:. Algebraic € Geometric Topology 20 (2020) 1-27
msp

Tight small Seifert fibered manifolds with ¢ = —2

BULENT TOSUN

We provide the classification of tight contact structures on some small Seifert fibered
manifolds. As an application of this classification, combined with work of Lekili,
we obtain infinitely many counterexamples to a question of Honda, Kazez and Matié
that asks whether a right-veering, nondestabilizable open book necessarily supports a
tight contact structure.

57M50; 53D10

1 Introduction

The classification of tight contact structures on a given closed, oriented 3—manifold is
still one of the main and widely open problems of three-dimensional contact geometry.
Deep work of Colin, Giroux and Honda in [1] proves that a closed, oriented, atoroidal
3—manifold has finitely many tight contact structures up to contact isotopy. Conversely,
every closed, oriented, irreducible, toroidal 3—manifold has infinitely many tight
contact structures up to contact isotopy. In particular, in the case of closed, oriented
Seifert fibered manifolds, if the base orbifold has positive genus or if the number
of singular fibers is greater than three — so, in both cases, the manifold contains a
(vertical) incompressible torus — then there are infinitely many tight contact structures
on the manifold up to contact isotopy. Finally, in [30], the existence question for tight
contact structures on the remaining Seifert fibered manifolds was resolved by Lisca
and Stipsicz, who proved that, except for a small infinite family, all others admit tight
contact structures.

In this paper we are interested in the classification problem of tight contact structures on
small Seifert fibered manifolds, that is, the Seifert fibered manifolds over S? with three
singular fibers. Such manifolds, by using normalized Seifert invariants, are denoted by
M = M(eg; 11,72, F3), where the integer Euler number eq(M ) € Z is an invariant of
the Seifert fibration once we require r; € Q N (0, 1). The manifold M (eg;ry,72,73) is
also described by the surgery diagram in Figure 1. The manifold M (eq; 71,72, 13) is
an irreducible, atoroidal rational homology sphere, except possibly in the degenerate
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Figure 1: The manifold M (eg;r1,72,73). Small unknots in the surgery
diagram give rise to singular fibers of Seifert fibration.

situation ry +rp +r3 = —eg: in this case M contains a nonseparating, incompressible,
horizontal surface, and is therefore a bundle over S' with periodic monodromy (see
Hatcher [18, Proposition 1.11]). Note that the normalized Seifert invariants clearly
satisfy 0 <r; +r, +r3 <3,s0 M can be a surface bundle only when eg = —2 or —1.
Our ability to classify tight contact structures on M (eg; 1y, 12, r3) depends crucially
on the value of r{ +ry +r3.

The aforementioned result of Colin, Giroux and Honda says that unless the small
Seifert fibered space is also a torus bundle over the circle, the number of tight contact
structures it can admit, up to isotopy, is finite. Hence, if eq # —1, —2, then there are
always finitely many isotopy classes of tight contact structures. The classification of
tight contact structures on M (eqg; 71, 7,73) for eg < —3 and ey > 0 was completed
by Wu [37]. The case ¢y = 0 was completed by Ghiggini, Lisca and Stipsicz [10].
The cases eg = —1, —2 are incomplete; only some partial results are available, due
to Ghiggini, Lisca and Stipsicz [11] in case of ey = —1 and Ghiggini [7] in case
of eg = —2. The purpose of this paper is to study the classification of tight contact
structures on M (—2;ry,r,,r3). The classification on such manifolds was initiated
in [7], where Ghiggini among other things gave the classification of tight contact
structures on those M (—2;rq, 13, r3) which are L—spaces. In this paper we generalize
his result to some M (—2;rq,rp,r3) that are not L—spaces. First we set some notation.

For each of the rational numbers r;, r, and r3 in (0, 1) we write

1 . . . 1
1-1 —r—i=[a6,a’1,...,a;]=a0—
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for some uniquely determined integers
i i -
ag.dy,....a,, = =2 fori=123.

Let T'(r;) denote

nj

TH%+U«

k=0

T(ri) =

Recall that we are using the normalized Seifert invariants, that is, »; € Q N (0, 1), and
hence 0 < r; + r, + r3 < 3. We state our first result.

Theorem 1.1 If

) ri+r+r=2;
Q) ri+r+ry3<2;
(3) rlzé,r2=%andr3=kLHf0rk26

holds, then the manifold M (—2;rq, r,,r3) admits exactly T (r1)T (r2)T (r3) isotopy
classes of tight contact structures, all of which are Stein fillable. The explicit Stein
filling can be described by Legendrian surgery on all possible Legendrian realizations of
the link (after converting each —1 /r; —framed unknot component to a link of aj. —framed
unknots with the help of equation (1-1) in Figure 3).

The third part of Theorem 1.1 indicates that the bounds on the sum of the Seifert invari-
ants in the previous two are not necessarily sharp. On the other hand, our next result
shows that the classification scheme for M (=2;r{,7p,73) with 2 <r;y4+r, +r3 < %
is much more complicated.

Theorem 1.2 The manifold M (=2: 3. 3. 2%+1) for n > 1 admits exactly 3n(n + 1)
isotopy classes of tight contact structures, which are all homotopic and strongly fillable.
On the other hand, at least n of them are Stein fillable, and when n is even at least %
of the remaining ones are not Stein fillable.

Remark 1.3 As mentioned above the manifolds M (—2;ry, 1o, r3) with ri4+r,+r; =2
are particularly interesting, as they also enjoy a (unique) surface bundle structure over
the circle. One can easily determine the fiber genus from the Seifert invariants. For
example, the manifolds M(—2; % %, %) M(—Z; % % %) and M(—Z; % % %) are the
only torus bundles over the circle. Our finiteness result in Theorem 1.1 of course cannot
include these sporadic cases. We only comment that the classification of tight contact

structures on these manifolds is given independently by Honda in [20] and Giroux
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Figure 2: The open book (X, ¢¢) on the Seifert fibered manifolds M (—2; % % kk?)

in [16]. According to that classification each of these manifolds carries infinitely many
tight contact structures, distinguished by their Giroux torsion. Among them there is a
unique one with Giroux torsion zero; all others have positive Giroux torsion. A result
of Gay in [4] proves that positive Giroux torsion is an obstruction to (strong) fillability
(see Ghiggini, Honda and Van Horn-Morris [9]), so these manifolds can admit at most
one Stein fillable tight structure. On the other hand one can easily see an explicit Stein
fillable tight structure from Figure 1 on each of these manifolds. The remaining surface
bundles are of higher genus and necessarily have periodic monodromy. In particular,
they do carry finitely many tight contact structures. Unfortunately we do not have a
technique yet to address the classification on such manifolds.

By using Theorem 1.1(3), we can extend work of Lekili in [26, Theorem 1.2] to provide
an infinite family of examples of right-veering mapping classes on the four-holed sphere
3 each of which is nondestabilizable and yet supports an overtwisted contact structure.
These examples then provide an infinite family of counterexamples for a conjecture of
Honda, Kazez and Mati¢ in [21]. See Lisca [27], Kazez and Roberts [25] and Ito and
Kawamuro [22] for more such examples.

