Volume 19, issue 7 (2019)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 22
Issue 6, 2533–3057
Issue 5, 2007–2532
Issue 4, 1497–2006
Issue 3, 991–1495
Issue 2, 473–990
Issue 1, 1–472

Volume 21, 7 issues

Volume 20, 7 issues

Volume 19, 7 issues

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the Journal
Editorial Board
Editorial Interests
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN (electronic): 1472-2739
ISSN (print): 1472-2747
Author Index
To Appear
 
Other MSP Journals
On equivariant and motivic slices

Drew Heard

Algebraic & Geometric Topology 19 (2019) 3641–3681
Bibliography
1 A Ananyevskiy, O Röndigs, P A Østvær, On very effective hermitian K–theory, Math. Z. (2019)
2 S Araki, M Murayama, τ–cohomology theories, Japan. J. Math. 4 (1978) 363 MR528864
3 T Bachmann, The generalized slices of Hermitian K–theory, J. Topol. 10 (2017) 1124 MR3743071
4 D Dugger, D C Isaksen, Motivic cell structures, Algebr. Geom. Topol. 5 (2005) 615 MR2153114
5 D Dugger, D C Isaksen, The motivic Adams spectral sequence, Geom. Topol. 14 (2010) 967 MR2629898
6 J P C Greenlees, L Meier, Gorenstein duality for real spectra, Algebr. Geom. Topol. 17 (2017) 3547 MR3709655
7 J J Gutiérrez, O Röndigs, M Spitzweck, P A Østvær, Motivic slices and coloured operads, J. Topol. 5 (2012) 727 MR2971612
8 J Heller, K Ormsby, Galois equivariance and stable motivic homotopy theory, Trans. Amer. Math. Soc. 368 (2016) 8047 MR3546793
9 M A Hill, Ext and the motivic Steenrod algebra over , J. Pure Appl. Algebra 215 (2011) 715 MR2747214
10 M A Hill, The equivariant slice filtration: a primer, Homology Homotopy Appl. 14 (2012) 143 MR3007090
11 M A Hill, M J Hopkins, D C Ravenel, On the nonexistence of elements of Kervaire invariant one, Ann. of Math. 184 (2016) 1 MR3505179
12 M A Hill, L Meier, The C2–spectrum Tmf1(3) and its invertible modules, Algebr. Geom. Topol. 17 (2017) 1953 MR3685599
13 M Hoyois, From algebraic cobordism to motivic cohomology, J. Reine Angew. Math. 702 (2015) 173 MR3341470
14 P Hu, I Kriz, Real-oriented homotopy theory and an analogue of the Adams–Novikov spectral sequence, Topology 40 (2001) 317 MR1808224
15 D C Isaksen, A Shkembi, Motivic connective K–theories and the cohomology of A(1), J. K–Theory 7 (2011) 619 MR2811718
16 S Kelly, Triangulated categories of motives in positive characteristic, PhD thesis, Université Paris 13 (2012) arXiv:1305.5349
17 T Y Lam, Introduction to quadratic forms over fields, 67, Amer. Math. Soc. (2005) MR2104929
18 P S Landweber, Annihilator ideals and primitive elements in complex bordism, Illinois J. Math. 17 (1973) 273 MR0322874
19 M Levine, The homotopy coniveau tower, J. Topol. 1 (2008) 217 MR2365658
20 M Levine, G S Tripathi, Quotients of MGL, their slices and their geometric parts, Doc. Math. Extra Vol. 7 (2015) 407 MR3404387
21 G Li, X D Shi, G Wang, Z Xu, Hurewicz images of real bordism theory and real Johnson–Wilson theories, Adv. Math. 342 (2019) 67 MR3877362
22 J Lurie, Higher topos theory, 170, Princeton Univ. Press (2009) MR2522659
23 J Lurie, Higher algebra, book project (2017)
