 that
this is true when E is a localized quotient of MGL or is Landweber exact.

The cellular very effective slice filtration in motivic homotopy is similar to the Hill–
Hopkins–Ravenel slice filtration in C2–equivariant homotopy theory. Using an abstract
version of a theorem of Pelaez, proved here in Section 2.2, we study the relationship
between the very effective cellular slice filtration of a cellular motivic spectrum E , and
the Hill–Hopkins–Ravenel slice filtration of its realization, culminating in Theorem 5.13.
Combining this with the results in the previous paragraphs gives our main theorem.

Conventions Throughout we work with1–categories, specifically the quasicategories
of Joyal and Lurie [22; 23] — the results could equally well be proved using the theory
of stable model categories, similar to work of Gutiérrez, Röndigs, Spitzweck, and
Østvær [7]. We will always use the terminology limit and colimit for homotopy limit
and homotopy colimit.
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A full subcategory U of a presentable stable 1–category C is called thick if it is a
stable subcategory closed under retracts. It is called localizing if it is thick and is
additionally closed under arbitrary colimits.
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2 Slices of stably monoidal categories

In this section we define the notion of a slice filtration on a symmetric monoidal stable
1–category C , and give a version of a theorem of Pelaez on the functoriality of the
slices with respect to an exact functor F W C! D between categories equipped with
slice filtrations.

2.1 An axiomatic approach to the slice filtration

Let C be a symmetric monoidal stable presentable1–category, compactly generated by
a set G of objects, and such the tensor product commutes with colimits in both variables.
We will call such a category a stably monoidal category. Following [7, Section 2] we
begin by axiomatizing the notion of a slice filtration.

Definition 2.1 Let C be as above. Let fCigi2Z be a family of full subcategories of C .
We say that fCigi2Z is a slice filtration of C if the Ci satisfy the following conditions:

(A1) Each Ci is closed under equivalences.

(A2) CiC1 � Ci for all i 2 Z.

(A3) Each Ci is generated under colimits and extensions by a set of compact objects Ki .

(A4) The tensor unit is in C0 .

(A5) Each g 2 G is contained in some Ci .

(A6) If X 2 C0 and Y 2 Cn , then X ˝Y is in Cn .
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Remark 2.2 Our axioms are slightly different from those given in [7], and in particular
we do not require the stronger statement that if X 2Cn and Y 2Cm , then X˝Y 2CnCm .
Our motivation comes from equivariant homotopy theory, where the slice filtration
of Hill, Hopkins, and Ravenel [11] satisfies (A6), but does not satisfy the stronger
multiplicative relation; see [10, Proposition 2.23]. We note that the regular slice filtration
introduced by Ullman does satisfy this stronger condition; see [41, Proposition 4.2].

As in [7], these subcategories are not necessarily closed under desuspension and fibers.
Since C is assumed to be presentable, each Ci is also a presentable1–category by (A3)
and [23, Proposition 1.4.4.11].

The following is well known to hold at the level of triangulated categories, or model
categories; we provide a proof for completeness.

Lemma 2.3 For each q 2 Z the inclusion iqW Cq ,! C has a right adjoint rq that
commutes with filtered colimits.

Proof Since the inclusion functor preserves colimits, it has a right adjoint by the adjoint
functor theorem [22, Corollary 5.5.2.9]. Note that, by construction, the inclusion functor
preserves compact objects. If follows from [22, Proposition 5.5.7.2] that rq preserves
filtered colimits.

Remark 2.4 If Cq is a stable subcategory, then rq commutes with all colimits
[23, Proposition 1.4.4.1(2)].

Definition 2.5 For any E 2 C , we define fq.E/D iq ı rq.E/.

The following is a standard example.

Example 2.6 Taking C D .Sp;S;˝/ to be the category of spectra and letting Kq D
f†mS j m � qg, we see that fq.E/ is the .q�1/–connected cover of E , and the
diagram

� � � ! fqC1E! fqE! fq�1E! � � �

is the dual Postnikov tower of E .

The counit of the adjunction gives rise to a morphism fqE ! E . In fact, by
[23, Proposition 1.4.4.11] there exists a t–structure on C such that Cq D C�0 . In
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particular, there is a functorial cofiber sequence

fqE!E! cqE

such that fqE 2 Cq and cqE 2 C?q , the full subcategory of C consisting of those
X 2 C such that HomC.Y;X/ is contractible for all Y 2 Cq . The map fqE ! E is
characterized up to a contractible space of choices by the properties that fqE 2 Cq and
HomC.M; fqE/

'
�! HomC.M;E/ for all M 2 Cq . Similarly, the map E ! cqE is

characterized by the properties that cqE 2 C?q and HomC.cqE;N/
'
�! HomC.E;N /

for all N 2 C?q . This leads to the following recognition principle which is proved as
in [11, Lemma 4.16].

Lemma 2.7 Suppose there is a fiber sequence

Fq!E! Cq

such that Fq 2Cq and Cq 2 .Cq/? . Then the canonical maps Fq!fqE and cqE!Cq

are equivalences.

Since CqC1� Cq it is not hard to verify that the natural morphism fqC1fqE!fqC1E

is an equivalence, thus giving rise to a morphism fqC1E! fqE .

Definition 2.8 The qth slice of E , denoted by sqE , is the cofiber of the natural map
fqC1E! fqE .

Remark 2.9 By construction there is an equivalence sqE ' cqC1fqE . It would also
be reasonable (as is done in the equivariant slice filtration) to define sqE as the fiber of
the map cqC1E! cqC1cqE' cqE . Since this fiber is also easily seen to be equivalent
to cqC1fqE ' sqE , it makes no difference.

The following is an immediate consequence of Lemma 2.3.

Lemma 2.10 Both fq and sq commute with filtered colimits.

Once again, if Cq is a stable subcategory of C , then fq and sq commute with all
colimits.

Finally, we note the following simple, but useful, result.

Lemma 2.11 Suppose that A 2 C is invertible and has the following property: if
X 2 Cq , then A˝X 2 CqCk for some fixed integer k 2 Z, independent of q . Then
fq.A˝E/' A˝fq�kE for any E 2 C , and similar for sq.A˝E/.
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Proof Suppose X 2 Cq . It follows that there are equivalences

HomC.X; fq.A
�1
˝E//' HomC.X;A

�1
˝E/

' HomC.X ˝A;E/

' HomC.X ˝A; fqCkE/

' HomC.X;A
�1
˝fqCkE/:

By the Yoneda lemma we see that fq.A�1˝E/' A�1˝ fqCkE — it follows that
if X 2 Cq , then A�1˝X 2 Cq�k for all q . Now running the same argument with
A˝E instead of A�1 ˝E shows that fq.A˝E/ ' A˝ fq�kE . The result for
sq.A˝E/ follows from the defining cofiber sequences.

2.2 Pelaez’s theorem

In the motivic category, Pelaez [31] studied the behavior of the slice filtration under
pullback. His results generalize to our setting, giving very general criteria for when
slices commute with functors.

Recall that a functor F W C ! D between stable 1–categories is called exact if F
carries zero objects into zero objects and preserves fiber sequences. Now let C and D
be stably monoidal categories with slice filtrations fCig and fDig respectively, and let
F W C!D be an exact functor. We are interested in the relationship between F.f C

q E/

and f D
q F.E/, and similar for F.sCqE/ and sDq F.E/. The simplest case is when the

functor has a particularly nice left adjoint.

Lemma 2.12 Suppose GW C! D is an exact functor between stably monoidal cate-
gories with slice filtrations satisfying G.Cq/ � Dq for all q 2 Z. Suppose moreover
that G has a left adjoint F such that F.Dq/� Cq for all q 2Z. Then there are natural
equivalences ˛qW G.f C

q E/
��! f D

q G.E/ and ˇqW G.sCqE/
��! sDq G.E/ for all E 2 C

and q 2 Z.

Proof We first prove the result for G.f C
q E/ — the defining cofiber sequences then

show the corresponding result for G.sCqE/. This is a simple consequence of Lemma 2.7.
Indeed, we have a cofiber sequence

G.f C
q E/!G.E/!G.cCqE/

for which we need to show that G.f C
q E/ 2 Dq and G.cCqE/ 2 D?q . The first follows

by assumption (since (f C
q E 2 Cq ), while for the second we have

HomD.X;G.c
C
qE//' HomC.F.X/; c

C
qE/' �
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for any X 2 Dq , since cCqE 2 C?q by construction. It follows that G.cCqE/ 2 D?q as
required.

Example 2.13 (slices and base change) Given a stably monoidal category C , there ex-
ists an 1–category CAlg.C/ of commutative algebra objects in C ; see [23, Chapter 2].
Given such an A 2 CAlg.C/ we can form the category ModC.A/ of A–modules in C ,
which is a stably monoidal category A with the relative A–linear tensor product
[23, Section 4.5].

The following is not hard to verify.

Lemma 2.14 Given a slice filtration fCig on C , there exists a slice filtration on
ModC.A/, defined by letting ModC.A/i be the smallest full subcategory of ModC.A/

generated under colimits and extensions by Ki˝A for each compact generator Ki of Ci .

We will write f Aq and sAq for the corresponding functors. There is an adjoint pair

�˝AW C // ModC.A/ WU;oo

where U denotes the forgetful functor, and we will apply Lemma 2.12 to the functor U.

Lemma 2.15 Let A be a commutative algebra object in C and assume that A 2 C0 .
Then there are equivalences

˛qW U.f
A
q E/' f

C
q U.E/ and ˇqW U.s

A
q E/' s

C
qU.E/

for any E 2ModC.A/.

Proof We need to show that U.f Aq E/ 2 Cq and M ˝A 2 Dq whenever M 2 Cq .
The latter is clear from the definition of Dq and the fact that tensor products commute
with colimits. For the former, note that Cq is generated under colimits and extensions
by Kq˝A, and it is easily seen to be enough to check that U.Kq˝A/ 2 Cq (since U
preserves colimits). Since U.Kq˝A/' Kq˝A, it follows that we must check that
Kq˝A 2 Cq . But since Kq 2 Cq and A 2 C0 , we have Kq˝A 2 Cq by (A6).

Remark 2.16 In the motivic context this example is well known; see for example
[20, Lemma 2.1(4)].

Example 2.17 (multiple slice filtrations) Given a stably monoidal category C , there
can be many different slice filtrations. Suppose we are given two slice filtrations fCqg
and fzCqg on C with corresponding functors fq and zfq . Assume that zCi � Ci for
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all i 2Z. By Lemma 2.7 (note C?i � zC
?
i ) we see that if fqE 2 zCq for all q 2Z, then

there are equivalences fqE
'
�! zfqE and sqE

'
�! zsqE . This can also be proved by

using the identity functor in Lemma 2.12.

When we study the interaction between slices and Betti realization, Lemma 2.12 will
not suffice, and we need a stronger result, which we base on a theorem of Pelaez [31].
We begin with the following lemma, which is also well known in the motivic context.

Lemma 2.18 Let C be a stably monoidal category with a slice filtration. Then the
canonical morphism

�W colim
p�q

fpE!E

is an equivalence for any q 2 Z.