Corollary 1.4 For each k > 6, there are open books (X, ¢y ) on the Seifert fibered
manifolds M (=2; 3, 2, kLH), where the mapping classes ¢y = k11214172 are
right-veering, cannot be destabilized and support overtwisted contact structures. (See

Figure 2.)

Proof Lekili proves that the mapping classes ¢y = lé‘ +1

l[ftcldte_ 2 are right-veering
and nondestabilizable. Moreover he proves [26, Proposition 3.2] that the contact
invariants ¢(§(x,¢,)) of the corresponding contact structures vanish. In particular,

the contact structures (s 4,) cannot be Stein fillable. It is not difficult to check
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Figure 3: The manifold M (—2:ry,r2,73), where —1/r; = [a}.a’, .. .,af,l,].

that the open book smoothly describes the manifold M (—2; %, %, kk?) on which, by

Theorem 1.1(3) above, for each k > 6 there is exactly one tight contact structure which
is Stein fillable. i
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2 Preliminaries

In this section, assuming the reader is familiar with convex surface theory of Giroux [14],
we will list some results regarding bypasses and their consequences due to Honda [19].
These results will be used again and again in the rest of the paper.
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We first recall the twisting number, which is an invariant in the classification of the
tight structures on Seifert fibered manifolds.

Let & be a tight structure on a Seifert fibered manifold and L be a Legendrian knot
(smoothly) isotopic to a regular fiber of the Seifert fibration. Let ¢ denote this smooth
isotopy. The twisting number #(L, ¢) is defined as the difference between contact
framing and the framing induced by the Seifert fibration. The maximal twisting number
of the contact structure & is defined to be #(§) = maxg min{z(L, ¢),0}. Wu [37,
Theorem 1.3] proved that #(£) < 0 for any tight contact structure & on M (—2;ry, 12, 73).
The same result was also obtained by Ghiggini [7, Corollary 4.6] and independently by
Massot [31, Theorem B].

We now return to describe the effect of bypass attachment in terms of the Farey
tessellation of the hyperbolic unit disk.

Theorem 2.1 (the Farey tessellation [19]) Let T be a convex torus in standard form
with |T'r| = 2, dividing slope s and ruling slope r # s. Let D be a bypass for T
attached to the front of T along a ruling curve. Let T’ be the torus obtained from T by
attaching the bypass D. Then |I'r/| = 2 and the dividing slope s’ of T'y: is determined
as follows: let [r, s] be the arc on dD (where D is the disc model of the hyperbolic
plane) running from r counterclockwise to s, then s’ is the point in [r, s] closest to r
with an edge to s. If the bypass is attached to the back of T then the same algorithm
works except one uses the interval [s, r] on dD.

We now recall a standard way to find bypasses.

Theorem 2.2 (the imbalance principle [19]) Suppose that ¥ and X' are two disjoint
convex surfaces and A is a convex annulus whose interior is disjoint from ¥ and %' but
its boundary is Legendrian with one component on each surface. If |I'y-0.A| > |I'x/-0.A]
then there will be a dividing curve on A that cuts a disk off of A that has part of its
boundary on 3, and hence a bypass for X on A.

Theorem 2.3 (the twist number lemma [19]) Consider a Legendrian curve L with
twisting number n, relative to a fixed framing and a standard tubular neighborhood V
of L with boundary slope % If there exists a bypass D which is attached along a
Legendrian ruling curve of slope r, and % > n + 1, then there exists a Legendrian
curve with larger twisting number isotopic (but not Legendrian isotopic) to L.

Algebraic & Geometric Topology, Volume 20 (2020)
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Theorem 2.4 (the edge rounding lemma [19]) Let 37 and ¥, be convex surfaces
with collared Legendrian boundary which intersect transversely inside the ambient
contact manifold along a common boundary Legendrian curve. Assume the neigh-
borhood of the common boundary Legendrian is locally isomorphic to the neighbor-
hood N¢ = {x? + y2 < €} of M = R? x (R/Z) with coordinates (x, y,z) and
contact 1-form a = sin(2mwnz)dx + cos(2wnz)dy for some n € Z*, and that
SINNe={x=0,0<y<¢e}and NN ={y =0,0=<x <¢}. If we join
Y1 and X, along x = y = 0 and round the common edge so that the orientations
of X1 and X, are compatible and induce the same orientation after rounding, the

resulting surface is convex, and the dividing curve z = Ln on ¥, will connect to the

2
k _ L on Y,,wherek =0,...,2n—1.

dividing curve z = 5 — 4

Theorem 2.4 says if the convex surfaces ¥ and ¥, are positioned so that 3, is to
the right (left) of X, then, after rounding the corner, the dividing curves of ¥; move
up (down) to connect up the dividing curves of ¥, (see Figure 2 in [12]).

3 Proof of Theorem 1.1

We first provide some basic facts about continued fractions, and set up our framing
convention.

3.1 Continued fractions

A simple fact for the Farey graph says that two points on dD correspond to an integral
basis of Z? if and only if there is an edge in the Farey tessellation connecting them.
Using this fact and a simple induction argument we obtain the following lemma (see
[37, Lemma 3.1]):

Lemma 3.1 Suppose

3.1 i _ i i i i 1
(3-1) ——_—[ao,al,...,ani]—ao— "
14 .
al —
! 1
db,
for some uniquely determined integers
i i .
dg.dy,....a, =—=2 fori=123.

Then:

Algebraic & Geometric Topology, Volume 20 (2020)
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(1) Foreachi = 1,2,3, the numbers —v;/u; = [af),a’i,...,a;i_l] satisfy p; >
u; >0, gi > v; >0 and pjv; —qiu; = 1.
Q) (pi—qi)/(i—ui)= [afli’ai,,._p---,afﬂr 1]. o

3.2 Framing

We now specify our framing convention. Let M = M (p1/q1, p2/92, P3/q3) be
a Seifert fibered space over S? with three singular fibers where p;/q; € Q are
unnormalized Seifert invariants. For the surgery description of M, take eg = 0
and allow the surgery coefficients —¢g;/ p; be any rational numbers in Figure 1. Let
V; = D? x S denote a tubular neighborhood of the singular fibers F; fori = 1,2, 3,
and choose identifications dV; =~ R?/Z? such that (1,0)7 is the direction of the
meridian and (0, 1)7 is the direction of a longitude. We have that M \ V; U V, U V3
is diffeomorphic to ¥ x S, where X is a pair of pants, and choose an identifica-
tion —3(M \ V;) 2 R2/Z? by setting (0, 1)7 as the direction of the S! fiber and
(1,007 as the direction given by —d(pt x ¥). We then obtain the Seifert fibered
manifold M as M = (£ x S1) U4,ud,u4;) (V1 U V2 U V3), where the attaching
maps A;: dV; — —9(Z x S1); are given by

A; = ( Zi_ Z’) for some u; and v; such that p;v; —q;u; = 1.
— V1 U

Proof of Theorem 1.1 We consider the manifold M (—2; p1/q1, p2/q2, P3/q3) as
in Figure 1, where p;/q; € Q N (0,1). For the rest of the paper we assume that
0< pi/q1 < p2/q> < p3/q3 < 1. We first note that, by applying positive Rolfsen
twists to the unknots in the surgery diagram for M (=2; p1/q1. p2/q2, p3/q3) with
framing —¢q,/p, and —g3/ p3, one can obtain that M (—2; p1/q1, p2/q2, P3/q3) =
M(p1/q1,—(92— p2)/92,—(q3 — P3)/q3).

