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Lusternik—Schnirelmann category
of products with half-smashes

DON STANLEY
JEFF STROM

We show that for a fixed space X and any sufficiently highly connected space A
(conn(A) > dim(X') is more than enough), the Lusternik—Schnirelmann category of
products with X is remarkably stable with respect to changes in the second variable:

cat(X x A) = cat(X x (A x B)) for all spaces B.

Taking X = S leads to a closure property for the collections of spaces which do or
do not satisfy the Ganea condition cat(S” x A) = 1 + cat(A4).

55M30

1 Introduction

Lusternik—Schnirelmann (often abbreviated to L—S) category was introduced by Lus-
ternik and Schnirelmann in the 1930s as part of an effort to quantify the way in which
the topology of a manifold M forces smooth real-valued functions to have critical
points. The behavior of Lusternik—Schnirelmann category with respect to products has
been a continual puzzle. The fundamental product inequality

cat(X xY) <cat(X) +cat(Y)

was discovered very early in the development of the theory and simple examples
were soon found showing that the inequality could be strict. But all of these examples
involved spaces having incompatible torsion in homology, and, in the following decades,
no other examples were found. This led naturally to the suspicion that perhaps these
torsion phenomena were the one and only way in which strict inequality could hold in
the product formula. Ganea asked in 1970 [4] about a particularly attractive test case:

does every space X satisfy the Ganea condition
cat(X x S") =cat(X)+1 foralln>1?

The conjecture (often referred to as the “Ganea conjecture”, though it was not conjec-
tured by him) that all spaces satisfy the Ganea condition was an important motivation for
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research into L-S category for more than twenty years until it was shown around 1990
by Hess [5] and Jessup [8] that it is true for simply connected rational spaces and
by Iwase in 1997 [6] that there are simply connected finite CW complexes that are
counterexamples.

Finding and recognizing spaces that do not satisfy the Ganea condition remains an
interesting problem. For example, it is natural to ask: given X, for which values of n
is cat(X x S") = cat(X)? Iwase conjectured that if cat(X x §") = cat(X), then
cat(X x §"*!) = cat(X) for all # > 0. In [7], Iwase, Stanley and Strom proved this
(for n sufficiently large, depending on the category, dimension and connectivity of X)
as a special case of a theorem that says that if the connectivity of A4 is large enough
(depending on the category, dimension and connectivity of X), then

cat(X x A) =cat(X) = cat(X x (4 x B)) <cat(X) + cat(4 x B)

for all spaces B. Another direction of inquiry concerns the extent to which we can
vary X while preserving the failure of the Ganea condition. Stanley, Scheerer and
Tanré [9] introduced a stabilized variant of L-S category, called Qcat, and they con-
jectured that X satisfies the Ganea condition if and only if cat(X) = Qcat(X). One
implication of this Qcat conjecture (for finite complexes) follows from a theorem of
Vandembroucq [10]: Qcat(X x S ky = Qcat(X) + 1 for every finite CW complex X
and every k > 1. It is not hard to check that

Qcat(X x B) =Qcat(X) and cat(X x B) = cat(X)

for all spaces B. Thus it would follow from the Qcat conjecture that the property of
satisfying the Ganea condition is stable under half-smash products: X satisfies the
Ganea condition if and only if X x B satisfies the Ganea condition for all spaces B.

Our purpose in this paper is to prove the following substantial generalization of the
main theorem of [7]. As a corollary, we find that the stability of the Ganea condition
under half-smash products does hold (subject to some connectivity conditions). This
can be regarded as evidence for the Qcat conjecture of Scheerer, Stanley and Tanré.

Theorem 1 Let X be a connected CW complex, let A be a well-pointed path-
connected space! and write

m=cat(X xA), conmn(X)=n—1 and conn(4A)=a—1.

1A pointed space is well-pointed if the inclusion of the basepoint is an unpointed cofibration; conn(X)
denotes the connectivity of X ; see Section 2.1
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If dim(X) < m-min{n,a} +a—1, then
cat(X x A) = cat(X x (4 x B))

for every space B.

Let us consider the case X = S". If A4 2 %, then m = cat(S” x 4) > 2. It follows
that Theorem 1 applies provided n < 3a — 1. Thus we have the following corollary,
which provides supporting evidence for the Qcat conjecture described above:

Corollary 2 If A is a well-pointed space and n < 3 conn(A4) + 1, then
cat(S” x (A x B)) = cat(S" x A)

for every space B.

Since Iwase’s examples Q, (for p prime) are simply connected and they satisfy
cat(S? x 0p) = cat(Qp) = 2, we obtain a vast collection of new examples: O, x B
does not satisfy the Ganea condition for any space B.