Proof Let G be a set of compact generators of C . It suffices to prove that HomC.g; �/

is an equivalence for each g 2 G . By (A5) each g is contained in some Ci , and so it
suffices to show that HomC.g; fi�/ is an equivalence for suitable i . By Lemma 2.10
we are reduced to showing that

HomC.g; colim
p�q

fifpE/! HomC.g; fiE/

is an equivalence. But it is easy to see that the natural transformation fi ."/W fifp!
fi id' fi is a natural equivalence whenever p � i , and the result follows.

We now define the precise conditions that will be used in Pelaez’s theorem. Throughout
this paper, we will consistently require the following conditions:

Condition (1) F.E/
2:18
' F.colimp�q f C

p E/' colimp�q F.f C
p E/:

Condition (2) F.f C
q E/ 2 Dq:

Condition (3) F.sCqE/ 2 D
?
qC1:

Observe that the counit adjunctions give rise to morphisms

f D
q F.E/

fD
q F."/
 ����� f D

q Ff
C
q .E/

z"
�! Ff C

q .E/

for any E 2 C . If Condition (2) is satisfied for all q 2 Z, then z" is an equivalence for
all q 2 Z, and hence there are morphisms

˛qW F.f
C
q E/! f D

q F.E/:
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By the definition of sq there is an induced morphism

ˇqW F.s
C
q.E//! sDq F.E/

making the following diagram of cofiber sequences commute:

F.f C
qC1E/ F.f C

q E/ F.sCqE/ †F.f C
qC1E/

f D
qC1F.E/ f D

q F.E/ sDq F.E/ †f D
qC1F.E/

˛qC1 ˛q ˇq †˛qC1

Definition 2.19 We say that F W .C; Cq/! .D;Dq/ is compatible with the slice fil-
tration at E if ˛q and ˇq are equivalences for all q 2 Z. If the slices filtrations
on C and D are understood, then we will simply say that F W C ! D is compatible
with the slice filtration at E .

Note that this implies that the towers F.f C
qC1E/ are f D

qC1F.E/ are equivalent.
Pelaez’s theorem then gives precise conditions to ensure that an exact functor F
is compatible with the slice filtration at a given object E 2 C .

Theorem 2.20 (Pelaez) Suppose that F W C! D is an exact functor between stably
monoidal categories with slices filtrations fCig and fDig respectively. If F satisfies
Conditions (1), (2), and (3) for E 2 C , then F W .C; Ci /! .D;Di / is compatible with
the slice filtration at E 2 C .

Proof We sketch the proof, since it is essentially the same as that given by Pelaez
[31, Theorem 2.12] (see also the thesis of Kelly [16, Section 4.2.2]). We first note that
the conditions of the theorem imply that the natural maps ˛q and ˇq do exist. By the
argument given in [31, Lemma 2.10] we have equivalences

˛qC1.f
C
q E/W F.f

C
qC1.f

C
q E//

'
�! f D

qC1F.f
C
q E/

and
ˇq.f

C
q E/W F.s

C
q.f

C
q E//

'
�! sDq F.f

C
q E/

for all q 2 Z.

We now proceed to show the result for sq , since essentially the same proof works for fq .
By Lemma 2.18 we have E ' colimp�q fpE . By Condition (1) and Lemma 2.10
the morphism ˇq.E/ is given by colimp�q ˇq.f C

p E/, and so it suffices to show
that ˇq.f C

p E/ is an equivalence for all p � q . By the discussion in the first paragraph

Algebraic & Geometric Topology, Volume 19 (2019)



On equivariant and motivic slices 3651

it is true for p D q . The result then follows by a downward induction exactly as done
by Pelaez.

Remark 2.21 In the situation of Lemma 2.12, we have that Conditions (2) and (3) hold
automatically; the former by assumption, and the latter by an easy adjunction argument.
However, there seems to be no reason for Condition (1) to hold in general. The extra
condition appears to arise because the assumptions in Lemma 2.12 are stronger — if
F.cCcC1E/ 2 D

?
qC1 , then F.sCqE/ 2 D?qC1 , but the converse need not be true.

3 The effective and cellular effective motivic slice filtrations

3.1 The stable and cellular motivic homotopy category

Let SH .S/ denote the Morel–Voevodsky stable motivic homotopy category over a base
scheme S [28]. We assume that S is a Noetherian scheme of finite Krull dimension,
and that S is essentially smooth over a field of characteristic exponent c , ie c D 1
when the characteristic is zero, and is the characteristic otherwise.�

By [32, Corollary 1.2] the 1–category underlying this category (which we also denote
by SH .S/) is a stably symmetric monoidal category in our terminology. We let
1D†1

C
S denote the monoidal unit of this category. If Sm=S denotes the category of

separated smooth schemes of finite type of S, then the set of objects

f†p;q†1XC j p; q 2 Z; X 2 Sm=Sg

is a set of compact generators of SH .S/ [4, Theorem 9.1].

It is useful to consider the cellular motivic category, as it was defined by Dugger and
Isaksen [4].

Definition 3.1 The cellular motivic category SH .S/cell is the localizing subcategory
of SH .S/ generated by †p;q1 for all p; q 2 Z. A spectrum is called cellular if it lies
in SH .S/cell .

This subcategory is a stable presentable 1–category by [23, Proposition 1.4.4.11].
Since the tensor product in SH .S/ commutes with colimits in both variables, it is easy

�Some of the results in this paper can be extended, for example, to smooth schemes over Dedekind
domains using work of Spitzweck [38], but we leave the details to the interested reader.

Algebraic & Geometric Topology, Volume 19 (2019)



3652 Drew Heard

to check that the tensor product of two cellular motivic spectra is again cellular, and
hence that SH .S/cell is a stably monoidal category.

Such cellular spectra include KGL, the motivic spectrum representing algebraic K–
theory, MGL, the algebraic cobordism spectrum (both are proved in [4]), MAŒ1=c�, the
c–inverted motivic Eilenberg–Mac Lane spectrum associated to an abelian group A [13],
and KQ, the motivic spectrum representing Hermitian K–theory [34] (here we require
that the base scheme has no points of characteristic two).

An argument similar to that in the proof of Lemma 2.3 shows that the inclusion
SH .S/cell � SH .S/ has a cocontinuous right adjoint, which we denote by Cell. On
the level of homotopy categories, this is equivalent to the functor studied by Dugger
and Isaksen in [4].

Since we will need it later, we introduce a closely related subcategory.

Definition 3.2 Let S be an essentially smooth scheme over a field of characteristic
exponent c . We say that E 2 SH .S/ is c–cellular if it is in the localizing subcategory
generated by †a;b1Œ1=c� for a; b 2 Z.

Remark 3.3 Clearly, if the characteristic exponent is 1, then c–cellular objects are
simply cellular objects. In general, every c–cellular object is cellular, but the converse
need not be true.

3.2 Quotients and localizations of MGL

Of fundamental importance to us will be the algebraic cobordism spectrum MGL.
We briefly recall its construction here, referring the reader to [43] for more details.
Let BGLn denote the classifying space of the group scheme GLn over S. There is a
universal bundle mot

n !BGLn , and we let MGLnD .BGLn/
mot
n be the motivic Thom

spectrum associated to this bundle. The canonical inclusion BGLn! BGLnC1 and
standard properties of Thom spectra gives rise to a morphism P1˝MGLn!MGLnC1 ,
and hence a motivic spectrum

MGLD .MGL0;MGL1;MGL2; : : : /:

Applying [4, Lemma 6.1] there is an equivalence

(3-a) MGL' colim
n

†�2n;�n†1MGLn ' colim
n

†�2n;�n†1.BGLn/
mot
n :
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The spectrum MGL, and certain quotients and localizations of it, will be studied
extensively in the sequel, and so we begin by defining exactly the spectra that we need,
following [20].

Recall that there is a classifying map L!MGL�;� , where L Š ZŒa1; a2; : : : � is
the Lazard ring; see [13, Section 6.1] or [29, Corollary 6.7] (here the grading is such
that ai has bidegree .2i; i/). We will implicitly identify elements of L with elements
of MGL�;� . In fact, this is not such an abuse of notation; if S is the spectrum of a
field, then the map LŒ1=c�!MGL.2;1/�Œ1=c� is an equivalence [13, Proposition 8.2].

First, we define MGL=ai as the cofiber of ai W †2i;iMGL!MGL. Given a finite
collection fi1; i2; : : : ; ikg �N we define MGL=.ai1 ; : : : ; aik / inductively by

MGL=.ai1 ; : : : ; aik /DN=aik ;

where N 'MGL=.ai1 ; : : : ; aik�1
/ (here the quotient N=aik is defined in the obvious

way). By [20, Remark 1.5] this is equivalent to the MGL–module

MGL=.ai1 ; : : : ; aik /DMGL=ai1 ˝MGL � � � ˝MGL MGL=aik :

For an arbitrary subset I �N we define

MGL=.I/D colim
fi1;:::;ikg�I

MGL=.ai1 ; : : : ; aik /;

where the colimit is taken over the filtered poset of finite subsets of I .

Now let Ic be the complement of I , and let ZŒIc� denote the graded polynomial ring
on the ai for i 2 Ic . Let I0 denote a collection of homogeneous elements of ZŒIc�,
and define MGL=.I/ŒI�10 �DMGL=.I/Œfz�1j j zj 2 I0g�.

We will also have need to consider p–local and mod p–versions. Let MGL.p/ be the
p–localization of MGL. Explicitly, this can be given by the colimit of the maps

MGL
n
�!MGL;

where n is an integer relatively prime to p . Then, for an arbitrary subset I �N , we
define MGL.p/=.I/ as above. Similarly, we can also define MGL.p/=.I/ŒI�10 � D

MGL.p/=.I/Œfz�1j g j zj 2 I0g�. Finally, we write MGL=.I; p/ŒI�10 � for the cofiber
of the multiplication by p map on MGL.p/=.I/ŒI�10 �.

It will be useful to introduce terminology to describe these type of spectra.
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Definition 3.4 A motivic spectrum is said to be a localized quotient of MGL if it
can be constructed by quotients and localization of MGL or MGL.p/ as above.

Example 3.5 The following examples show that these give many analogs of spectra
familiar in chromatic homotopy. Following [20], define subsets

Bcp D fai j i ¤ p
k
� 1; k � 0g;

Bhnicp D fai j i ¤ p
k
� 1; 0� k � ng;

khnicp D fai j i ¤ p
n
� 1g:

These give rise to the motivic spectra

BP DMGL.p/=.fai j i 2 B
c
pg/;

BPhni DMGL.p/=.fai j i 2 Bhni
c
pg/;

E.n/DBPhniŒa�1pn�1�;

k.n/DMGL.p/=.fai j i 2 khni
c
pg;

K .n/D k.n/Œa�1pn�1�:

We note that BP and E.n/ are Landweber exact over MGL but the other spectra
constructed are not.

Finally, we will need the following technical result on the slices of quotients of MGL.

Proposition 3.6 (Levine and Tripathi) Let I � N be arbitrary, and let Ic be the
complement of I . Let M denote either MGL=.I/;MGL.p/=.I/, or MGL.p/=.I; p/.
Then there is an equivalence

s0.M/'M=.Ic/:

Proof The case M DMGL.p/=.I/ is shown in the proof of [20, Proposition 4.5],
and the case M DMGL=.I/ can be proved in the same way. The mod p case then
follows since the functor s0 is exact.