It M=M(pi/q91.—(q2—p2)/q2, —(q3— p3)/q3) is endowed with a contact structure,
we can isotope each singular fiber F; to be Legendrian with twisting number k; <0, and
take V; to be its standard neighborhood with slope(Iyy;) = 1/k; —in particular, with
our framing convention above, the slope 1/k; on dV; corresponds to the vector (k;, 1)7.
The attaching maps A4;: dV; — —d(X x S1); are given by

A1=( q1 Ul)’ A2=( q2 v2 ) A3=( q3 U3 )
—pP1 —u 4> — P2 Vy— Uy q3 — P3 V3 — U3

where —q;/ pi = [ag,a"l, .. ,af”] and —v;/u; = [af),a’i, ...,a;’l‘_l] as in Lemma 3.1.
1
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Tight small Seifert fibered manifolds with ey = —2 9

When measured in —d(M \ V;), the slopes become

o= kim0
g1k + vy a1 qikigr +vy)’
(g2 — p2)ka + (v2 —u2)
N
q2ks +vo
_ (g3 — p3)ks + (v3 —u3)
S3 = .
q3ks +v3

So, k1 < 0 implies that —1 = |—p1/q1] < s1 < —p1/¢1 and k; < 0 implies that
0=1(gi — pi)/qi] = si <(qi— pi)/qi fori =2,3.

In what follows we prove that by finding enough bypasses we can thicken the V; to
have boundary slopes s; = —1 and s, =53 = 0.

First note that after a small isotopy in the neighborhood V;, we can make the ruling
curves on —d(M \ V;) have infinite slope; in short these curves will be called vertical.
Let A be an annulus with boundary being Legendrian vertical ruling curves along V
and V5 ; such an annulus in short will be called vertical. Note that since #(§) < 0,
we can make A convex. Moreover, dA intersects [y(ar\y,) and [yar\y,) exactly
2(q1k1 4+ v1) and 2(g2k, + v5) times, respectively. There are two cases.

Casel If giki+vq #qrky+v;, the dividing set of A, by the imbalance principle, has
at least one boundary parallel arc, which bounds a bypass disk, on the dV; and/or 9V,
side. By attaching this bypass, we can increase the twisting numbers 7 and n;
incrementally by the twist number lemma. As long as we remain under Case 1, we can
continue this process and increase twisting numbers 7; and n, up to —1 because of
our choice of ruling slopes and the twist number lemma.

Case 2 If g1k + vy = g2k, + v, and the annulus A has no boundary parallel arcs,
then we cut along A and round the corners by using the edge rounding lemma. To
this end, observe first that a neighborhood of M \ (V; UV, U A) is a solid torus with
four edges. By rounding these edges we obtain a smooth torus d(M \ V; UV, U A)
that is isotopic to a neighborhood of Fs, and identify this torus with R?/Z? in the
same way as d(M \ V3). We can use the edge rounding lemma to compute the slope
of the convex boundary: Each rounding between —d(M \ V1) or —d(M \ V;) and A
changes the slope by an amount of —1/2(2(g1k1 + v1)) (here we use the assumption
that g1k + v1 = g2k, + v3). Since there are four edges to round, we compute the

Algebraic & Geometric Topology, Volume 20 (2020)
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slope on the d(M \ V1 UV, U A) as

SToar 7 7 ) = piki+uy  (q2—p2)ka+va—uy 1
UhUA)) =— -
(MAPLOP204 qiki+vi q2ko+v; gik1+v;
__pikitur  (@=p)(@ikitvi—v)/qatva—uy 1
giki+v; gik1+v; gik1+v;
_ 019291 P2=P192)k1+v192—V1 pr—192—q2+1
q192k1+v192
_O(
B
When measured in dV3 we get
_ (Aky + F)gs3
3'2 = F :A 1— s =,
(3-2) Sk, = s(Dyy) ;3 (=B.a) (Cki + D)os
where
b p Cp Pi_p2_us
91 492 43 91 42 V3
-1 -1
F:(QJFQ_z)v_lJrulqﬁqz ’ Dz(z_&_“i)v_l_ulfh‘f“h .
q3 42 q1 9192 q> V3 /(1 9192

Note that by our assumption in Theorem 1.1 we will consider only the following cases:
(1) A > % (which implies C <0).
(2) A <0 (which implies C > 0).
(3) pi/a1=7%. p2/q2 =3 and p3/q3 =k/(k + 1) with k > 6.

Before analyzing the cases above in detail we make the following observation which
will help us to bypass much of calculations (in particular for (2) and (3)).

3.3 Key shortcut

Suppose, for any k; < 0, we find a convex neighborhood of F3 in V3 with slope
(p3 — q3)/(v3 —u3). For notational ease we continue denoting this neighborhood
by V3. Now, the slope, when measured in —d(M \ V3), becomes s3 = 0. In particular,
there is a Legendrian curve L isotopic to a regular fiber with twisting —1, which is the
maximal twisting of a tight contact structure £ on M [7, Corollary 4.6]. We shall use
this information to find thickenings of V; and V5, such that their boundary slopes are
s1 = —1 and s, = 0. We first put a vertical annulus A between V; and V3 such that
dA = Fy U L. Note that 'y cannot have boundary parallel curves on the V3 side. On
the other hand, since |g1k; 4+ v1| > 1 whenever ky < —1, there are boundary parallel

Algebraic & Geometric Topology, Volume 20 (2020)
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curves in the dividing set of .4 on the V; side. By attaching bypasses along those
boundary parallel arcs, we can increase the twisting number up to k; = —1. If we still
have |v;—¢q1| > 1, then there are more bypasses. We keep attaching these bypasses until
s1=—1or |vy—q1|=1. The latter possibility implies that | p; —u;|=1,as 0 < p; <q1,
0<uy<vy and pyv;—u;1q1 =1. So, in either case we can thicken V; so that s; =—1.
Similar arguments show that we can thicken V), so that s, = 0. Hence we conclude
that M(p1/q1.(q2 — p2)/492.(q3 — p3)/q3) = Ex ST Ug,ua,04; (Vi U V2 U V3)
with s; = —1 and s, = 53 = 0 measuring in —d(M \ V;) for i = 1,2, 3. We will now
count the total possible number of tight contact structures, up to isotopy, on M from
each of the pieces. By [20, Lemma 5.1(3b)] there is a unique tight contact structure
on ¥ x S! relative to the prescribed boundary data above. By Lemma 3.1(2) the slope

—U; —Up 1 P1—q1 . 1 1 1
( P1 q1)(—1)= F— :[anl’anl—l""’al’a0+1].