2 Preliminaries

2.1 Basics

We work in an unpointed convenient category J for doing homotopy theory, such as
the category of compactly generated weak Hausdorff spaces, and the corresponding
pointed category Ti.

The half-smash product of the well-pointed space X and the unpointed space Y is the
pointed space
XxY =XAYy.

This can also be described as the pointed space (X xY)/(xxY). Since smash products
preserve cofiber sequences, so do half-smash products.

2.1.1 Quotient maps A (continuous) map ¢: X — Y is called a quotient map if the
continuity of a function f: Y — Z can be decided by composition with ¢; that is, f
is continuous if and only if f ogq is continuous. The proofs of the following results
concerning quotient maps are left as a pleasant exercise for the reader:

(1) A retraction is a quotient map.

(2) Pushouts of quotient maps are quotient maps.
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2.1.2 Connectivity, fibers and cofibers A space X is n—connected if the unique
map X — * is an n—equivalence or, equivalently, if 7z (X) = 0 for all k < n.
We write conn(X) = n to mean that X is n—connected, but not (n+1)—connected;
similarly, we write conn( f) = n to indicate that f is an n—equivalence but not an
(n+1)—equivalence. The following is well-known:

Proposition3 Let f: X — Y, and let Fy be its homotopy fiber. Then

(a) conn(f) = conn(Fr)+1;

(b) IfA—>X S ¥ is a cofiber sequence, then conn(Fy) > conn(A4).

2.2 Lusternik—Schnirelmann category and cone length

2.2.1 L-S category A Lusternik—Schnirelmann cover of size n for a topological
space X is an open cover X = Uy U Uy U---U U, such that each inclusion U; — X
is nullhomotopic. The Lusternik—Schnirelmann category of X is

cat(X) = inf{n | X has an L-S cover with size at least n},
with the standard convention that inf(@) = oo. The reader is directed to the book [2]

for any and all details about LS category.

2.2.2 Cone length The way in which a CW complex is iteratively constructed by
attaching cells can be generalized to the concept of a cone decomposition. Our approach
here is slightly different from the usual one in that it uses infinitely long decompositions.

A cone decomposition of f: X — Y is a homotopy-commutative diagram D of the

form
AO A] An—l An

(D) X() X Xn—l Xy Xoo
X / Y

in which each sequence A; — X; — X;4; is a mapping cone sequence (that is,
X, = X;—1 UCA,_, for each n and each inclusion X,_; — X} is the natural
inclusion, which is a cofibration) and X is the categorical (and hence homotopy)
colimit of the middle row.
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A cone decomposition D has length at most # if the maps X, — Xj,+1 are homotopy
equivalences for all m > n; we write £(D) < n to indicate this.> The cone length of a
well-pointed space X is defined to be

cl(X) = inf{{(D) | D is a cone decomposition of * — X}.
Since the functor ? x B commutes with homotopy colimits, we have
cl(Ax B) <cl(A) forany space A.

It is well-known that cat(X) <cl(X) < cat(X) + 1 for any space X, and since A4 is a
retract of A x B, we easily obtain the formulas

cat(4A x B) =cat(4) and cat(X x A) <cat(X x (4 x B))

for any spaces 4, B and X.

2.3 Ganea fibrations

The Ganea construction takes a fiber sequence FF — E L, B, constructs the obvious
map E/F — B, and converts it to a new fibration G(p): G(E) — B with fiber G(F).
Ganea proved in [3] that G(F) >~ F * Q(B).

If we begin with the path fibration P(X) — X and repeat the Ganea construction, we
obtain a diagram of the form

| |

D) Go(X) — +++ — Gy (X) —— Gp(X) — -+ — Goo(X)

al pet| [ |

X X X X

in which each column is a fiber sequence and G (X) is the homotopy colimit of
the middle row. Since an n—fold join is at least (n—1)—connected, the induced map
Goo(X) — X is a homotopy equivalence.

Theorem 4 (Ganea [3]) cat(X) <n if and only if p, has a section.

2 A homotopy equivalence f: X =» Y has a cone decomposition of length 0 in which A, = * and
X, =X forall n.
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2.3.1 Cone length and category of products If well-pointed spaces X and Y have
cone decompositions, then we can derive a cone decomposition for their product X x Y
by setting
X xYV)m= ) XixX;.
i+j=m
It is well-known that there are cofiber sequences

(Vigj=me14i % Bj) = (X XY ) = (X X Y) g1

(U % V denotes the join of U and V'; it is homotopy equivalent to X (U A V')). Since
Xoo X Yoo = U;:C’:O(X XY )m, Xoo X Yoo is the (homotopy) colimit of the resulting
telescope diagram, so this sequence is indeed a cone decomposition (see [1] for details).
It follows from this construction that

(X xY) <cl(X)+cl(Y)
for any two spaces X and Y.