3.3 Effective and cellular effective slices

Following Voevodsky [44], consider the collection

Kq D f†a;b†1XC jX 2 Sm=S; a 2 Z; b � qg � SH .S/:

Let †qTSH .S/eff
� SH .S/ denote the localizing subcategory generated by Kq . It is

then easy to see that this forms a slice filtration of SH .S/ in the sense of Definition 2.1.
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Indeed, (A1)–(A5) follow immediately, and (A6) can be checked on generators, for
which it is seen to be true.� The filtration of SH .S/ by the qth connective covers

� � � �†
qC1
T SH .S/

eff
�†

q
TSH .S/

eff
� � � �

is Voevodsky’s slice filtration, which we call the effective motivic slice filtration. We
let f Sq and sSq denote the associated functors, although we will omit the superscript
unless it is unclear.

As noted in the introduction, many motivic spectra are cellular. The analog of the
effective slice filtration in SH .S/cell is defined by the collection

Kcell
q D f†a;b1 j a 2 Z; b � qg � SH .S/cell :

In particular, if we let †qTSH .S/eff
cell � SH .S/cell denote the localizing subcategory

of SH .S/cell generated by Kcell
q we get the cellular effective motivic slice filtration

� � �†
qC1
T SH .S/

eff
cell �†

q
TSH .S/

eff
cell � � � � :

This forms a slice filtration of SH .S/cell . We let f Cell
q and sCell

q denote the associated
functors. The following simple result is very useful.

Lemma 3.7 For any a; b 2 Z and any motivic spectrum E , we have fq.†a;bE/'
†a;bfq�bE , and similar for sq , f Cell

q , and sCell
q .

Proof Apply Lemma 2.11 with AD†a;b1.

3.4 The comparison theorem

Our main result in this section is to compare the effective and cellular effective slice
filtrations. The motivation for this arises in later sections, where we will compare the
motivic and C2–equivariant categories, because we understand precisely the behavior
of the motivic spheres under equivariant Betti realization.

Lemma 3.8 Let S be an essentially smooth scheme over a field of characteristic
exponent c . Then the slices of any c–cellular spectrum are cellular.

Proof By a localizing subcategory argument it is sufficient to show the result for
†a;b1Œ1=c� and a; b 2 Z. By Lemma 3.7 we can reduce further to checking the
statement for 1Œ1=c� itself.

�In fact, by [7], it even satisfies the property that if X 2 Ci and Y 2 Cj , then X ˝Y 2 CiCj .
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Let Es;t2 .MU/D Exts;tMU�MU.MU�;MU�/ be the cohomology of the Hopf algebroid
associated to complex cobordism. By [13, Theorem 8.7] (following the ideas of Levine
and Voevodsky) there is an equivalence

(3-b) sq.1Œ1=c�/'
W
s�0†

2q�s;qMZŒ1=c�˝Es;2q2 .MU/:

Note that by [47, Proposition 2.2] Exts;2qMU�MU.MU�;MU�/ is a finite group when
.s; q/ ¤ .0; 0/ (in which case it isomorphic to Z). The result then follows from
[13, Proposition 8.1].

Lemma 3.9 Let E be a motivic spectrum. If Cell.fqE/ 2 †
q
TSH .S/eff

cell for all
q 2 Z, then

CellW .SH .S/;†
q
TSH .S/

eff
/! .SH .S/cell ; †

q
TSH .S/

eff
cell /

is compatible with the slice filtration at E ; ie there are equivalences

˛q.E/W Cell.fqE/ ��! f Cell
q Cell.E/;

ˇq.E/W Cell.sqE/ ��! sCell
q Cell.E/

for all q 2 Z.

Proof This is a consequence of Lemma 2.12. Indeed, the left adjoint of Cell is the
inclusion functor, and by definition †qTSH .S/eff

cell �†
q
TSH .S/eff .

Of fundamental importance for us is the following result [39, Theorem 5.7].

Theorem 3.10 (Spitzweck and Østvær) The algebraic cobordism spectrum MGL is
in SH .S/eff

cell .

Proof Consider the unit map 1 ! MGL. The proof of Spitzweck and Østvær
shows that the cofiber of this map is contained in †1TSH .S/eff

cell � SH .S/eff
cell . Since

1 2 SH .S/eff
cell , and this category is closed under extensions, the result follows.

Corollary 3.11 (1) For any 0 � n � 1 the quotient MGL=.a1; : : : ; an/ is in
SH .S/eff

cell

(2) For any simplicial ZŒ1=c�–module A the motivic Eilenberg–Mac Lane spectrum
MA is in SH .S/eff

cell .

Proof (1) is immediate in light of the previous theorem. The case A D ZŒ1=c�

of (2) is then a consequence of the equivalence MGL=.a1; a2; : : : /Œ1=c�'MZŒ1=c�

[13, Theorem 7.12], while the general case follows from [13, Proposition 4.13].
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Remark 3.12 In fact, the proof of Spitzweck and Østvær shows that MGL lies
in the smallest full subcategory closed under colimits and extensions generated by
f†a;b1 j a; b � 0g; see the remark at the bottom of page 586 of [39]. We will study this
category, denoted by SH .S/veff

cell , in more detail in the next section. For now, we note
that the same arguments show (1) and (2) hold with SH .S/veff

cell in place of SH .S/eff
cell .

Note that, by Lemma 3.8, fq.MGLŒ1=c�/ is cellular, so that we do not need to apply
Cell in the following lemma.

Lemma 3.13 Let S be an essentially smooth scheme over a field of characteristic
exponent c . Then

CellW .SH .S/;†
q
TSH .S/

eff
/! .SH .S/cell ; †

q
TSH .S/

eff
cell /

is compatible with the slice filtration at MGLŒ1=c�; ie there are equivalences

˛qW fq

�
MGL

h
1

c

i�
��! f Cell

q

�
MGL

h
1

c

i�
;

ˇqW sq

�
MGL

h
1

c

i�
��! sCell

q

�
MGL

h
1

c

i�
for all q 2 Z.

Proof By Lemma 3.9 it is enough to show that Cell.fqMGLŒ1=c�/ 2†
q
TSH .S/eff

cell .
By [13, Theorem 7.12] and the proof of [36, Theorem 4.7], fqMGLŒ1=c� is the
colimit of a diagram of MGLŒ1=c�–modules of the form †2k;kMGLŒ1=c�, where
k�q .� Since Cell.†2k;kMGLŒ1=c�/'†2k;kMGLŒ1=c�2†kTSH

eff
cell �†

q
TSH

eff
cell

by Theorem 3.10, the result follows because †qTSH .S/eff
cell is closed under colimits.

Using this result we can now prove compatibility of the slice filtration with Cell in
the case that E is Landweber exact in the sense of [29]. Note that these spectra are
always cellular by [29, Proposition 8.4]. We will write LB D LŒb1; b2; : : : �, so that
the Hopf algebroid .L;LB/ is the Hopf algebroid classifying formal group laws and
strict isomorphisms.

Lemma 3.14 Let M� be a Landweber exact LŒ1=c�–module, and E 2 SH .S/ the
associated motivic spectrum. Then

CellW .SH .S/;†
q
TSH .S/

eff
/! .SH .S/cell ; †

q
TSH .S/

eff
cell /

�As noted in [13, Theorem 8.5] one can remove Spitzweck’s assumption that the field is perfect.
Indeed, for an essential smooth morphism f W T ! S of schemes, [31, Theorem 2.12] shows that
f �f Sq .MGLS Œ1=c�/' f

T
q f
�.MGLS Œ1=c�/Š f

T
q .MGLT Œ1=c�/ .
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is compatible with the slice tower at E ; ie there are equivalences

˛qW fq.E/
��! f Cell

q .E/ and ˇqW sq.E/
��! sCell

q .E/

for all q 2 Z.

Proof This is essentially the argument given in [13, Lemma 8.11]. If M� is flat, then it
is a filtered colimit of finite sums of shifts of LŒ1=c� by Lazard’s theorem, and the corre-
sponding spectrum E is a filtered colimit of the corresponding diagram of MGLŒ1=c�–
modules. Since fq commutes with filtered colimits by Lemma 2.10, the previous lemma
implies the result holds for such E (using, say, Lemma 3.7 to handle the suspensions).
For the general case, it suffices to show that Cellfq.MGLŒ1=c�˝E/2†

q
TSH .S/eff

cell ,
since E is a retract of MGLŒ1=c�˝E . But MGLŒ1=c�˝E is the spectrum associated
to the flat Landweber exact LŒ1=c�–module LBŒ1=c�˝LŒ1=c�M� .

We now give a full computation of the cellular slices of the motivic sphere spectrum.
This is done using precisely the techniques of Voevodsky, Levine, and others in com-
puting sq.1/. We again let Es;q2 .MU/ denote the E2 term of the Adams–Novikov
spectral sequence; ie Es;q2 .MU/Š Exts;qMU�MU.MU�;MU�/.

Theorem 3.15 Let S be an essentially smooth scheme over a field of characteristic
exponent c . Then there is an equivalence

sCell
q .1Œ1=c�/' sq.1Œ1=c�/'

W
s�0†

2q�s;qMZŒ1=c�˝Es;2q2 .MU/:

Proof We will assume that c D 1 for legibility. Consider the diagram in SH .S/cell

1 MGL MGL˝2 � � �

which gives rise to a morphism

(3-c) sCell
q .1/! flim

�
sCell
q .MGL˝�/:

We have used the notation elim for the limit in SH cell . It is easy to see that elim.�/'
Cell lim.�/, by checking the latter satisfies the universal property of the limit in SH cell .

We claim that (3-c) is an equivalence. The proof of this is the same as the proof of
[35, Proposition 2.9], and so we simply sketch it for the reader. In fact, more generally,
it is true that

sCell
q .MGL˝m/

'
�! flim

�
sCell
q .MGL˝m˝MGL˝.�C1//;

with the claimed equivalence being the case mD 0.
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For m�qC1 the claim follows because both sides are trivial, since MGL2†1TSH
eff
cell .

We now induct downwards on m as in loc. cit., using the commutative diagram of
cofiber sequences

sCell
q .MGL˝.mC1// Cell lim

�
sCell
q .MGL˝.mC1/˝MGL˝.�C1//

sCell
q .MGL˝m/ Cell lim

�
sCell
q .MGL˝m˝MGL˝.�C1//

sCell
q .MGL˝m˝MGL/ Cell lim

�
sCell
q .MGL˝m˝MGL˝MGL˝.�C1//

Here the top horizontal arrow is inductively an equivalence, and the bottom is via
[35, Lemma 2.10]. It follows that the middle horizontal arrow is also an equivalence,
and it follows that (3-c) is an equivalence as claimed.

Since MGL˝� is Landweber exact, we have sCell
q .MGL˝�/ ' sq.MGL˝�/ by

Lemma 3.14, and by naturality this is compatible with the maps in the totalization. It
follows that

sCell
q .1/' Cell lim

�
sCell
q .MGL˝�/' Cell lim

�
sq.MGL˝�/' Cell sq.1/;

where the last equivalence follows from the computation of the slices of the sphere
spectrum; cf [35, Proposition 2.9]. By Lemma 3.8, Cell sq.1/ ' sq.1/, and so we
conclude that sCell

q .1/' sq.1/.