Thus, by the classification of tight contact structures on solid tori [19, Theorem 4.16],
there are exactly |(a(1) + 1)(a% +1)---(a
Similarly on V, and V3, as

(30 ) B o) -2

there are exactly 7'(r,) and T (r3) tight contact structures, respectively. Hence, under

of Ty, is

,1“ +1)| = T'(ry) tight contact structures on V.

the assumption that there is a neighborhood V3 of F3 with slope (p3 —¢3)/(v3 —u3),
we obtain an upper bound on the number of tight contact structure on M. Finally,
this upper bound is achieved by counting all distinct Stein fillable structures on M
[28, Theorem 1.2] which are obtained by all possible realizations of the smooth diagram
in Figure 3 by Legendrian surgeries.

Proof of (1) Let & be a tight contact structure on M with maximal twisting number

t(§) = —c < 0 with ¢ > 0. We claim that, under the assumption
a=21 2 p 51
a1 92 43 4

this twisting number is actually —1. We prove this by putting together some results
of Ghiggini from [7]. In [7, Proposition 2.1(1)], it was proved that if & is a tight
structure with 7(§) = —c, then for i = 1,2, 3 there exist neighborhoods U; of the
singular fibers F; such that M \ (U; U U, U U3) has minimal convex boundary with
slopes s(—d(M \ U;)) = d;/c satisfying (d;,c¢) =1 and d;/c < —p;/q;. Moreover,
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it was shown in [7, Proposition 2.6] that the integers dy, d», d3 and ¢ > 0 satisfy
di+dy+d; =—2c—1. Using these we obtain that (—=2c¢—1)/c = (d;+dy+d3)/c <
—(p1/q1 + p2/q92 + p3/q3), and hence p1/q1 + p2/q2 + p3/q3 —2 < 1/c. Now,
combining this last inequality with the assumption that py/q1+ p2/q2+ p3/q3—2> %,
we obtain that ¢ < 4. Finally, it was shown in [7, Corollary 2.7] that if #(§) < —1
for a tight structure £ on M, then it must be that ¢(£) < —4. Therefore, in our case,
we obtain that ¢ = 1 and that 7(§) = —1. In particular, any tight structure £ on
M(=2; p1/q1. p2/q2. P3/43) With pi/qy + p2/qz + p3/q3 —2 > § has 1(§) = —1.
This information together with the reasoning in Section 3.3 finishes the proof of
Theorem 1.1 for the case (1). a

Proof of (2) We claim that under the assumption in the case (2), the slope s,
in (3-2) is less than or equal to Ag3/Cuvsz for all k1 < 0. To see this, we first
show that s, as a rational function in the variable k; has nonpositive first deriv-
ative (indeed it is negative except when ¢; = ¢ = 2). To see this, we calculate
that s;q = (AD — FC)q3/(Ck; + D)?>v3 and AD — FC = qy — q2 — q1q> (re-
call by definition—see (1-1)—that ¢; > 1 and ¢, > 1 ), and hence s;cl < 0 ex-
cept when ¢; = g» = 2. When ¢; = ¢, = 2, one can directly check that sz, =
(p3 — q3)/(v3 — u3z) = Agq3;/Cvz. In all other cases, we have that s}q is neg-
ative. Moreover, we show that under the assumption in (2) the vertical asymp-
tote —D/C of sg, is always greater than —1. To prove this last claim, first ob-
serve that, by the definitions, and the fact that p;v; — qiu; = 1, we can write
D =(C+pi/q)vi/q1—(u1q2+92—1)/q192 =Cv1/q1+1/q7—=1/q1+1/q1¢> . Sub-
stituting this in —D/C we getthat —D/C = —vy/q1+(q192—q1 —qz)/quzqz, which
is obviously greater than —1 when C is positive, as 0 <v; <¢q and ¢;¢2—¢q1—¢q> > 0.
This, together with the fact that s,’€1 < 0, proves that s¢, < Aq3/Cuvs forall ky <0.

Moreover,
Ags _ p3—Q2—=p1/q1—p2/92)93 _ P3—43

Cvs  (2—pi1/q1— p2/q2)vs —uz ~ v3—us
if p1/q1 + p2/g2 < 1. So, by using this last inequality and Theorem 4.16 of [19]

we find that there is a neighborhood V3 with s(Ihyp;,) = (p3 —¢3)/(v3 —u3). In
particular, by arguments in Section 3.3 above we prove Theorem 1.1 for the case (2)

when pi/q1 + p2/g2 < 1.

We want to remark that by [29, Theorem 1.1] and [7, Theorem 1.2], we know that
M(=2; p1/q1, p2/q2, p3/q3) is an L—space if and only if there are no relatively
prime integers m > a such that 1 — py/q; <a/m, 1 — py/q> < (m —a)/m and
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1 — p3/q3 < 1/m. From those inequalities, we easily conclude that the condition
that p1/q1 + p2/q> < 1 implies that M(=2: p1/q1. p2/q2. p3/q3) is an L—space.
In particular our result reproves the classification of tight structures on such man-
ifolds, which was first obtained by Ghiggini in [7]. But the criteria above further
tells us that for M (=2; p1/q1, p2/q2, P3/q3) to be an L—space, it is necessary that
p1/q1 + p2/q2 + p3/qs < 2, and sufficient that py/qy + p2/q2 + p3/qs < 3. In
particular, the condition that py/q; + p2/q2 < 1 does not characterize all mani-
folds M (=2; p1/q1, p2/q2, p3/q3) which are L-spaces. It is worth noting that,
at the moment, we do not have a closed formula in terms of the Seifert invari-
ants to determine exactly which M (=2; p1/q1, p2/q2, p3/q3) are L—spaces when
% < p1/q1+ p2/q92+ p3/q3 <2 (see [24] for more on this problem and its complexity).

So it is left to analyze the case (2) when pi/q1 + p2/q> > 1. We first give an explicit
demonstration of the classification of tight contact structures on a particular family of
small Seifert fibered spaces of interest which are not L—spaces: M, = M ( 2; é g )
where r = p/q €eQnN[%.2)and —¢/p = [a1.,as.....apm] with a; <=2 for i =
1,2,...,

Lemma 3.2 On M, , up to isotopy, there are exactly |(a; + 1)(ay + 1) -+ (am + 1)]
tight contact structures, which are all Stein fillable.

We note that Lemma 3.2 in particular says that on M, = M( ; 2 3 ,(5n—1)/(6n— 1))
with n > 2 (note —(6n—1)/(5n—1)=[-2,-2,-2,-2,-3,-2,...,=2], where —3
is followed by n—2 —2’s) there are, up to isotopy, exactly two tight contact structures,
which are both Stein fillable. It is interesting to compare this infinite family with
its orientation-reversal one, —M, = M (—1; 3, %,n/(6n— 1)), which has been very
instrumental in our understanding of 3—dimensional contact geometry, by work of
Etnyre and Honda [3], Lisca and Mati¢ [28] and Ghiggini [5]. Finally, recent work
of Ghiggini and Van Horn-Morris [13], shows that on —M, there are, up to isotopy,
exactly n(n — 1) tight contact structures, which are all strongly fillable but at least
one of them is not Stein fillable.

