Volume 19, issue 7 (2019)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 22
Issue 6, 2533–3057
Issue 5, 2007–2532
Issue 4, 1497–2006
Issue 3, 991–1495
Issue 2, 473–990
Issue 1, 1–472

Volume 21, 7 issues

Volume 20, 7 issues

Volume 19, 7 issues

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the Journal
Editorial Board
Editorial Interests
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN (electronic): 1472-2739
ISSN (print): 1472-2747
Author Index
To Appear
 
Other MSP Journals
On properties of Bourgeois contact structures

Samuel Lisi, Aleksandra Marinković and Klaus Niederkrüger

Algebraic & Geometric Topology 19 (2019) 3409–3451
Bibliography
1 K Barth, H Geiges, K Zehmisch, The diffeomorphism type of symplectic fillings, J. Symplectic Geom. 17 (2019) 929
2 P Biran, K Cieliebak, Lagrangian embeddings into subcritical Stein manifolds, Israel J. Math. 127 (2002) 221 MR1900700
3 P Biran, M Khanevsky, A Floer–Gysin exact sequence for Lagrangian submanifolds, Comment. Math. Helv. 88 (2013) 899 MR3134415
4 M S Borman, Y Eliashberg, E Murphy, Existence and classification of overtwisted contact structures in all dimensions, Acta Math. 215 (2015) 281 MR3455235
5 F Bourgeois, A Morse–Bott approach to contact homology, PhD thesis, Stanford University (2002) MR2703292
6 F Bourgeois, Odd dimensional tori are contact manifolds, Int. Math. Res. Not. 2002 (2002) 1571 MR1912277
7 J Bowden, D Crowley, A I Stipsicz, The topology of Stein fillable manifolds in high dimensions, I, Proc. Lond. Math. Soc. 109 (2014) 1363 MR3293153
8 J Bowden, F Gironella, A Moreno, 5–Dimensional Bourgeois contact structures are tight, preprint (2019) arXiv:1903.11866
9 C Caubel, A Némethi, P Popescu-Pampu, Milnor open books and Milnor fillable contact 3–manifolds, Topology 45 (2006) 673 MR2218761
10 K Cieliebak, Subcritical Stein manifolds are split, preprint (2002) arXiv:math/0204351
11 K Cieliebak, Y Eliashberg, From Stein to Weinstein and back : symplectic geometry of affine complex manifolds, 59, Amer. Math. Soc. (2012) MR3012475
12 S Courte, H–cobordismes en géométrie symplectique, PhD thesis, École Normale Supérieure de Lyon (2015)
13 Y Eliashberg, Topological characterization of Stein manifolds of dimension > 2, Internat. J. Math. 1 (1990) 29 MR1044658
14 Y Eliashberg, Unique holomorphically fillable contact structure on the 3–torus, Internat. Math. Res. Notices (1996) 77 MR1383953
15 Y Eliashberg, H Hofer, D Salamon, Lagrangian intersections in contact geometry, Geom. Funct. Anal. 5 (1995) 244 MR1334868
16 J B Etnyre, Lectures on open book decompositions and contact structures, from: "Floer homology, gauge theory, and low-dimensional topology" (editors D A Ellwood, P S Ozsváth, A I Stipsicz, Z Szabó), Clay Math. Proc. 5, Amer. Math. Soc. (2006) 103 MR2249250
17 F Gironella, On some examples and constructions of contact manifolds, Math. Ann. (2019)
18 E Giroux, Une structure de contact, même tendue, est plus ou moins tordue, Ann. Sci. École Norm. Sup. 27 (1994) 697 MR1307678
19 E Giroux, Géométrie de contact : de la dimension trois vers les dimensions supérieures, from: "Proceedings of the International Congress of Mathematicians, II" (editor T Li), Higher Ed. (2002) 405 MR1957051
20 E Giroux, Ideal Liouville domains — a cool gadget, preprint (2017) arXiv:1708.08855
21 M Gromov, Pseudo holomorphic curves in symplectic manifolds, Invent. Math. 82 (1985) 307 MR809718
22 O van Koert, Lecture notes on stabilization of contact open books, Münster J. Math. 10 (2017) 425 MR3725503
23 E Lerman, Contact toric manifolds, J. Symplectic Geom. 1 (2003) 785 MR2039164
24 R Lutz, Sur la géométrie des structures de contact invariantes, Ann. Inst. Fourier (Grenoble) 29 (1979) 283 MR526789
25 P Massot, K Niederkrüger, Examples of non-trivial contact mapping classes in all dimensions, Int. Math. Res. Not. 2016 (2016) 4784 MR3564627
26 P Massot, K Niederkrüger, C Wendl, Weak and strong fillability of higher dimensional contact manifolds, Invent. Math. 192 (2013) 287 MR3044125
27 D McDuff, D Salamon, Introduction to symplectic topology, Clarendon (1998) MR1698616
28 J Milnor, Singular points of complex hypersurfaces, 61, Princeton Univ. Press (1968) MR0239612
29 K Niederkrüger, The plastikstufe—a generalization of the overtwisted disk to higher dimensions, Algebr. Geom. Topol. 6 (2006) 2473 MR2286033
30 A Oancea, C Viterbo, On the topology of fillings of contact manifolds and applications, Comment. Math. Helv. 87 (2012) 41 MR2874896
31 J Pardon, Contact homology and virtual fundamental cycles, J. Amer. Math. Soc. 32 (2019) 825 MR3981989
32 F Presas, A class of non-fillable contact structures, Geom. Topol. 11 (2007) 2203 MR2372846