We are now in a position to prove the main result of this section.

Theorem 3.16 Let S be an essentially smooth scheme over a field of characteris-
tic exponent c . Then �W .SH .S/cell ; †

q
TSH .S/eff

cell /! .SH .S/;†
q
TSH .S/eff / is

compatible with the slice filtration at a c–cellular motivic spectrum E ; ie there are
equivalences

˛qW �f
Cell
q .E/ ��! fq.�E/ and ˇqW �s

Cell
q .E/ ��! sq.�E/

for all q 2 Z.

Proof We want to apply Theorem 2.20. It is clear that Conditions (1) and (2) hold, so
that such maps ˛q and ˇq as in the statement of the theorem do exist. A localizing
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subcategory argument then reduces to checking the statement on †p;q1Œ1=c�, and as
usual by shifting, we can reduce to checking it on 1Œ1=c� itself. It thus suffices to see
that sCell

q .1Œ1=c�/ 2 .†qC1T SH .S//? . But Theorem 3.15 shows that sCell
q .1Œ1=c�/'

sq.1Œ1=c�/, and by construction the latter is always in .†qC1T SH .S//? .

Remark 3.17 We do not know if the stronger condition that

CellW .SH .S/;†
q
TSH .S/

eff
/! .SH .S/cell ; †

q
TSH .S/

eff
cell /

is compatible with the slice filtration at a motivic spectrum E holds in general. The
work of this section shows that it holds whenever E is c–cellular.

4 The very effective cellular slice filtration

The effective slice filtration considered previously constructs slices by filtering with
respect to the Tate sphere Gm ' S1;1 . An alternative was introduced in [39] by
Spitzweck and Østvær which filters with respect to P1' S2;1 . To be precise, consider
the collection of objects

Kq D f†2a;a†1CX jX 2 Sm=S; a � qg � SH .S/:

Define †qTSH .S/eff
cell to the smallest full subcategory of SH .S/cell generated under

colimits and extensions by Kq . The full subcategories f†qTSH .S/eff
cell gq2Z define a

slice filtration of SH .S/cell . We denote the associated slice functors by zfq and zsq .
The very effective slice filtration has been studied in more detail by Bachmann in [3].

As in the previous section we can define a cellular version of this filtration via the
collection

Kcell
q D f†2a;a1 j; a � qg � SH .S/cell :

This gives rise to the very effective cellular slice filtration of SH .S/cell

� � �†
qC1
T SH .S/

veff
cell �†

q
TSH .S/

veff
cell � � � � :

Note that these categories are not localizing. We write zf Cell
q and zsCell

q for the associated
functors, which are not triangulated.

The following can be proved via Lemma 2.11.

Lemma 4.1 For a motivic spectrum E , we have zf Cell
q .†2a;aE/ ' †2a;a zf Cell

q�a.E/

and similar for zsCell
q .
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Since we always have †qTSH .S/veff
cell �†

q
TSH .S/eff

cell there exists a natural transfor-
mation zf Cell

q ! f Cell
q . The following is a consequence of Example 2.17.

Lemma 4.2 If E is a cellular motivic spectrum such that f Cell
q .E/ 2†

q
TSH .S/veff

cell

for all q 2 Z, then there are equivalences

zf Cell
q .E/

'
�! f Cell

q .E/ and zsCell
q .E/

'
�! sCell

q .E/:

This gives the following.

Proposition 4.3 Let E be a localized quotient of MGL. Then

fq.E/
'
�! f Cell

q .E/
'
�! zf Cell

q .E/;

sq.E/
'
�! sCell

q .E/
'
�! zsCell

q .E/

for all q 2 Z.

Proof Since the motivic spectra considered are always cellular, the left-hand equiv-
alences follow from Theorem 3.16. To show the theorem for MGL we must show
that fq.MGL/ 2 †

q
TSH .S/veff

cell . However, we have already seen in the proof of
Lemma 3.13 that fq.MGL/ is a colimit of a diagram of MGL–modules of the form
†2k;kMGL, where k � q . We know that MGL 2 SH .F /veff

cell by Remark 3.12, and
hence that †2k;kMGL 2 †kTSH .F /veff

cell � †
q
TSH .F /veff

cell . Since this category is
closed under colimits we are done.

From the defining cofiber sequences, it follows that fq.MGL=.ai1 ; : : : ; ain// is in
†
q
TSH .S/veff

cell for any finite subset fii ; : : : ; ing � N , so the proposition is true for
MGL=.ai1 ; : : : ; ain/. Similar arguments work in the p–local and mod p cases. For
an arbitrary subset I we defined MGL=.I/ as a filtered colimit of terms of the form
MGL=.ai1 ; : : : ; ain/. It follows that the proposition holds for MGL=.I/.

To deal with the localizations we appeal to work of Levine and Tripathi. In partic-
ular, let I � N be arbitrary, and let M denote either MGL=.I/, MGL.p/=.I/ or
MGL=.I; p/. By Proposition 3.6 the assumptions of [20, Corollary 2.4] are satisfied,
and the proof of Levine and Tripathi shows that fq.MŒI�10 �/ is a colimit of terms
of the form †�2k;�kfqCkM for k � 0. The first part of this proposition shows that
fqCkM 2†

qCk
T SH .S/veff

cell , and hence that †�2k;�kfqCkM 2†
q
TSH .S/veff

cell . The
result follows since this category is closed under colimits.
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It is remarked in [39], and then proved in detail in [3], that the very effective slice
filtration is the positive part of a t–structure on the very effective motivic stable
homotopy category. In the case that S is the spectrum of a perfect field F , Bachmann
used the homotopy t–structure to give a description of the very effective motivic category
in terms of homotopy sheaves. We will give a similar description for the very effective
cellular slice filtration. We begin with the cellular analog of the homotopy t–structure,
as defined in [13, Section 2.1]. We restrict ourselves to working over SH .F /, where F
is a perfect field.

Definition 4.4 The category of cellularly d–connective objects (or just connective
when d D 0) is the smallest full subcategory of SH .F /cell generated under colimits
and extensions by the collection

f†s;t1 j s� t � dg:

Note that zf Cell
q E is always cellularly q–connective by definition.

Proposition 4.5 A cellular motivic spectrum E 2 SH .F /cell is cellularly connective
if and only if �a;bE D 0 for a� b < 0.

Proof Let C denote the category of those cellular spectra E such that �a;bE D 0
for a� b < 0. We observe that †s;t1 is in C whenever s � t by Morel’s connectivity
theorem [27, Section 5.3]. It is clear that C is closed under extensions, so we must
show that it is closed under arbitrary colimits. As in the proof of [39, Lemma 5.10] we
can assume the colimit is either a coproduct or a pushout, for which the result is clear.
We thus see that all cellularly connective objects are in C .

For the converse, recall again that †s;t1 is connective for s � t . Suppose now
we are given a cellular spectrum E with �a;bE D 0 for a � b < 0. Then, by the
method of killing cells, as described in the proof of Proposition 4(2) of [3] (see also
the “Details on killings cells” after the proposition), one can construct a cellularly
connective spectrum Z along with a map Z!E inducing an isomorphism on bigraded
homotopy groups. Because both Z and E are cellular, this map is an equivalence
[4, Corollary 7.2].

Remark 4.6 If E is d–connective in the sense of [13, Section 2.1], then we observe
that �a;b Cell.E/Š �a;bE D 0 for a� b < d by [13, Theorem 2.3]. It follows that
Cell.E/ is cellularly d–connective in the above sense.
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Remark 4.7 A similar, but not equivalent, category is considered by Shkmebi and
Isaksen [15], who only allow the spheres †s;t1 for s� t � 0 and s � 0. Their version
of Proposition 4.5 is [15, Proposition 3.17] — the proof is in the same spirit as the one
given above.

If we restrict to effective cellular spectra, then we end up with a similar characterization
of very effective cellular spectra — we thank Tom Bachmann for suggesting that this
holds.

Proposition 4.8 If E 2†qTSH .F /eff
cell , then E 2†qSH .F /veff

cell if and only if

�a;bE D 0

for all a; b 2 Z satisfying a� b < q and b � q .

Proof This is identical to the previous proposition. We can reduce to the case qD 0 by
shifting. Let D denote the collection of those E 2SH .F /eff

cell such that �a;bED 0 for
all a; b 2Z satisfying a�b <0 and b� 0. This is closed under colimits and extensions
and contains †2a;a1 for a � 0, so that in particular SH .F /veff

cell � D . Conversely,
if E is in D then by killing cells as above we can build Z 2 SH .F /veff

cell along with
a map Z!E inducing an equivalence in bigraded homotopy groups (here we only
need to use the spheres †a;b1 with a� b < 0 and b � 0 because E 2 SH .F /eff

cell by
assumption).

Remark 4.9 The collection of cellularly connective objects forms the positive part
of a t–structure on SH .F /cell , and the collection of cellular very effective motivic
spectra forms the positive part of a t–structure on SH .F /eff

cell . By the same argument
as [3, Proposition 4.3(3)] the functor r0W SH .F /cell ! SH .F /eff

cell is t–exact.

Corollary 4.10 If f Cell
q E is cellularly q–connective for all q 2 Z, then there are

equivalences

zf Cell
q .E/

'
�! f Cell

q .E/ and zsCell
q .E/

'
�! sCell

q .E/:

Proof This is a consequence of the previous proposition and Lemma 4.2.

The main reason for introducing cellularly q–effective spectra is to investigate the
very effective cellular slices of a Landweber exact motivic spectrum. The analogous
argument also works in the noncellular situation; see [1, Lemma 2.4 and Remark 2.5].
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Proposition 4.11 Let E 2 SH .F / be a Landweber exact motivic spectrum. Then
there are equivalences

fq.E/
'
�! f Cell

q .E/
'
�! zf Cell

q .E/;

sq.E/
'
�! sCell

q .E/
'
�! zsCell

q .E/

for all q 2 Z.

Proof The exact same argument as given by Hoyois in [13, Lemma 8.11] shows that
fqE ' f

Cell
q .E/ is always cellularly q–connective. The result is then a consequence

of Corollary 4.10.

5 Equivariant slices

In the previous sections we have studied various filtrations on the stable motivic
homotopy category. In this section, we study the Hill–Hopkins–Ravenel slice filtration
in C2–equivariant homotopy theory, and show how Betti realization interacts with the
different slice filtrations.

5.1 The C2–equivariant homotopy category

In this section we give a brief introduction to the category of C2–equivariant spectra.
For a more detailed discussion, one can see the appendix of [11], or for a slightly
shorter introduction, see [12, Section 2].

We define SH .C2/ to be the 1–category associated to the symmetric monoidal
category of orthogonal C2–spectra [24]. This has been studied in some detail in
[25, Section 5]. In particular, it is a stably monoidal category; see Definition 5.10 and
Remark 5.12 of [25]. It has a set of compact generators, given by fS0; †1

C
C2g.