Proof Let & be atight contact structure on M, = M(—2; %, % 5) ~ M(%, —%, —%) .
As above we can make singular fibers F; Legendrian with the twisting numbers k; < 0,

then take their standard neighborhoods V; with slope s(I'y;) = 1/k;.
When measured in —d(M \ V;), the slopes are

kq o= ko +1 s (g — p)k3+v—u
o +10 2T Bky42 2T gks +v

S1 = —
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Let A be a vertical annulus between V; and V,. We first consider the case when
2ki 4+ 1 # 3k, + 2; then the imbalance principle applies: The dividing set of A has
at least one boundary parallel arc, which bounds a bypass disk, on the V; and/or V;
side. By attaching this bypass we can increase the twisting number k; and/or k, by
one because of our choice of ruling slopes (which on 0V, and dV3 are —2 and 3,
respectively) and the twist number lemma. As long as 2k + 1 # 3k, 4+ 2, we can
continue this process of increasing twisting numbers up to k; = —1 and k, = 0. Next
suppose 2kq + 1 = 3k, + 2 and A has no boundary parallel arcs. After cutting and
rounding A between V| and V, we get a neighborhood V3 of F3 such that its slope
in coordinates of dV3, by formula (3-2), becomes

(6p —5q)k1 +3p—2¢q

(5v—6u)ky +2v—3u’

sk, = s(Dyyy) =

This is the place that it is not necessarily true that s, < (p —¢)/(v — u) for all
k1 < 0. That is, it is not immediate that there is a thickening of V3 such that its slope
when measured with respect to —d(M, \ V3) is s3 = 0. But since p/g € QN [% %) ,
p=>u>0,¢g>v>0and g — p>v—u, we still have that

(6p—5q)k1+3p—2q _or—5q
(5v—6u)k; +2v—3u  5v—6u

for all k1 < 0. So, by [19, Theorem 4.16], we can find a convex neighborhood

V; C V3 of the singular fiber F3 such that S(F3V3/) = (6p—5¢)/(5v—6u). This slope

becomes % when measured in coordinates of —d(M, \ V). We now take a vertical

annulus between V; and VJ. Note that as long as n; < —4 we have [2n; + 1| > 6

and hence the convex annulus will have a bypass on the V; side. By the twist number
lemma attaching this bypass will increase the twisting 7; to —3. Similarly we can
increase the twisting 7, to —2. So, slopes in the coordinates of —d(M \ V;) become
S| = —%, Sy = % and s3 = %. Observe that yet another vertical annulus .4 between
V1 and V, will result in bypasses which allow us to thicken V; and V, so that
their boundary slopes become s; = —1 and s, = 0. At this point we can assume
that the vertical annulus A has no boundary parallel arcs in its dividing set because
t(§) < 0 for any tight structure on M, . We cut along A and round the corners of
(M\ViuV,UA). Now (M \ V1 UV, U A) is smoothly isotopic to d(M \ V3)
and has slope 0, by the edge rounding lemma. Since the solid tori V; and V, have
boundary slopes Al_1 (=1,1)=—1 and A;l (1,0) = o0, respectively, they are standard
neighborhoods of Legendrian (singular) fibers. So each carries a unique tight contact
structure. On the other hand, since A3_1 (1,0) =(p—¢q)/(v—u) and, by the second part
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of Lemma 3.1, (p—q)/(v—u) =[am, am—1, - .., az,ay + 1], we conclude by using the
classification of tight contact structures on solid tori [19, Theorem 2.3] that V3 admits
exactly [(am~+1)(am—1+1)---(ap+1)(a;+1)| tight contact structures. Therefore, as
explained in Section 3.3, M, admits exactly |(a; + 1)(am—1+1)--- (@ +1)(a; +1)|
tight contact structures, up to isotopy, which are all Stein fillable. a

We now return to the general case. Note that si, < Ag3/Cvs for every ki <0, so
there is a convex neighborhood V; of F3 such that s(FaV{) = Aq3/Cv3. Now the
slope, when measured in —d(M \ V), becomes

s3=( 1 v )(CU3)=Q+&—1>O.
g3 —p3 vz —u3 )\ Aqg;3 91 92

Step I Assume first that ¢; = g» = ¢; we then have 51 = (—p1k1 —u1)/(gk; +v1),
s2 = ((q — p2)ka + (v2 —u3))/(gka + v2) and 53 = (p1 + p2 —¢)/q. Put a vertical
annulus between V; and V. One can easily see that gk +v| > ¢ whenever k; < —1.
So by the imbalance principle there are bypasses on the V; side. By the twist number
lemma from [19] we can increase the twisting number k; up to —1. Similarly we
can increase the twisting number k, up to —1. So, with this thickening at hand the
slopes become s1 = (p1 —u1)/(vi —¢q) and 57 = (pr —q + vo —us)/(v2 —¢q). Now
a vertical annulus between V; and V, will have boundary parallel arcs in its dividing
set, and hence bypasses, if |v; —¢| # |v, — ¢q|. Attaching those bypasses we either
obtain that s; = —1 and s, = 0 or v; = v,. If the former happens then we are done by
Section 3.3. So we can assume without loss of generality that v; = v, = v. This time a
vertical annulus between V; and V3’ ,as |[v —gq| < ¢, by the imbalance principle, must
yield bypasses on the V' side. Attaching those bypasses and tracing their effect via the
Farey tessellation we eventually get first that s3 = 1/¢" and then a further bypass —
which is still available as 0 < (p1 + p2 —¢)/q < s, — gives that s3 = 0. Now, using
Section 3.3, we obtain the desired classification.

Step I Assume now that ¢ # ¢». So, s3 = (p192 + P291 —4192)/9142 > 0. We
now put a vertical annulus between V; and V. Since |g1k1 + v| > g142 whenever
k1 < —q,, by the imbalance principle there are bypasses on the V7 side which, by the
twist number lemma from [19] increase the twisting number k; up to —¢g5. Similarly
we can increase the twisting number k, up to —¢g; and the slopes become s; =
(P192+u1)/(q1g2 —v1) and 52 = (9192 —q1p2 + U2 —v2) /(192 —v2). If v1 # V2,
then |v; —q1¢q2| # |v2 —¢192]|. So a vertical annulus between V; and V, will have
bypasses. Once again by the twist number lemma we increase the twisting numbers
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ki and ky upto —gp +/ and —g; +k for | </ <¢g,—1land 1 <k <g;—1. Asin
Step I above, from this we either obtain that s; = —1 and s, = 0, and are done with
the proof or v = v, = v. In the latter case we have |v —q1q2| = |[v—q192| # 919> .
Hence a vertical annulus between V; (or V,) and V3/ will produce bypasses on the V3/
side that changes its slopes, again referring to the Farey tessellation, to a sequence of
fractions ending at 1/¢’ for some ¢’. Since |v—q1q2| # ¢’ is still the case, we get one
more bypass, and conclude that s3 = 0. By using Section 3.3, the desired classification
is obtained. This completes the proof of (2). a
Proof of (3) We substitute p;/q; = %, P2/q2 = % and p3/q3 = k/(k + 1) to
obtain that the slopes s; for i = 1,2, 3, measured with respect to —d(M \ V;), are
s1=-n1/Q2ni+1), so=my+1)/(Bny+2) and s3 = (n3 + 1)/((k + D)ns + k).
Moreover, the new boundary slope, after cutting and rounding a standard vertical
annulus between V; and V,, for V3, by formula (3-2), is
_ (k=S5n;+k-2
M T k6 k-3