24 M A Mandell, J P May, Equivariant orthogonal spectra and S–modules, 755, Amer. Math. Soc. (2002) MR1922205
25 A Mathew, N Naumann, J Noel, Nilpotence and descent in equivariant stable homotopy theory, Adv. Math. 305 (2017) 994 MR3570153
26 A Mazel-Gee, Quillen adjunctions induce adjunctions of quasicategories, New York J. Math. 22 (2016) 57 MR3484677
27 F Morel, On the motivic π0 of the sphere spectrum, from: "Axiomatic, enriched and motivic homotopy theory" (editor J P C Greenlees), NATO Sci. Ser. II Math. Phys. Chem. 131, Kluwer Acad. Publ. (2004) 219 MR2061856
28 F Morel, V Voevodsky, A1–homotopy theory of schemes, Inst. Hautes Études Sci. Publ. Math. 90 (1999) 45 MR1813224
29 N Naumann, M Spitzweck, P A Østvær, Motivic Landweber exactness, Doc. Math. 14 (2009) 551 MR2565902
30 K M Ormsby, P A Østvær, Motivic Brown–Peterson invariants of the rationals, Geom. Topol. 17 (2013) 1671 MR3073932
31 P Pelaez, On the functoriality of the slice filtration, J. K–Theory 11 (2013) 55 MR3034283
32 M Robalo, K–theory and the bridge from motives to noncommutative motives, Adv. Math. 269 (2015) 399 MR3281141
33 O Röndigs, P A Østvær, Slices of hermitian K–theory and Milnor’s conjecture on quadratic forms, Geom. Topol. 20 (2016) 1157 MR3493102
34 O Röndigs, M Spitzweck, P A Østvær, Cellularity of hermitian K–theory and Witt-theory, from: "K–theory" (editors V Srinivas, S K Roushon, R A Rao, A J Parameswaran, A Krishna), Hindustan Book Agency (2018) 35 MR3930042
35 O Röndigs, M Spitzweck, P A Østvær, The first stable homotopy groups of motivic spheres, Ann. of Math. 189 (2019) 1 MR3898173
36 M Spitzweck, Relations between slices and quotients of the algebraic cobordism spectrum, Homology Homotopy Appl. 12 (2010) 335 MR2771593
37 M Spitzweck, Slices of motivic Landweber spectra, J. K–Theory 9 (2012) 103 MR2887201
38 M Spitzweck, A commutative 1–spectrum representing motivic cohomology over Dedekind domains, 157, Soc. Math. France (2018) 110 MR3865569
39 M Spitzweck, P A Østvær, Motivic twisted K–theory, Algebr. Geom. Topol. 12 (2012) 565 MR2916287
40 A Suslin, On the K–theory of algebraically closed fields, Invent. Math. 73 (1983) 241 MR714090
41 J R Ullman, On the regular slice spectral sequence, PhD thesis, Massachusetts Institute of Technology (2013) MR3211466
42 J Ullman, On the slice spectral sequence, Algebr. Geom. Topol. 13 (2013) 1743 MR3071141
43 V Voevodsky, A1–homotopy theory, from: "Proceedings of the International Congress of Mathematicians, I" (editors G Fischer, U Rehmann), Deutsche Mathematiker Vereinigung (1998) 579 MR1648048
44 V Voevodsky, Open problems in the motivic stable homotopy theory, I, from: "Motives, polylogarithms and Hodge theory, I" (editors F Bogomolov, L Katzarkov), Int. Press Lect. Ser. 3, International (2002) 3 MR1977582
45 V Voevodsky, Motivic cohomology with 2–coefficients, Publ. Math. Inst. Hautes Études Sci. 98 (2003) 59 MR2031199
46 N Yagita, Applications of Atiyah–Hirzebruch spectral sequences for motivic cobordism, Proc. London Math. Soc. 90 (2005) 783 MR2137831
47 R Zahler, The Adams–Novikov spectral sequence for the spheres, Ann. of Math. 96 (1972) 480 MR319197