We will grade homotopy groups by the real representation ring RO.C2/D faC b� j
a; b 2 Zg, where � denotes the sign representation. We follow motivic notation, and
write Sp;q� for the smash product .S1/p�q˝Sq� (if q D 0, then we will sometimes
just write Sp ). We let �C2

p;qE D ŒS
p;q� ; E�C2 , and write �ep;qE for the underlying

nonequivariant groups. We recall that the equivariant and nonequivariant homotopy
groups of a C2–spectrum E can be combined into a Mackey functor, which we denote
by �p;qE .

In the C2–equivariant category, the analog of the motivic algebraic cobordism spec-
trum is the real bordism spectrum MR constructed by Araki and Murayama [2],
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Landweber [18], and Hu and Kriz [14]. This is a real oriented ring spectrum, and
therefore admits a map �2k MU Š L2k ! �C2

2k;kMR from the Lazard ring, which
is in fact an isomorphism [14, Theorem 2.28]. It follows that we can form quotients
and localizations of MR analogous to those considered for MGL in Section 3.2, and
hence there is a notion of a localized quotient of MR.

Example 5.1 The spectrum KR that is defined by a�11 MR=.a2; a2; : : : / agrees with
Atiyah’s real K–theory spectrum [14, Theorem 3.18].

5.2 The Hill–Hopkins–Ravenel slice filtration

The Hill–Hopkins–Ravenel slice filtration starts by defining the following slice cells:

(1) S2q;q� of dimension 2q ,

(2) S2q�1;q� of dimension 2q� 1, and

(3) Sq˝ .C2/C of dimension q .

Note that the dimension always corresponds to dimension of the underlying nonequivari-
ant sphere. We then define †kSH .C2/ to be the smallest full subcategory of SH .C2/

closed under extensions and colimits containing the slice cells of dimension � q . This
gives rise to the Hill–Hopkins–Ravenel equivariant slice filtration

� � � �†qC1SH .C2/
HHR

�†qSH .C2/
HHR

� � � � :

Note that these categories are not localizing (in that sense, they are closer to the very
effective motivic slice filtration than the effective one).

Following standard equivariant notation we write PqX for the associated colocalization
functor, P q�1X for the localization functor, and P qq X for the nth slice; that is, there
are functorial fiber sequences

PqX !X ! P q�1X and PqC1X ! PqX ! P qq X

where we have PqX 2†qSH .C2/
HHR , P q�1X 2 .†qSH .C2/

HHR/? , and P qq X 2
.†qC1SH .C2/

HHR/? .

Remark 5.2 The regular slice filtration, first introduced by Ullman [41; 42] uses only
the first and third slice cells above. Let us denote the full subcategories generated under
colimits and extensions by the regular slice cells of dimension � q by †qSH .C2/

reg ,
and the associated functors by zPq , zP q , and zP qq . It is easy to see [42, Proposition 3.4]
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(or as a consequence of Example 2.17) that if PqX 2 †qSH .C2/
reg for all q 2 Z,

then there are equivalences zPqX
'
�! PqX, and zP qq X

'
�! P

q
q X. As we shall see, this

is always the case when the slice tower of a motivic spectrum is compatible with Betti
realization.

We say that a spectrum X is a q–slice if P qq X 'X. In particular, if X is a q–slice,
then X 2 .†qC1SH .C2/

HHR/? . It is known that a spectrum is a 0–slice if and
only if it is of the form HM for M a Mackey functor whose restriction maps are all
monomorphisms [11, Proposition 4.50(ii)]. Since P qC2kqC2k .†

2k;k�X/'†2k;k�P
q
q .X/

([10, Theorem 2.18] or as a consequence of Lemma 2.11) we deduce the following.

Proposition 5.3 Let M be a constant Mackey functor. Then

†2q;q�HM 2 .†2qC1SH .C2/
HHR/?:

For a C2–equivariant spectrum E , the odd and even slices can be completely described
in terms of ��;�.E/. Given a C2–Mackey functor M , we let P 0M denote the
maximal quotient of M for which the restriction map M.C2=C2/!M.C2=e/ is a
monomorphism. The following is then a combination of [11, Proposition 4.20 and
Lemma 4.23] and [10, Corollary 2.16].

Proposition 5.4 For a C2–equivariant spectrum E the slices are given by

P
2q
2q .E/'†

2q;q�HP 0�2q;q.E/ and P
2q�1
2q�1 .E/'†

2q�1;q�H�2q�1;qE:

Because of this, Hill and Meier [12] introduced the notion of even and strongly even
C2–equivariant spectra.

Definition 5.5 (Hill and Meier) A C2–spectrum E is even if �2q�1;qE D 0 for
all q . It is strongly even if it is even and �2q;qE is a constant Mackey functor for
all q 2 Z, ie if the restriction

�C2
2q;qE! �e2q;qE Š �2qE

is an isomorphism.

In particular, if E is even, then the odd slices vanish (and conversely). Many spectra,
such as BPR and MR are known to be even (in fact, strongly even) [12]. Because of
this we will study variants of the Hill–Hopkins–Ravenel slice tower, which we refer to
as the even and odd slice towers.
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For a general C2–equivariant spectrum E , we say that the even slice tower is the tower

� � � P2qC2E P2qE P2q�2E � � �

P
2qC2
2qC2E P

2q
2q E P

2q�2
2q�2E

where P2qC2E ! P2qE is the composite P2qC2E ! P2qC1E ! P2qE , and
each P2qC2E ! P2qE ! P

2q
2q E is a cofiber sequence. We call the collection

f†2qSH .C2/
HHRgq2Z the even slice filtration. Clearly if a motivic spectrum is even,

then the even slice tower is just the usual regular slice tower where we have removed
the (contractible) odd slices. Similarly, we can define the odd slice tower and the odd
slice filtration by using only the odd P2qC1 .

5.3 Betti realization and slices

Given a scheme over R, the associated analytic space X.C/ is a C2–space, where the
C2–action arises from complex conjugation. As shown in [8, Section 4] for example,
this leads to a stable realization functor SH .R/! SH .C2/. Given k � R, we can
compose with the base-change functor SH .k/!SH .R/ to define a realization functor,
which we denote by Re. We record its fundamental properties [8, Proposition 4.8].

Theorem 5.6 (Heller and Ormsby) Let k � R be a field. Then there is a strong
symmetric monoidal, cocontinuous functor ReW SH .k/! SH .C2/. Moreover, the
functor satisfies Re.Sp;q/' Sp;q� .

By composing with the inclusion functor, Betti realization also gives rise to a functor
ReW SH .k/cell ! SH .C2/.

Remark 5.7 The adjunction constructed by Heller and Ormsby is a Quillen adjunction
between model categories. The main result of [26] shows that this gives rise to an
adjunction between the associated 1–categories.

The following is a folklore result, for which we are unable to find a reference in the
literature.

Proposition 5.8 The C2–equivariant realization of MGL is real bordism MR.

Proof Let mot
n denote the universal bundle over the Grassmannian BGLn , so that

MGL' colim
n

†�2n;�n†1.BGLn/
mot
n :
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By Theorem 5.6 we have

Re.MGL/' colim
n

†�2n;�n� Re.†1.BGL
mot
n
n //:

By construction, the realization functor is constructed levelwise, and so it commutes with
the suspension spectrum. Moreover, by construction, Re.BGLn/'BGLn.C/'BU.n/
equipped with its natural complex conjugation C2–action. Using Theorem 5.6 again, it
is then easy to see that Re.BGL

mot
n
n /' BU.n/

real
n . Together we see that

Re.MGL/' colim
n

†�2n;n�†1.BU.n//
real
n ;

which is a model of MR by [11, B.252].

As noted, Hu and Kriz showed that the restriction maps MR2k;k ! MU2k are
isomorphisms and so we can define localized quotients of MR analogous to the
localized quotients of MGL constructed in Section 3.2. Given a localized quotient Emot

of MGL, we will denote by Eequiv the corresponding localized quotient of MR. The
following is then a consequence of the fact that realization commutes with colimits.

Corollary 5.9 The Betti realization of a localized quotient Emot of MGL is the
corresponding localized quotient Eequiv of MR.

Remark 5.10 In the case where Emot DBPhni, this confirms the assumption made
in [30, Remark 3.15].

We also have the following [8, Theorem 4.17].

Proposition 5.11 (Heller and Ormsby) Let A be an abelian group. Then Re.MA/'

HA.

While simple, the following result motivates our use of the very effective cellular
category, as it is not true for the effective cellular category. For example, because
S�1;0 2†0TSH .S/eff

cell , we have S�1;0 ' f Cell
q .S�1;0/, but the realization of S�1;0

is not in †0SH .C2/
reg .

Lemma 5.12 Let E 2 SH .k/cell . Then

Re. zf Cell
k E/ 2†2kSH .C2/

reg
�†2kSH .C2/

HHR:

Proof Consider the full subcategory U � SH .S/cell consisting of those objects U 2
SH .S/cell for which Re.U / 2†2kSH .C2/

reg . The subcategory U is clearly thick,
and because Re preserves colimits (Theorem 5.6) and †2kSH .C2/

reg is closed under
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colimits, we see that U is closed under colimits as well. Moreover, Theorem 5.6 again
implies that the spheres S2a;a for a > k are in U . It follows that †kTSH .S/veff

cell � U ,
and hence

Re.†kTSH .S/
veff
cell /� Re.U/�†2kSH .C2/

reg :

In particular, Re. zf Cell
k

E/ 2†2kSH .C2/
reg for E 2 SH .k/cell , as required.

We are now in a position to apply Pelaez’s theorem to compare the Betti realization of
the slice tower of a motivic spectrum to both the even and odd slice filtrations of its
Betti realization.

Theorem 5.13 Let E 2 SH .k/cell be a cellular motivic spectrum. If Re.zsCell
q E/ 2

.†2qC1SH .C2/
HHR/? for all q 2 Z, then:

(1) The functors

ReW .SH .k/cell ; †
q
TSH .k/

veff
cell /! .SH .C2/; †

2qSH .C2/
HHR/;

ReW .SH .k/cell ; †
q
TSH .k/

veff
cell /! .SH .C2/; †

2q�1SH .C2/
HHR/

are compatible with the slice filtration at E . In particular, there are equivalences

Re. zf Cell
q E/

'
�! P2q Re.E/ '�! P2q�1 Re.E/;

so that

P ii Re.E/'
�

Re.zsCell
q E/ when i D 2q;
0 otherwise

for all q .

(2) The C2–spectrum Re.E/ is even, so that �2q�1;q Re.E/D 0 for all q 2 Z.

(3) The regular and Hill–Hopkins–Ravenel slice towers of Re.E/ are equivalent.

Proof We first apply Pelaez’s theorem to the functor

ReW .SH .k/cell ; †
q
TSH .k/

veff
cell /! .SH .C2/; .†

2qSH .C2/
HHR//:

By Theorem 5.6 and Lemma 5.12 we see that Conditions (1) and (2) are satisfied.
Condition (3) is the statement that Re.zsCell

q E/ 2 .†2qC2SH .C2/
HHR/? . Since

†2qC2SH .C2/
HHR � †2qC1SH .C2/

HHR , we have .†2qC1SH .C2/
HHR/? �

.†2qC2SH .C2/
HHR/? . By assumption, Re.zsCell

q E/ 2 .†2qC1SH .C2/
HHR/? , so

that Condition (3) is satisfied.