We can apply these observations to the cone decompositions provided by the Ganea
construction. For given spaces X and Y, we can form

Gn(X. V)= ) Gi(X)xGj(¥Y) S Gu(X)xGm(Y),
i+j=m
which is the m™ step in a cone decomposition of G, (X) x G, (Y). Crucially for us,
the composition

G (X, Y) < G(X) X G (Y) 22227 x %y,

which we’ll denote by p,, has the same category-detecting property that G, (X x Y')
has.
Proposition 5 [6; 9] The following are equivalent:

(1) cat(X xY) <m.

2) pm: Gm (X,Y) — X xY has a section up to homotopy.

3 Two lemmas

Before embarking on our proof of Theorem 1, we establish two technical results. First,
we show that the inequality hypothesis of Theorem 1 implies lower bounds on the
connectivities of two maps. Secondly, we estimate the L—S category of a certain kind
homotopy pushout.
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Lemma 6 Under the conditions of Theorem 1,
(a) dim(X) < conn(u: Gm(X, A) <> Gm(X) x Gm(A)), and
(b) dim(X) < conn(py,: Gy (A) —> A).
Proof If @ > n and dim(X) <mn+a—1, then also dim(X) < (m+ 1)a—1, so we
have this latter relation in either case. To ease the notational burden, we write
Xi=G;(X) and A4; =Gj(A).

To prove (a) we observe that the inclusion 6,,1 (X x A) = Xy X Apy is the composition
of a great many maps 7; j, indexed by the integers i and j with m <i + j <2m and,
crucially, with 7, j > 1. These maps t; ; sitin (homotopy) pushout squares of the form

(Xim1 X A7) U (Xi X Aj_1) — L X; x A
l (H)PO J
Y B z

Therefore,
conn(u) > min{conn(t; ;) |m <i+ j <2mj}.

To estimate the connectivity of u, we find a uniform lower bound for
conn(f;,j) < conn(z;, ;).
By construction, there are cofiber sequences
(QX)Y > X;oy - X; and (QAY — 4;_ — 4;
and hence cofiber sequences
(QX)* 5 QA — (X;_1 x Aj) U (X; x Aj_1) 5> X; x 4.
Proposition 3 tells us that
conn(Z;,j) = conn(Fy; ;) + 1
> conn((QX)* « (QA)*) + 1
=((in+ja)—2)+1
=({n+ja)—1.

The minimum value for (in + ja)— 1 must occur at some values of i, j > 1 for which
i + j takes its least possible sum, namely m + 1. In the case a > n, the value of
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(in+ ja)—1 is the one with i = m and j = 1; thus, if @ > n, we have
conn(#;,j) =mn+a—1>dim(X).

On the other hand, if @ <n, the #; j with smallest value is the one with j =m andi =1,
and so, in this case,

conn(tj j) =n+ma—1> (m+ l)a—1>dim(X).
Together, these estimates show
conn(u) > min{conn(z; ;) |m <i + j <2mj}
> min{conn(t;,;) | m <i + j < 2m}
> dim(X).
This proves (a).
We complete the proof of Lemma 6 by analyzing the connectivity of the Ganea fibration
Pm: Gm(A) — A. Since its fiber is (2(A4))*"+D  we have
conn(py,) = conn(Fy,) + 1
= conn(Q(A)*" D) 41
>((m+1)a—-2)+1

=m+1)a—1
> dim(X)
by Proposition 3, regardless of the relationship between a and ». |
Lemma 7 Let
Xo—=>Xi1—>—> X >+ and Ag—> A1 —> - — Ay — -

be cone decompositions. Then the homotopy pushout of the diagram

meonCB<—meA0xB—>( U XixAj)xB
i+j=m
has cone length, hence L—S category, at most m.

Proof We begin by identifying the homotopy type of the homotopy pushout, which
we denote by P. The diagram defining P maps to the diagram

Xm&meonB_)( U X,-xAj)xB
i+j=m
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by a pointwise homotopy equivalence (since A9 >~ CB =~ x). Since both diagrams
involve at least one cofibration, the categorical pushouts are also homotopy pushouts,
and the induced map P — @ of categorical pushouts is a homotopy equivalence.
Therefore it suffices to work out the cone length of Q.