Recall we assumed that k& > 6. There are several cases to consider. If k& > 8, then

it is easy to see that s,, < —1 for all n; < 0. In particular, there exists a neighbor-
hood V; C V3 with boundary slope S(Fan) = —1. When measured with respect
to —0(M \ V3), the slope becomes 0. Now, by the argument in Section 3.3 (note
(p3 —q3)/(v3 —u3) = —1), we finish the proof. When k = 6 or 7, one needs more
care. For example it is not true that we can find a convex neighborhood of F3 with the
boundary slope —1 for all n; < 0. In some sense this is the primary reason that we
cannot extend our classification to include all the values of the Seifert invariants p;/q; .
Indeed, in the next section we will exhibit an infinite family of examples for which
the classification is very different than what we have in Theorem 1.1. Nevertheless,
for k = 6,7, it is easy to check that, similar to the arguments as in Lemma 3.2, the
classification can be obtained as claimed (indeed k& = 6 corresponds to n = 1 in
Theorem 1.2). a

This concludes the proof of Theorem 1.1. |

4 Proof of Theorem 1.2

Let M, denote the manifold M (—2: 3, %, (5n+ 1)/(6n + 1)). The proof starts by

explaining why M, has at most %n(n + 1) tight contact structures. This first part
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is a classic convex surface theory argument as in [3; 37; 7; 10; 11; 13]. The second
part is devoted to detecting the claimed number of tight contact structures, which
makes an essential use of the contact invariants in Heegaard Floer homology with
twisted coefficients. We refer the reader to [13, Section 3] for basics of Heegaard Floer
homology with twisted coefficients. We still assume the terminology from the previous
section.

4.1 Upper bound

We prove that M}, admits at most %n(n + 1) tight contact structures, up to isotopy, for
any n > 1. The manifold M, can also be described as M(%, —%, —n/(6n + 1)). In
particular, we can decompose the manifold M, as

M, = (X x Sl) U(AIUA2UA3) (1 U VU Vs),

where the attaching maps A; = dV; — —d(Z x S1); are given by

21 32 6n+1 6
(o) e=(00) w= ()

Lemma 4.1 The manifold M, admits at most %n(n + 1) tight contact structures up
to isotopy for any n > 1.

Proof We would like to first determine the maximal twisting number of tight contact
structures on M, . It was proven first by Wu in [37] that any tight contact structure &
on small Seifert fibered spaces with eg = —2 has negative maximal twisting number.
In particular, this fact applies to each tight contact structure on A, .

Claim 4.2 Let & be a tight contact structure on M, . Then the maximal twisting
number is tw(§) = —6k — 1 for some k with0 <k <n—1.

Proof As practiced in the previous sections, we want to use a vertical annulus between
the standard neighborhoods V; or V, and Legendrian regular fiber L with maximal
twisting number to produce bypasses on the V; or V; side, and hence normalize/thicken
these neighborhoods as much as we can. Then, based on their slopes we determine the
twisting number of potential tight contact structures that permit those slopes.

Let tw(§) = —t <0, and L be a Legendrian regular fiber with tw(L, §) = —t. After
some small isotopy, we can arrange the decomposition above so that the neighborhoods
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Vi of the singular fibers F; and L do not intersect. The slopes of the standard
neighborhoods are —1/m;. When measured in —d(M, \ V;) they become

mj my+1 nms+1
—_ Ry = —, MpI=
2mp + 1 2 3my +2 3 (6n+1)ymz + 6

Let A be a vertical annulus whose boundary is a vertical curve on the V; side and the

ST =

Legendrian regular fiber L. Then the dividing set of A will have boundary parallel arcs
(hence bypasses) on the —d(M \ V1) side whenever 2m + 1 < —t. Those bypasses
will potentially increase the twisting number 72, . More precisely, as the ruling slope on
dVy is =2, by the twist number lemma from [19] and the choice of L, we can increase
m incrementally up to either 2m 4+ 1 = —¢ or m; = —1. Similarly, m, can be
increased up to either 3m; +2 = —¢ or m, = —1. In particular, there is a nonnegative
integer k satisfying m; = =3k —1, my = =2k —1 and t = 6k + 1. Let A be a
vertical annulus between V; and V,. Note that the dividing set of .4 cannot have any
boundary parallel arcs because of the maximality of —¢. We can cut along A and round
the corners to get a smooth manifold M} \ V1 UV, U A such that d(M, \ ViUV, U A)
is smoothly isotopic to d(M \ V3). Moreover, by the edge rounding lemma from [19]
we compute its slope as
nq my+ 1 1 . k
C2my 4+l 3ma+2 2mi+1 6k+1°

s(Dym\riurau)) =

When measured in 9V,
s(Typ,) = A7 (6k +1,k) = —n + k.

We show that & > n is impossible. To this end, suppose k& > n, which then implies
t =6k +1>6n+1 and that there is a neighborhood V7 of F3 such that S(F3V3/) =o00.
When measured with respect to —d(M,, \ V3/) this slope becomes %,
t > 6n+ 1 whenever n > 1. Indeed, in this case a Legendrian ruling curve fiber on
—d(M, \ V) will have twisting —6. Therefore, we obtain that tw(§) = —6k — 1 for

some k with 0 <k <n—1, proving the claim. O

contradicting

Now we can decompose My as (M \ Vy) U V;, where (M, \ V;) is made of Vi, V;
and a neighborhood of the annulus 4. Since V; and V), are the standard neighborhoods
for each k, each carries a unique tight contact structure. Moreover the dividing set of .4
uniquely determines a tight contact structure in the neighborhood of .A. Therefore, there
is a unique tight contact structure on M, \ V; relative to its boundary 9(M, \ V3) = dV;.
On the other hand, V3’ has boundary slope —n + k, and, by [19, Theorem 4.16], it
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carries exactly n—k tight contact structures relative to its boundary. Since 0 <k <n—1,
we get that the total number of tight contact structures on M, is at most %n(n +1). O

4.2 Lower bound

We take M, to be the 3—manifold obtained by smooth 0—surgery along the left-handed

trefoil knot; see Figure 4. This is the small Seifert fibered manifold M (—2; 1, %, 2),

which also has the structure of a torus bundle over the circle as
Moo =T?x[0,1]/~4,

where (x, 1) = (Ax,0) and A is the diffeomorphism of 7% given by

()

Recall that the homotopy class of an oriented tangent 2—plane field £ on a 3—manifold
M with ¢q(€) torsion is determined by two invariants [17, Theorem 4.16]: the spin®—
structure s¢ induced by £ and an invariant! 0(£) € Z defined by

0(§) = 7 (X, J)—30(X) —2x(X),

for any almost-complex 4-manifold (X, J) with 0X = M and such that & is the field
of complex tangencies TM N J(TM). Here y(X) is the Euler characteristic and
o (X) is the signature. If H;(M) has no 2—torsion (this is true for example for the
manifold M), then ¢1(§) does determine the s¢.