A similar argument works for the functor

ReW .SH .k/cell ; †
q
TSH .k/

veff
cell /! .SH .C2/; .†

2q�1SH .C2/
HHR//:
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Since †2qSH .C2/
HHR �†2q�1SH .C2/

HHR , we can again use Theorem 5.6 and
Lemma 5.12 to see that Conditions (1) and (2) are satisfied, and Condition (3) is
precisely the assumption of the theorem.

By Theorem 2.20 we deduce that there are equivalences

Re. zf Cell
q E/

'
�! P2q Re.E/ and Re.zsCell

q E/
'
�! P

2q
2q Re.E/;

as well as

Re. zf Cell
q E/

'
�! P2q�1 Re.E/ and Re.zsCell

q E/
'
�! P

2q�1
2q�1 Re.E/:

It follows that the natural map P2q Re.E/! P2q�1 Re.E/ is an equivalence, so that
there are equivalences Re. zfqE/

'
�! P2q Re.E/ '�! P2q�1 Re.E/, as claimed.

By construction, for any motivic spectrum E , there is a cofiber sequence

P
qC1
qC1 Re.E/! P

q
q Re.E/! P qq Re.E/:

If q D 2j � 1 is odd, then the previous paragraphs show that P 2j�12j�1 Re.E/' 0, and

Re.zsCell
j E/

'
�! P

2j
2j Re.E/ '�! P

2j�1
2j�1 Re.E/:

Similarly, if qD2j is even, then we have Re.zsCell
j E/

'
�! P

2j
2j Re.E/ '�! P

2j
2j Re.E/,

and P 2j�12j�1 Re.E/' 0. In either case we see that the claimed formula for P ii Re.E/
holds, and we have proved (1).

Since the odd slices of Re.E/ are contractible, it is even by definition, and by
Proposition 5.4 we must have �2q�1;q Re.E/D 0. This proves (2).

To see that (3) holds, we must show that Pq Re.E/2†qSH .C2/
reg . Suppose qD 2j

is even. Then P2j Re.E/' Re. zf Cell
j E/ 2†2jSH .C2/

reg by (1) and Lemma 5.12.
Similarly, if q D 2j � 1 is odd, then P2j�1 Re.E/ ' P2j Re.E/ ' Re. zf Cell

j E/ 2

†2jSH .C2/
reg �†2j�1SH .C2/

reg . This proves (3).

The condition that Re.zsCell
q E/ 2 .†2qC1SH .C2/

HHR/? is stated more succinctly in
the terminology of [11] by the requirement that Re.zsCell

q .E// is slice .2qC1/–null.
This is a statement that can be checked by the vanishing of certain equivariant homotopy
groups — see [11, Lemma 4.14] — however, in practice this can be difficult to check.
We will instead rely mainly on the following.

Corollary 5.14 Let E 2 SH .k/cell be a motivic spectrum. If, for each q 2 Z there
is an equivalence zsCell

q E '
W
i2I †

2q;qMAi , where each Ai is an abelian group and
I is a finite indexing set, then the conditions of Theorem 5.13 are satisfied.
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Proof Using Theorem 5.6 and Proposition 5.11 we see that

Re.zsCell
q E/'

W
i2I †

2q;q�HAi :

By Proposition 5.3 we have that †2q;q�HAi 2 .†2qC1SH .C2/
HHR/? . Because

the indexing set I is finite, products and coproducts in SH .C2/ agree, and since
.†2qC1SH .C2/

HHR/? is closed under limits, we conclude that Re
�W

i2I †
2q;qMAi

�
is in .†2qC1SH .C2/

HHR/? .

By combining the previous theorem with work in the previous section we can give
conditions when the effective slice filtration on a motivic spectrum E is compatible
with the Hill–Hopkins–Ravenel slice filtration on its realization Re.E/.

Theorem 5.15 Let E be a motivic spectrum that satisfies the following conditions:

(1) E is cellular.

(2) fqE 2†
q
TSH .S/veff

cell for all q 2Z .

(3) Re.sqE/ 2 .†2qC1SH .C2/
HHR/? for all q 2Z .

Then ReW .SH .k/;†
q
TSH .S/eff / ! .SH .C2/; †

2qSH .C2/
HHR/ is compatible

with the slice filtration at E , the C2–spectrum Re.E/ is even, and the regular and
Hill–Hopkins–Ravenel slice towers of Re.E/ agree.

Proof Combine Theorem 3.16 and Proposition 4.3 with Theorem 5.13.

5.4 Some examples

In the following we let Emot denote a localized quotient of MGL, and we let A
denote either Z, Z.p/ , or Z=p , depending on whether E is a quotient and localization
of MGL, of MGL.p/ , or of MGL.p/=p , respectively. Moreover, we write E top

and Eequiv for the corresponding motivic and topological spectra.

Theorem 5.16 Let Emot be a localized quotient of MGL. Then Eequiv satisfies the
conditions of Theorem 5.15. The odd slices of Eequiv are contractible, and if there are
only finitely many monomials in degree 2q , then the even slices of Eequiv are given by

P
2q
2q .E

equiv/'
W
I †

2q;q�HA;

where the wedge is indexed by monomials of degree 2q in E top
2q .

Proof We have already seen that Emot is cellular, and that fqEmot 2†
q
TSH .S/veff

cell

(see Proposition 4.3), so that (1) and (2) of Theorem 5.15 are satisfied.
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By using either Theorem 2.3, Corollary 2.4, or Corollary 2.5 as well as Remark 2.6
of [20], we can compute that

sq.E
mot/'†2q;qMA˝E

top
2q '

W
I †

2q;qMA;

where the wedge is indexed by monomials of degree 2q in E top
2q (compare Section 4

of [20]). The qth slice is just †2q;qME
top
2q , and so Condition (3) of Theorem 5.15

is also satisfied by Propositions 5.3 and 5.11. Finally, if there are only finitely many
monomials of degree 2q , then the indexing set I is finite, so that Corollary 5.14 applies
and gives the decomposition of the slices.

Example 5.17 Under our assumptions on k , this theorem applies to E D KGL,
since there is an equivalence KGL' a�11 MGL=.a2; a3; : : : / [36, Theorem 5.2]. By
Example 5.1, the realization of KGL is Atiyah’s real K–theory spectrum. We recover
the computation of the slices of KR mentioned in the introduction, namely that

P qq KR'

�
†q;q=2�HZ when q is even;

0 otherwise.

Corollary 5.18 Any localized quotient Eequiv of MR is even; ie �2k�1;kEequiv D 0

for all k 2 Z.

Remark 5.19 In [6, Corollary 4.6] Greenlees and Meier prove that equivariant spectra
of the form BPR=I are strongly even. The above results give an independent proof
that they are even, but the logic is different; they compute the relevant homotopy groups
to show evenness, while we use knowledge of the slices.

Another example comes from motivic Landweber exact spectra.

Theorem 5.20 Let E be a motivic Landweber exact spectrum, with E top the corre-
sponding topological Landweber exact spectrum. Then its realization Re.E/ satisfies
the conditions of Theorem 5.15. The even slices of Re.E/ are given by

P
2q
2q .Re.E//'†qTH�2qE

top;

and the odd slices are contractible.

Proof This is similar to the previous theorem — motivic Landweber exact spectra are,
by definition, cellular, and we know that fqEmot 2†

q
TSH .S/veff

cell by Proposition 4.3.
By [37] we have sq.E/'†2q;qME

top
2i . It follows that the conditions of Theorem 5.15

are satisfied, and the result follows.
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Remark 5.21 In general, the realization of a cellular motivic spectrum need not have
any relation with the slices of its Betti realization. For example, since motivic slices
commute with suspension, but the equivariant ones do not, one can check that (for
example) †k;0MF2 when k¤ 0 is a counterexample. For a more interesting example,
the qth slice of the motivic sphere spectrum always has a summand †q;qMZ=2 (under
the equivalence of (3-b), this summand is generated by ˛q1 ; see [35, Corollary 2.13]).
By [10, Corollary 2.20 and Corollary 2.21] this has the wrong suspension to be an
m–slice (for any m 2 Z) unless q D 0. A similar statement holds for the slice of KQ

using the computation of its slices in [33].

The examples of 1 and KQ given above should not be surprising — after all, here the
effective and very effective slices do not agree (the latter is proved by Bachmann [3],
and the former follows since zs0.1/' zs0.KQ/). On the other hand, we do not know
the relation between the very effective slices of KQ and the equivariant slices of
Re.KQ/'KOC2

, C2–equivariant real K–theory. The very effective slice filtration
of KQ is given by

zsq.KQ/'

8̂̂̂<̂
ˆ̂:
†2q;qzs0.1/ when q � 0 mod .4/;
†2q;qMZ=2 when q � 1 mod .4/;
†2q;qMZ when q � 2 mod .4/;

0 when q � 3 mod .4/:

Here the suspensions are such that it is possible that the realization of the qth slice
is the 2qth equivariant slice of the realization. We save any further investigation for
future work.

6 The slice spectral sequence

Suppose we are in the situation of Theorem 5.15. We have slice spectral sequences in
motivic and equivariant homotopy�

E
p;q;w
1 Š �p;wsq.E/D) �p;w.E/

and

E
p;q;w
1 Š �p;wP

2q
2q .Re.R//D) �p;w.Re.E//;

�All the spectral sequences we consider in this section converge, for example by [13, Theorem 8.12]
and [11, Theorem 4.42].
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and moreover Betti realization induces an isomorphism between the two spectral
sequences.‘ It follows that we can use naturality to determine differentials in the
motivic spectral sequence from known differentials in equivariant homotopy theory.

6.1 The motivic and equivariant slice spectral sequences

We begin by reminding the reader of the equivariant and motivic cohomology of a
point with F2–coefficients. We start with the motivic case, which is easier to describe.
Let k be a field. Then there is a canonical element � 2H 0;1.Spec.k/;F2/ such that

��;�.MF2/ŠH
��;��.Spec.k/;F2/Š kM� .k/Œ��;

where kM� .k/ denotes the mod 2 Milnor K–theory of k , and kMn .k/ has cohomological
bidegree .n; n/ — this is a consequence of [45]; see [5, Remark 4.4] for a convenient
reference.

Now assume that k � R is a real closed field (that is, k is a subfield of R that
is not algebraically closed, but k.

p
�1/ is). In this case, we have an isomorphism

kM� .k/Š F2Œ�� [17, Corollary X.6.9], where � represents Œ�1� 2 kM1 .k/Š k
�=.k�/2 .

Together, we conclude that H�;�.Spec.k/;F2/Š F2Œ�; ��, where � has homological
bidegree .0;�1/ and � has homological bidegree .�1;�1/. We denote this ring
by M2 .

The C2–equivariant Bredon cohomology of a point is given in [14, Proposition 6.2].
It is useful to first describe some elements in it. There is an element a� 2 �

C2

�1;�1S
0

corresponding to the inclusion S0;0 ! S1;� . Following standard conventions, we
denote the image of a� in ��;�HF2 Š H��;��.pt;HF2/ by a� as well. Under
realization, the class � 2H�;�.Spec.k/;F2/ maps to the class a� .

