Volume 19, issue 7 (2019)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 25, 1 issue

Volume 24, 9 issues

Volume 23, 9 issues

Volume 22, 8 issues

Volume 21, 7 issues

Volume 20, 7 issues

Volume 19, 7 issues

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the Journal
Editorial Board
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN 1472-2739 (online)
ISSN 1472-2747 (print)
Author Index
To Appear
 
Other MSP Journals
An algebraic model for rational toral $G$–spectra

David Barnes, John Greenlees and Magdalena Kędziorek

Algebraic & Geometric Topology 19 (2019) 3541–3599
Bibliography
1 D Barnes, J P C Greenlees, M Kędziorek, B Shipley, Rational SO(2)–equivariant spectra, Algebr. Geom. Topol. 17 (2017) 983 MR3623679
2 T tom Dieck, Transformation groups and representation theory, 766, Springer (1979) MR551743
3 J P C Greenlees, Rational Mackey functors for compact Lie groups, I, Proc. London Math. Soc. 76 (1998) 549 MR1620500
4 J P C Greenlees, Rational S1–equivariant stable homotopy theory, 661, Amer. Math. Soc. (1999) MR1483831
5 J Greenlees, Triangulated categories of rational equivariant cohomology theories, Oberwolfach Reports 3 (2006) 480
6 J P C Greenlees, Rational torus-equivariant stable homotopy, I : Calculating groups of stable maps, J. Pure Appl. Algebra 212 (2008) 72 MR2355035
7 J P C Greenlees, Rational equivariant cohomology theories with toral support, Algebr. Geom. Topol. 16 (2016) 1953 MR3546456
8 J P C Greenlees, Rational torus-equivariant stable homotopy, III : Comparison of models, J. Pure Appl. Algebra 220 (2016) 3573 MR3506470
9 J P C Greenlees, Couniversal spaces which are equivariantly commutative ring spectra, Homology Homotopy Appl. 22 (2020) 69
10 J P C Greenlees, B Shipley, The cellularization principle for Quillen adjunctions, Homology Homotopy Appl. 15 (2013) 173 MR3138375
11 J P C Greenlees, B Shipley, Fixed point adjunctions for equivariant module spectra, Algebr. Geom. Topol. 14 (2014) 1779 MR3212584
12 J P C Greenlees, B Shipley, Homotopy theory of modules over diagrams of rings, Proc. Amer. Math. Soc. Ser. B 1 (2014) 89 MR3254575
13 J P C Greenlees, B Shipley, An algebraic model for rational torus-equivariant spectra, J. Topol. 11 (2018) 666 MR3830880
14 K Hess, M Kędziorek, E Riehl, B Shipley, A necessary and sufficient condition for induced model structures, J. Topol. 10 (2017) 324 MR3653314
15 S Illman, The equivariant triangulation theorem for actions of compact Lie groups, Math. Ann. 262 (1983) 487 MR696520
16 M Kędziorek, An algebraic model for rational SO(3)–spectra, Algebr. Geom. Topol. 17 (2017) 3095 MR3704254
17 M A Mandell, J P May, Equivariant orthogonal spectra and S–modules, 755, Amer. Math. Soc. (2002) MR1922205
18 B Richter, B Shipley, An algebraic model for commutative H–algebras, Algebr. Geom. Topol. 17 (2017) 2013 MR3685600
19 B Shipley, H–algebra spectra are differential graded algebras, Amer. J. Math. 129 (2007) 351 MR2306038