The classification of tight contact structures on M, up to isotopy/homotopy, and their
fillability are well understood. The following theorem summarizes them:

Theorem 4.3 M, admits an infinite family of vertical tight contact structures {&;}72
such that:

(1) [20, Theorem 0.1; 15] They have the Giroux torsion Tor (&;) =i, and hence
are pairwise nonisotopic. Moreover, any other tight structure on M, is isotopic
to & for some i.

(2) [20, Theorem 0.1; 15] AIll are homotopic with 6(&;) = 4 (note that ¢; (&) =0
forall i > 0).

(3) [20, Theorem 0.1; 15] All are weakly fillable.

IThis is related to d5 (&) in some other references. We will stick with Gompf’s notation. The two are
related by 4d3(£) = 6(§).
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Figure 4
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(4) [4] The contact structure & is Stein (and hence strongly) fillable, while
fori > 0, & is not strongly fillable.

(5) [9, Theorem 1] The contact invariants c(&;) have degree —%9(&) — % They,
with untwisted coefficients, are all zero for i > 0, while with twisted coefficients
all are nonzero and pairwise different for i > 0.

Since the contact structures §&; are all vertical, the knot
F'=0x][0,1]/~4

is tangent to &; for all i. If we use the Seifert fibration structure on Mo, ie the surgery
description in Figure 4, then the knot F’ is topologically isotopic to a meridian of
the left-handed trefoil. The manifold M, can also be described as the boundary of
E9 plumbing, from which we obtain its unique Stein fillable contact structure. If F
denotes the image of F’ under this isotopy and F’ has a framing, say f, then F has
framing f + 1.

Lemma4.4 [6,Lemma3.5] There exists a framing on F such that tw(F,&)=—i—1.
Moreover, smooth (—n—1)—surgery along F gives M.

Let Fj j denote the Legendrian knot obtained from F by applying n—i—1 stabilizations
such that the rotation number r(F; j,&) = j,where 0 <i <n—1and |j|<n—i—1
with j =n+1—1i (mod2). Finally, let él" ; denote tight contact structures on M,
obtained by Legendrian surgery along F; j in (Mo, &;). Altogether we have %n(n +1)
tight structures on M, and for which we claim:

Lemma 4.5 For each pair (i, j) where 0 <i <n—1and |j| <n—i—1 and
n

J =n+1—i (mod?2), the contact structures &; j as described above are pairwise

nonisotopic. More precisely, we show that:
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F(n=1—j)

} (n—1+j)
zigzags

zigzags

Figure 5: Stein fillable tight contact structures £ ; on M,.

1) If—(n—i—-1)=<j,jp<n—i—1land j,=n+1—i (mod?2) form=1,2
and jy # ja, then & ';, and &l j, are not isotopic.

(2) The contact structures " . and EZ"Z j, are not isotopic whenever iy # i, and

i1,j1
—n—im—1) < jm<n—inp—1form=1,2.

Note that since Legendrian surgery preserves fillability, we obtain that all él" j are
weakly fillable and hence tight. Among them, each E(’)” ; —see Figure 5—1is Stein
fillable (as &g is Stein fillable) and we explicitly calculate that 9(§g ) = 2. All other
tight structures é” for i > 0 can be made at least strongly ﬁllable because M, is
an integral homology sphere. By work of Lisca and Mati¢ [28], we have that for any
n > 1, the tight contact structures SO . are pairwise nonisotopic. Moreover, by work
of Plamenevskaya [36, Section 3] the contact invariants C(SO )€ HF( 1) (—=My) are
hnearly independent over Z. Since HF( n(=My) = 7Z" 32, Sectlon 8.1], we obtain

that HF(—I)( Mn) = (c(g(),_n+1)» C(goj_n+3)v SR C(%-O,n—l)) .

Moreover, by the second part of Lemma 4.5, and its proof below, we will be able to
conclude that indeed the contact structures &' j all are homotopic with § = 2.

Proof of Lemma 4.5 We prove the first part of the lemma in Step I and the second
part in Step II.

Step I This will follow from applying a result of Wu [38, Theorem 1.4(1)]. The actual
result of Wu is much stronger, but here we state a simplified version.

Theorem 4.6 (Wu) Let (M,§&) be a tight contact 3—manifold and L a Legendrian
knot in it. Fix integers s and p, for r = 1,2 such that 0 < p, <s. Let L, be the
Legendrian knot constructed from L by p, positive stabilizations and s — p, negative
stabilizations. Then the Legendrian surgeries on L, give two contact structures &
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and &, on the same ambient 3—manifold M'. Assume &; and &, are isotopic. If
(M, &) is weakly filled by a symplectic 4—manifold (W, w) and L is nullhomologous
in W, then p; = p.

In our case (M, &) will be taken to be the contact manifold (Mo, &), where i > 0 is
fixed. The Legendrian link L will be taken to be the Legendrian knot F C (Mo, &),
and hence L, = Fj j. Now note that the parameter j in our description means
r(F; j) = j, where |j| <n—i—1and j =n+1—i (mod2). When n and i are
fixed, the parameters j and p, where p as in Theorem 4.6 stands for the number of
positive stabilizations on F and ranges in 0 < p <n —i — 1, determine one another.
Indeed, given p, the corresponding j value willbe j = —(n—i —1) +2p.

Next we want to show that (M, &) for all i > 0 has a simply connected weak
symplectic filling (W, w). In [2, Propositions 15 and 16] a weak symplectic filling
(W, w) for (Mo, &;) forall i > 0 is constructed (and it is interesting to note that weak
fillings constructed by Ding and Geiges for (M, &;) are really all the same symplectic
manifold, which fills them all simultaneously). Moreover, in the same reference it was
proven, by an explicit construction, that there is a Lefschetz fibration W — D? with
generic torus fibers and monodromy A4 € SL,(Z) that determines the torus bundle on
the boundary. We show that this W is simply connected. To this end, first observe
that the monodromy A € SL,(Z) of M satisfies A = (ab)®, where a and b are a
generating set for SL,(Z) given as

T I 5 S )

From this we obtain that the Lefschetz fibration W — D? has ten singular fibers,
and the vanishing cycles a and b corresponding to these singular points induce a
Z—basis for ;(T?). Because of this latter observation and the short exact sequence
71(T?) = m (W) — m(D?) = 0 induced by T? < W — D?, we obtain that
w1 (W) = 0. Another, and possibly shorter, way to see that W is simply connected
is that W is actually diffeomorphic to the complement of a cusp fiber in the elliptic
surface E(1) (this is by the fact that (¢b)® = 1 and that ab represents a cusp fiber),
and this latter is known to be simply connected (eg [12, Exercise 7.3.21(b)]). Now
Theorem 4.6 applies to prove that if —(n—i — 1) < ji, j, <n—i—1 with j, =
n+1—i (mod2) for m=1,2 and j; # j,, then EZjl and élfsz are not isotopic.