The other distinguished class is denoted by u� , and is the element corresponding to
the generator of HC2

1 .S1;� ;F2/Š �
C2

0;�1.HF2/. Under realization the class � maps
to the class u� .

With this in mind, the Bredon equivariant cohomology of a point can be described by

��;�HF2 ŠH
��;��.pt;HF2/Š F2Œu� ; a� �˚F2

�
�

ui�a
j
�

�
; i; j � 0:

‘We are implicitly using the even equivariant slice filtration, and ignoring the odd slices, which are all
contractible.
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Of course, some care must be taken when interpreting this because u� and a� are
not actually invertible. Here the homological bidegrees are given by ju� j D .�1; 0/,
ja� j D .�1;�1/, and j� j D .2; 0/. The element � is both u�– and a�–torsion, and
is infinitely divisible by the same elements, and any two elements in F2f�=.ui�a

j
� /g

multiply trivially.

6.2 Mod 2 BP and BPhni

Let k � R be a real closed field, so that the class � is nonzero. We define mod 2
versions of BP and BPhni by

BP=2DMGL.2/=.f2; ai j i ¤ p
j
� 1g/;

BPhni=2DMGL.2/=.f2; ai j i ¤ 2
j
� 1; 0� j � ng/:

If we write vi D a2i�1 , then the corresponding topological spectral spectra have
coefficient rings

.BP=2/� Š BP�=2 Š F2Œv1; v2; : : : �;

.BP hni=2/� Š BP hni�=2Š F2Œv1; : : : ; vn�:

Then the calculations of Levine and Tripathi [20, Corollary 4.6] give

sq.BP=2/'†2q;qMF2˝BP2q=2 and sqBPhni '†2q;qMF2˝BP hni2q=2:

The associated slice spectral sequence for BP=2 then has the form

E
p;q;w
1 ŠH 2q�p;q�w.Spec.k/; BP2q=2/D) �q;wBP=2:

When qD 0, we have s0.BP=2/'MF2 , and so there are classes � 2�0;�1s0.BP=2/

and � 2 ��1;�1s0.BP=2/. In particular, in the slice spectral sequence for BP=2 we
have �m 2E0;0;�m1 and �m 2Em;m;�m1 . Moreover, the classes vk give rise to elements
in �2k;ksk.BP=2/Š �0MF2 .

Proposition 6.1 The E1–term for the slice spectral sequence for BP=2 is given by

E
p;q;w
1 Š F2Œ�; �; v1; v2; : : : �

with tridegrees j� jD .0; 0;�1/, j�jD .�1; 0;�1/, and jvi jD .2iC1�2; 2i�1; 2i�1/.
The differentials di .�2

k

/ are zero for i < 2k � 1, and

d2k�1.�
2k

/D vk�
2kC1�1:
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Proof That the E1–term has the claimed form is clear from the discussion above. To
determine the differentials, we use naturality to compare with the differentials for the
C2–equivariant slice spectral sequence for BPR=2. By Theorem 5.16 we can compute
the slices for BPR=2 (or this can also be deduced using the method of twisted monoid
rings in [11]). In particular, we deduce that the odd slices for BPR=2 are trivial,
and the even slices are given by wedges of HF2 , where the wedges are indexed by
monomials in BP�=2. We chose to actually work with the even slice filtration, as this
Betti realization induces an isomorphism on slices.

It follows from the discussion in the previous section that in positive degrees the
E1–term of the slice spectral sequence has the same form as the motivic slice spectral
sequence, namely F2Œa� ; u� ; xv1; xv2; : : : �, where xvi 2 �2.2i�1/;2i�1BPR is the equi-
variant lift of vi 2 �2.2i�1/BP. In particular, there is an injection on the E1–page of
the corresponding slice spectral sequences.

The differentials in the equivariant slice spectral sequence for BPR=2 can be de-
termined by the differentials in the slice spectral sequence for BPR itself. The
differentials in the latter can be determined by the work of Hu and Kriz [14] or
as a consequence of Hill, Hopkins, and Ravenel [11, Theorem 9.9], and are fully
described in [21, Proposition 3.4]. To wit, the E1–term is given in positive degrees by
ZŒa� ; u2� ; xvi �. Here u2� 2 ��2;�2HZ is a lift of the class u2� 2 ��2;�2HF2 (the
class u� does not exist in ��;�HZ.). The differentials di .�2

k

/ are zero for i < 2k�1,
and

d2k�1.u
2k�1

2� /D xvka
2kC1�1
� :

Note that we use a different grading convention to that of Hill, Hopkins, and Ravenel —
we choose to start our spectral sequence on the E1–page instead of the E2–page.
Moreover, we work with the even slice filtration. This has the effect that the first
differential in our spectral sequence is a d1 , which corresponds to a d3–differential
for Hill, Hopkins, and Ravenel. Similarly, their d2k –differential corresponds to a
d2k�1–differential in our grading.

By considering the map of slice spectral sequences induced by the quotient BPR!

BPR=2, we deduce that the equivariant slice spectral sequence for BPR=2 has
differentials

d2k�1.u
2k

� /D xvka
2kC1�1
� :

This can also be determined using the methods of Hu and Kriz; cf [14, Section 3].
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From the calculations of the E1–pages, we see that the map of spectral sequences
from BP=2 to BPR=2 is an injection on the E1–page. It follows that the equivariant
differential d1.�/D � implies that there is a motivic differential d1.u� /D a� , and that
the spectral sequence is an injection on the E2–page. Inductively, we deduce that the
morphism of spectral sequences is an injection on the Ek–page, and that the motivic
differentials are as claimed.

This E1–term is remarkably similar to the �–Bockstein spectral sequence for computing
ExtE .M2;M2/, as studied by Hill in [9], where E is the subalgebra of the mod 2
motivic Steenrod algebra generated by the Milnor primitives. Using a similar analysis
to Hill (see [9, Corollary 3.3]), and the previous proposition, one arrives at the following
result, which should be compared to Yagita’s computation [46, Theorem 6.5].

Theorem 6.2 Over a real closed field k � R, the E1–term of the slice spectral
sequence BP=2 is given additively by

F2Œ�; �; vi .j / j i > 0; j � 0�

subject to the relations

�2 D 0;

�2
iC1�1vi .j /D 0;

vi .j / � vk.`/D vi .j C 2
k�i`/ � vk.0/ when k � i:

Here vi .j / is represented on the E1–page of the slice spectral sequence by �2
iC1j vi

(so, in particular, vi .0/ is represented by vi ).

A similar analysis gives the following for the truncated Brown–Peterson spectra.

Theorem 6.3 Over a real closed field k � R, the E1–term of the slice spectral
sequence for BPhni=2 is given by

E
p;q;w
1 Š F2Œ�; �; v1; : : : ; vn�:

The differentials di .�2
k

/ are zero for i < 2k � 1, and

d2k�1.�
2k

/D vk�
2kC1�1

for 1� k� n. We deduce that the E1–term of the slice spectral sequence of BPhni=2

is given additively by

F2Œ�; �; tnC1; vi .j / j 0 < i � n; j � 0�
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subject to the relations

�2 D 0;

�2
iC1�1vi .j /D 0;

vi .j / � vk.`/D vi .j C 2
k�i`/ � vk.0/ when k � i;

vi .j /D tnC1vi .j � 2
n�i / when j � 2n�i :

Here vi .j / is represented on the E1–page of the slice spectral sequence by �2
iC1j vi ,

while tnC1 is represented on the E1–page by �2
nC1

.

There can be nontrivial extensions in these spectral sequences. For example, when
nD 1, the E1–page of the slice spectral sequence for BPh1i=2 is given by

F2Œ�; �; t2; v1�=.�
2; �3v1/:

In particular, in weight zero it is given by

F2Œt2v
4
1 �f1; �v1; .�

2v21 ; �v1/; ��v
2
1 ; ��

2v31 ; 0; 0; 0g:

On the other hand, we have that BPh1i=2' kgl=2, so that in weight 0 this computes
the mod 2 algebraic K–theory of k . By Suslin [40], over Spec.R/ we have

Kn.R;Z=2/Š

8<:
Z=2 when n� 0; 1; 3; 4 mod .8/;
Z=4 when n� 2 mod .8/;
0 otherwise.

If follows that there must be a nontrivial additive extension between �2v21 and �v1 ,
and their t2v41–multiples.

References
[1] A Ananyevskiy, O Röndigs, P A Østvær, On very effective hermitian K–theory,

Math. Z. (online publication April 2019)

[2] S Araki, M Murayama, � –cohomology theories, Japan. J. Math. 4 (1978) 363–416
MR

[3] T Bachmann, The generalized slices of Hermitian K–theory, J. Topol. 10 (2017)
1124–1144 MR

[4] D Dugger, D C Isaksen, Motivic cell structures, Algebr. Geom. Topol. 5 (2005) 615–
652 MR

[5] D Dugger, D C Isaksen, The motivic Adams spectral sequence, Geom. Topol. 14 (2010)
967–1014 MR

Algebraic & Geometric Topology, Volume 19 (2019)

http://dx.doi.org/10.1007/s00209-019-02302-z
http://dx.doi.org/10.4099/math1924.4.363
http://msp.org/idx/mr/528864
http://dx.doi.org/10.1112/topo.12032
http://msp.org/idx/mr/3743071
http://dx.doi.org/10.2140/agt.2005.5.615
http://msp.org/idx/mr/2153114
http://dx.doi.org/10.2140/gt.2010.14.967
http://msp.org/idx/mr/2629898


On equivariant and motivic slices 3679

[6] J P C Greenlees, L Meier, Gorenstein duality for real spectra, Algebr. Geom. Topol.
17 (2017) 3547–3619 MR

[7] J J Gutiérrez, O Röndigs, M Spitzweck, P A Østvær, Motivic slices and coloured
operads, J. Topol. 5 (2012) 727–755 MR

[8] J Heller, K Ormsby, Galois equivariance and stable motivic homotopy theory, Trans.
Amer. Math. Soc. 368 (2016) 8047–8077 MR

[9] M A Hill, Ext and the motivic Steenrod algebra over R , J. Pure Appl. Algebra 215
(2011) 715–727 MR

[10] M A Hill, The equivariant slice filtration: a primer, Homology Homotopy Appl. 14
(2012) 143–166 MR

[11] M A Hill, M J Hopkins, D C Ravenel, On the nonexistence of elements of Kervaire
invariant one, Ann. of Math. 184 (2016) 1–262 MR

[12] M A Hill, L Meier, The C2–spectrum Tmf1.3/ and its invertible modules, Algebr.
Geom. Topol. 17 (2017) 1953–2011 MR

[13] M Hoyois, From algebraic cobordism to motivic cohomology, J. Reine Angew. Math.
702 (2015) 173–226 MR

[14] P Hu, I Kriz, Real-oriented homotopy theory and an analogue of the Adams–Novikov
spectral sequence, Topology 40 (2001) 317–399 MR

[15] D C Isaksen, A Shkembi, Motivic connective K –theories and the cohomology of A.1/ ,
J. K–Theory 7 (2011) 619–661 MR

[16] S Kelly, Triangulated categories of motives in positive characteristic, PhD thesis,
Université Paris 13 (2012) arXiv