We identify Q up to homeomorphism by studying the diagram

PrXm l (H)PO l’
N

Xm 0

in which s is the obvious quotient map and ¢ is the obvious inclusion. Since pry —has
a section, it is a quotient map, and, since the square is a categorical pushout square,

g

is also a quotient map. On the point-set level, the effect of the map s is to identify
points of the form (x, %, b) with (x, *, %) for x € X, and b € B; as precisely the

LJ X})(Aj)><B—%»Q

i+j=m

same identifications are made by the map r, we see that £ is a bijection. Finally, since
r and s are both quotient maps, it follows that £ is a homeomorphism.

To prove the lemma, it suffices to show that cl(Q) < m. Truncate the given cone
decompositions to obtain

Xo—= > Xm S XS0 and Ag— = Ap -5 A4, 4
Next half-smash the second decomposition with B to obtain the cone decomposition
AgXB—> A XB—-+—> Apyx B9 4, x B9 ...

for A, x B, also of length m. Now we can recognize that Q = (X X (Am X B))m,
the m™ step in the cone decomposition that the product X;,, x (A4, X B) inherits from
the given cone decompositions of X}, and A4,, x B (described in Section 2.2). Thus
cl(P) =cl(Q) <m. O
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4 Proof of Theorem 1

Since cat(X x A) < cat(X x (4 x B)) for all spaces 4, B and X, it suffices to prove
the reverse inequality
cat(X x (A x B)) <cat(X x A)

for spaces satisfying the hypotheses of Theorem 1. We will accomplish this by showing
that X x (4 x B) is a retract of a certain space P with cone length at most m =
cat(X x A).
Since cat(X x A) = m, Proposition 5 tells us that the composition

G (X, A) 5 G(X) x G (A) 22227 ¥ 4
has a homotopy section, o: X x 4 — Gm (X, A). We use o to define

o' =prg, (x)ouoooiny,

so that the solid-arrow part of the diagram

x— < Gm(X) Gm(X) b X

inxl k Tprcm()() TPYX

XXxA—T L Gu(X,A) — s G(X) X G (A) =272 ¥ x4

v
commutes on the nose. Since ¢ is a homotopy section of (py, X pm) o u, the map v is
homotopic to idyx 4. Then
pmoo = pry oi oiny =~ pry cidyx 4 ciny = idy,
so ¢’ is a homotopy section for py: G (X) — X.

The key point (this is where the connectivity hypothesis comes in) is to prove that
the diagram above remains commutative (up to homotopy) when the dotted arrow k&
(which is the inclusion of the first coordinate) is added. Thus we must compare the
two maps k oo’ and o oiny .

Lemma 6(a) ensures that dim(X') < conn(u), so it suffices to show that
uo(koo'y=uo(ooiny).

Since the target of these maps is a product, it suffices to study the compositions with
the two projections and show that

PI‘GW,(X) (@) (u o (k o a/)) = Per(X) o (u o (g o inX))
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and
prg,,(4)© (o (koa’)) =prg, (xyo (uo(ooiny)).

For the projection on G, (X)), we have

prG,, (x)© (o (koo')) =idg,,x) o0’ =0’ =prg,, x)o (uo (o oiny)).

For the projection on G, (A), we compute

prg,, (4 © (o (koa")) = (prg, (4) ©ing,,(x)) 00" = *.
The calculation
Pm© (prg,,(4) © (uo (o oiny))) = pry o ((pm X pm) o (uo (0 oiny)))
~pryoidyx4 oiny
~ %
implies prg, () © (4o (0 oiny)) = x as well, because of Lemma 6(b). It follows then
that k oo’ >~ o oiny, as required.

Since A is well-pointed, the inclusion iny: X — X x A4 is a cofibration. Therefore
we may find a map s: X X A — Gy, (X) that is homotopic to ¢ and which makes the
square

X inx XxA

. |

Gm(X) —* 5 Gm(X, A)

commute on the nose. This diagram becomes, after applying the functor ? x B, the
upper right square in the strictly commutative diagram

iny xidg

X xCB X xB (X xA)x B

G/Xidcgl lo”XidB lsxidg

G (X) X {56} X CB ¢ Go(X) x {5} x B —92 LG (X, A)x B

DPm XidCBl lpm xidp lﬁm xidp
inyxp

X xCB X xB (X xA)x B

in which each of the three vertical composites is a homotopy equivalence and all of the
horizontal maps are cofibrations. The diagram induces maps of (homotopy) pushouts

X x((AxB)UCB)— P — X x ((Ax B)UCB)

in which the composition is a homotopy equivalence.
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Writing X; = G;(X) and A; = Gj(A) and recalling that 49 = X, = *, we see that
P is a space of the kind studied in Lemma 7. It follows that cl(P) < m and hence

cat(X x (A« B)) =cat(X x ((Ax B)UCB)) <cl(P) <m.

This completes the proof of Theorem 1. |
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