Step II As will be evident below, for our purpose here we are interested in the
Ozsvath—Szab6 contact classes with twisted coefficients, and their behavior under
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Legendrian surgery. Let (Y, t) be a closed, connected, oriented spin® 3—manifold;
Ozsvéth and Szabé in [33; 35] defined the Heegaard Floer homology with twisted
coefficients @(Y, t; M), whose coefficients form a module M over Z[H'(Y)]. If
this module is M = Z with the trivial action of H!(Y), then one obtains the usual
Heegaard Floer homology ﬁ?(Y, t). Moreover, to a cobordism V' from Yy to Y7 they
associated a morphism between @(YO, t) and ﬁj(Yl ,1). One needs to pay extra
attention in the twisted case, as the groups are usually modules over different rings.
Regardless, in [35, Theorem 3.8] it was proven that the cobordism V with a spin®
structure 5 € Spin° (V') induces an anti- Z[H ! (Yy)]-linear map

Fyq: HE(Yy, t; M) — HE(Y}, t; M(V))

which is well defined up to sign. Here M (V) is the coefficient module induced from M
by the cobordism. The equivalence class of such a map is denoted by [Fyy s]. We refer
to [33; 35; 23; 13] for more details. Moreover, to a contact structure £ on Y, one
associates a class c(§; M) € ﬁj(Y, tg; M), where ¢ is the spin® structure induced
by &. This element is well defined up to sign and multiplication by invertible elements
of Z[H'(Y)], and [c(§, M)] will denote its equivalence class. In [34], Ozsvath and
Szabé proved that [¢(&, M)] is an isotopy invariant of &, and that if ¢, (£) is a torsion
class (which is the case for & on My, for all i > 0), then [c(&, M)] is a set of
homogeneous elements of degree —%9(5 )— % We refer to [13, Section 3] for further
and helpful details relevant to contact classes with twisted coefficients, for example
where the following theorem [13, Theorem 3.6], due to Ghiggini, is stated:

Theorem 4.7 (Ghiggini) Let (Yy, &) and (Y1, &) be two contact manifolds, and
(V, J) be the Stein cobordism induced by a Legendrian surgery on a Legendrian link
in Yy. If t is the canonical spin‘—structure on V for the complex structure J, then
[c(§0. M(V))] if s=t,

[Fys(c(61, M))] = {0 if s £t

We want to emphasize that for our purpose here M will be assumed to be F and
M(V) is FIH' (Mo)]

Recall the contact structures &' j are obtained by Legendrian surgery along the Legen-
drian knot F; j C (Mo, &i). Let V be the corresponding cobordism from (Meo, &;)
to (My, l”]) Applying Theorem 4.7, we obtain that

(4-1) [Fy (c(& )] =[]
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We note that the map Fj- induced by the various Legendrian surgeries are all associated
to the same smooth manifold V, ie Fy does not depend on i. Now it is proven in
[8, Theorem 2] that the equivalence classes of contact invariants [c(&;)] with twisted
coefficients all are nonzero and pairwise different for i > 0. Therefore we obtain that
él”l j, and sz’jz are not isotopic whenever i1 # i, and —(n—iy—1) < j;m <n—iyu—1
with j, =n+1—1i (mod2) for m = 1,2. We would like to emphasize again that the
use of contact classes here with twisted coefficients is crucial as the contact classes

c(&;) with untwisted coefficients are all zero for i > 0 [9, Theorem 1].

Finally, since &; are all homotopic with 6(§;) = 4, and hence their contact classes
have degree —%0(&) - % = —% (see Theorem 4.3(2)—(3)), and since (4-1) holds, we
obtain via the degree-shift formula in Heegaard Floer homology [32] that .f;l” j are all
homotopic with O(SZ j) =2. a

4.3 Strongly fillable but not Stein fillable structures

Lemma 4.8 The manifold M, for n > 1 even admits at least %n tight contact
structures which are strongly fillable but not Stein fillable.

Proof We claim the tight contact structures & ZO are not Stein fillable for 0 <i <n—1
with i =n—1 (mod 2). The proof we present here is very parallel to beautiful work of
Ghiggini in [5]. Let 7 denote the conjugation map in Heegaard Floer homology HF
with coefficients in F = Z/27. We recall that, by work of Plamenevskaya [36,
Section 3] the conElSt invariants c(é(’)” j) € ?IF(_I)(—M,,) are linearly independent
over IF and, since HF (_)(—M,) = F" [32, Section 8.1], we obtain that

HE 1y (— M) = (&l i) CE8 _pin)ee el ))

Moreover, it is easy to see from the surgery description in Figure 5 that the contact
structure 5(’)’_’1. =J (";‘(’)” j) is isotopic to 5(’)"_ It and SZO is isotopic to its conjugate for each
0<i<n—1withi=n—1 (mod 2) (see also [6, Lemma 3.8]). Therefore, since C(SZO)
are fixed points of the action J on HF (_;)(—M}), we conclude that C@Zo) is a linear
combination of elements of the form C(Sg,j)—FC(Eg,_j) for j =—n+1,—n+3,...,n—1
(and we note j = 0 is not possible as # is assumed to be even).

All in place, we are ready to finish the proof. Suppose (X;, J;) is a Stein filling of
(My, &7 ). If t; denotes the canonical Spin® structure of (Xj;, J;), then (X;, —J;) is a

Stein filling of (M}, &) and t; is the canonical Spin¢ structure of (X;, —J;). Now,
we puncture the Stein filling (Xj, J;) and view it as a Stein cobordism from — M,
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to S3. Because Ei'fo o~ i’fo’ we get that Fj,':,h(c(élf’,o)) = F;,E (c(ézo)) = c(&qq) #0.
In particular, by [36, Theorem 4] we conclude that t; is isomorphic to its conjugate t;
(see also [5, Theorem 4.1]) and F/{%,fi (C(Ei’fo)) is a generator of HF'(S%) = F. On the
other hand, by using the fact that the conjugation homomorphism 7 has trivial action
on HF'(S?) and the observations above, we conclude that the map F ;{l & evaluates

on each c(&‘g’j) + c(é(’)’,_j) as
i (&) + el ) = 2F5 (&) = 0.

In particular, we end up with the contradiction that F )‘(’; 4 (c(&'))) =0. Thus, (My, £" )
when 7 is even cannot be Stein fillable for any 0 <i <n—1 with i =n—1 (mod 2).
This counts to the total of %n strongly fillable tight structures on M, that are not Stein
fillable. O
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