[17] T Y Lam, Introduction to quadratic forms over fields, Graduate Studies in Mathematics
67, Amer. Math. Soc., Providence, RI (2005) MR

[18] P S Landweber, Annihilator ideals and primitive elements in complex bordism, Illinois
J. Math. 17 (1973) 273–284 MR

[19] M Levine, The homotopy coniveau tower, J. Topol. 1 (2008) 217–267 MR

[20] M Levine, G S Tripathi, Quotients of MGL, their slices and their geometric parts, Doc.
Math. Extra Vol. 7 (2015) 407–442 MR

[21] G Li, X D Shi, G Wang, Z Xu, Hurewicz images of real bordism theory and real
Johnson–Wilson theories, Adv. Math. 342 (2019) 67–115 MR

[22] J Lurie, Higher topos theory, Annals of Mathematics Studies 170, Princeton Univ.
Press (2009) MR

[23] J Lurie, Higher algebra, book project (2017) Available at https://url.msp.org/
Lurie-HA

[24] M A Mandell, J P May, Equivariant orthogonal spectra and S –modules, Mem. Amer.
Math. Soc. 755, Amer. Math. Soc., Providence, RI (2002) MR

Algebraic & Geometric Topology, Volume 19 (2019)

http://dx.doi.org/10.2140/agt.2017.17.3547
http://msp.org/idx/mr/3709655
http://dx.doi.org/10.1112/jtopol/jts015
http://dx.doi.org/10.1112/jtopol/jts015
http://msp.org/idx/mr/2971612
http://dx.doi.org/10.1090/tran6647
http://msp.org/idx/mr/3546793
http://dx.doi.org/10.1016/j.jpaa.2010.06.017
http://msp.org/idx/mr/2747214
http://dx.doi.org/10.4310/HHA.2012.v14.n2.a9
http://msp.org/idx/mr/3007090
http://dx.doi.org/10.4007/annals.2016.184.1.1
http://dx.doi.org/10.4007/annals.2016.184.1.1
http://msp.org/idx/mr/3505179
http://dx.doi.org/10.2140/agt.2017.17.1953
http://msp.org/idx/mr/3685599
http://dx.doi.org/10.1515/crelle-2013-0038
http://msp.org/idx/mr/3341470
http://dx.doi.org/10.1016/S0040-9383(99)00065-8
http://dx.doi.org/10.1016/S0040-9383(99)00065-8
http://msp.org/idx/mr/1808224
http://dx.doi.org/10.1017/is011004009jkt154
http://msp.org/idx/mr/2811718
http://msp.org/idx/arx/1305.5349
https://bookstore.ams.org/gsm-67
http://msp.org/idx/mr/2104929
http://dx.doi.org/10.1215/ijm/1256051757
http://msp.org/idx/mr/0322874
http://dx.doi.org/10.1112/jtopol/jtm004
http://msp.org/idx/mr/2365658
https://www.math.uni-bielefeld.de/documenta/vol-merkurjev/levine_tripathi.html
http://msp.org/idx/mr/3404387
http://dx.doi.org/10.1016/j.aim.2018.11.002
http://dx.doi.org/10.1016/j.aim.2018.11.002
http://msp.org/idx/mr/3877362
http://dx.doi.org/10.1515/9781400830558
http://msp.org/idx/mr/2522659
https://url.msp.org/Lurie-HA
https://url.msp.org/Lurie-HA
http://dx.doi.org/10.1090/memo/0755
http://msp.org/idx/mr/1922205


3680 Drew Heard

[25] A Mathew, N Naumann, J Noel, Nilpotence and descent in equivariant stable homo-
topy theory, Adv. Math. 305 (2017) 994–1084 MR

[26] A Mazel-Gee, Quillen adjunctions induce adjunctions of quasicategories, New York J.
Math. 22 (2016) 57–93 MR

[27] F Morel, On the motivic �0 of the sphere spectrum, from “Axiomatic, enriched and
motivic homotopy theory” (J P C Greenlees, editor), NATO Sci. Ser. II Math. Phys.
Chem. 131, Kluwer Acad. Publ., Dordrecht (2004) 219–260 MR

[28] F Morel, V Voevodsky, A1–homotopy theory of schemes, Inst. Hautes Études Sci.
Publ. Math. 90 (1999) 45–143 MR

[29] N Naumann, M Spitzweck, P A Østvær, Motivic Landweber exactness, Doc. Math.
14 (2009) 551–593 MR

[30] K M Ormsby, P A Østvær, Motivic Brown–Peterson invariants of the rationals, Geom.
Topol. 17 (2013) 1671–1706 MR

[31] P Pelaez, On the functoriality of the slice filtration, J. K–Theory 11 (2013) 55–71 MR

[32] M Robalo, K–theory and the bridge from motives to noncommutative motives, Adv.
Math. 269 (2015) 399–550 MR

[33] O Röndigs, P A Østvær, Slices of hermitian K–theory and Milnor’s conjecture on
quadratic forms, Geom. Topol. 20 (2016) 1157–1212 MR

[34] O Röndigs, M Spitzweck, P A Østvær, Cellularity of hermitian K–theory and Witt-
theory, from “K–theory” (V Srinivas, S K Roushon, R A Rao, A J Parameswaran, A
Krishna, editors), Hindustan Book Agency, New Delhi (2018) 35–40 MR

[35] O Röndigs, M Spitzweck, P A Østvær, The first stable homotopy groups of motivic
spheres, Ann. of Math. 189 (2019) 1–74 MR

[36] M Spitzweck, Relations between slices and quotients of the algebraic cobordism
spectrum, Homology Homotopy Appl. 12 (2010) 335–351 MR

[37] M Spitzweck, Slices of motivic Landweber spectra, J. K–Theory 9 (2012) 103–117
MR

[38] M Spitzweck, A commutative P1–spectrum representing motivic cohomology over
Dedekind domains, Mém. Soc. Math. Fr. 157, Soc. Math. France, Paris (2018) MR

[39] M Spitzweck, P A Østvær, Motivic twisted K –theory, Algebr. Geom. Topol. 12 (2012)
565–599 MR

[40] A Suslin, On the K–theory of algebraically closed fields, Invent. Math. 73 (1983)
241–245 MR

[41] J R Ullman, On the regular slice spectral sequence, PhD thesis, Massachusetts Institute
of Technology (2013) MR

[42] J Ullman, On the slice spectral sequence, Algebr. Geom. Topol. 13 (2013) 1743–1755
MR

Algebraic & Geometric Topology, Volume 19 (2019)

http://dx.doi.org/10.1016/j.aim.2016.09.027
http://dx.doi.org/10.1016/j.aim.2016.09.027
http://msp.org/idx/mr/3570153
http://nyjm.albany.edu:8000/j/2016/22_57.html
http://msp.org/idx/mr/3484677
http://dx.doi.org/10.1007/978-94-007-0948-5_7
http://msp.org/idx/mr/2061856
http://dx.doi.org/10.1007/BF02698831
http://msp.org/idx/mr/1813224
https://www.math.uni-bielefeld.de/documenta/vol-14/20.html
http://msp.org/idx/mr/2565902
http://dx.doi.org/10.2140/gt.2013.17.1671
http://msp.org/idx/mr/3073932
http://dx.doi.org/10.1017/is013001013jkt196
http://msp.org/idx/mr/3034283
http://dx.doi.org/10.1016/j.aim.2014.10.011
http://msp.org/idx/mr/3281141
http://dx.doi.org/10.2140/gt.2016.20.1157
http://dx.doi.org/10.2140/gt.2016.20.1157
http://msp.org/idx/mr/3493102
http://msp.org/idx/mr/3930042
http://dx.doi.org/10.4007/annals.2019.189.1.1
http://dx.doi.org/10.4007/annals.2019.189.1.1
http://msp.org/idx/mr/3898173
http://dx.doi.org/10.4310/HHA.2010.v12.n2.a11
http://dx.doi.org/10.4310/HHA.2010.v12.n2.a11
http://msp.org/idx/mr/2771593
http://dx.doi.org/10.1017/is010008019jkt128
http://msp.org/idx/mr/2887201
https://smf.emath.fr/node/44990
https://smf.emath.fr/node/44990
http://msp.org/idx/mr/3865569
http://dx.doi.org/10.2140/agt.2012.12.565
http://msp.org/idx/mr/2916287
http://dx.doi.org/10.1007/BF01394024
http://msp.org/idx/mr/714090
http://msp.org/idx/mr/3211466
http://dx.doi.org/10.2140/agt.2013.13.1743
http://msp.org/idx/mr/3071141


On equivariant and motivic slices 3681

[43] V Voevodsky, A1–homotopy theory, from “Proceedings of the International Congress
of Mathematicians, I” (G Fischer, U Rehmann, editors), Deutsche Mathematiker Vere-
inigung, Berlin (1998) 579–604 MR

[44] V Voevodsky, Open problems in the motivic stable homotopy theory, I, from “Motives,
polylogarithms and Hodge theory, I” (F Bogomolov, L Katzarkov, editors), Int. Press
Lect. Ser. 3, International, Somerville, MA (2002) 3–34 MR

[45] V Voevodsky, Motivic cohomology with Z=2–coefficients, Publ. Math. Inst. Hautes
Études Sci. 98 (2003) 59–104 MR

[46] N Yagita, Applications of Atiyah–Hirzebruch spectral sequences for motivic cobordism,
Proc. London Math. Soc. 90 (2005) 783–816 MR

[47] R Zahler, The Adams–Novikov spectral sequence for the spheres, Ann. of Math. 96
(1972) 480–504 MR

Fakultät für Mathematik, Universität Regensburg
Regensburg, Germany

drew.k.heard@gmail.com

https://drew-heard.github.io/

Received: 1 August 2018 Revised: 15 March 2019

Geometry & Topology Publications, an imprint of mathematical sciences publishers msp

https://www.mathunion.org/fileadmin/ICM/Proceedings/ICM1998.1/ICM1998.1.ocr.pdf
http://msp.org/idx/mr/1648048
http://msp.org/idx/mr/1977582
http://dx.doi.org/10.1007/s10240-003-0010-6
http://msp.org/idx/mr/2031199
http://dx.doi.org/10.1112/S0024611504015084
http://msp.org/idx/mr/2137831
http://dx.doi.org/10.2307/1970821
http://msp.org/idx/mr/319197
mailto:drew.k.heard@gmail.com
https://drew-heard.github.io/
http://msp.org
http://msp.org



	1. Introduction
	2. Slices of stably monoidal categories
	2.1. An axiomatic approach to the slice filtration
	2.2. Pelaez's theorem

	3. The effective and cellular effective motivic slice filtrations
	3.1. The stable and cellular motivic homotopy category
	3.2. Quotients and localizations of MGL
	3.3. Effective and cellular effective slices
	3.4. The comparison theorem

	4. The very effective cellular slice filtration
	5. Equivariant slices
	5.1. The C_2–equivariant homotopy category
	5.2. The Hill–Hopkins–Ravenel slice filtration
	5.3. Betti realization and slices
	5.4. Some examples

	6. The slice spectral sequence
	6.1. The motivic and equivariant slice spectral sequences
	6.2. Mod 2 BP and BP<n>

	References

