Volume 20, issue 1 (2020)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 24
Issue 8, 4139–4730
Issue 7, 3571–4137
Issue 6, 2971–3570
Issue 5, 2389–2970
Issue 4, 1809–2387
Issue 3, 1225–1808
Issue 2, 595–1223
Issue 1, 1–594

Volume 23, 9 issues

Volume 22, 8 issues

Volume 21, 7 issues

Volume 20, 7 issues

Volume 19, 7 issues

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the Journal
Editorial Board
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN 1472-2739 (online)
ISSN 1472-2747 (print)
Author Index
To Appear
 
Other MSP Journals
A new approach to twisted $K$–theory of compact Lie groups

Jonathan Rosenberg

Algebraic & Geometric Topology 20 (2020) 135–167
Bibliography
1 J F Adams, Stable homotopy theory, 3, Springer (1966) MR0196742
2 J F Adams, Stable homotopy and generalised homology, Univ. Chicago Press (1974) MR0402720
3 T B Andersen, Rank 2 fusion rings are complete intersections, J. Algebra 477 (2017) 231 MR3614151
4 D W Anderson, L Hodgkin, The K–theory of Eilenberg–Mac Lane complexes, Topology 7 (1968) 317 MR231369
5 M Ando, A J Blumberg, D Gepner, Twists of K–theory and TMF, from: "Superstrings, geometry, topology, and C–algebras" (editors R S Doran, G Friedman, J Rosenberg), Proc. Sympos. Pure Math. 81, Amer. Math. Soc. (2010) 27 MR2681757
6 M Atiyah, G Segal, Twisted K–theory, Ukr. Mat. Visn. 1 (2004) 287 MR2172633
7 A Borel, Le plan projectif des octaves et les sphères comme espaces homogènes, C. R. Acad. Sci. Paris 230 (1950) 1378 MR34768
8 A Borel, Sur l’homologie et la cohomologie des groupes de Lie compacts connexes, Amer. J. Math. 76 (1954) 273 MR64056
9 P Bouwknegt, P Dawson, D Ridout, D–branes on group manifolds and fusion rings, J. High Energy Phys. (2002) MR1960468
10 P Bouwknegt, D Ridout, Presentations of Wess–Zumino–Witten fusion rings, Rev. Math. Phys. 18 (2006) 201 MR2228924
11 V Braun, Twisted K–theory of Lie groups, J. High Energy Phys. (2004) MR2061550
12 V Braun, S Schäfer-Nameki, Supersymmetric WZW models and twisted K–theory of SO(3), Adv. Theor. Math. Phys. 12 (2008) 217 MR2399311
13 L G Brown, The universal coefficient theorem for Ext and quasidiagonality, from: "Operator algebras and group representations, I" (editors G Arsene, Ş Strătilă, A Verona, D Voiculescu), Monogr. Stud. Math. 17, Pitman (1984) 60 MR731763
14 H Cartan, Sur les groupes d’Eilenberg–Mac Lane, II, Proc. Nat. Acad. Sci. U.S.A. 40 (1954) 704 MR65161
15 H Cartan, Détermination des algèbres H(π,n;), from: "Séminaires de H Cartan, 1953–1954", Secrétariat Math. (1955) MR0079332
16 C L Douglas, On the twisted K–homology of simple Lie groups, Topology 45 (2006) 955 MR2263220
17 C L Douglas, Fusion rings of loop group representations, Comm. Math. Phys. 319 (2013) 395 MR3037582
18 S Eilenberg, S Mac Lane, On the groups H,n), II : Methods of computation, Ann. of Math. 60 (1954) 49 MR65162
19 S Fredenhagen, V Schomerus, Branes on group manifolds, gluon condensates, and twisted K–theory, J. High Energy Phys. (2001) MR1834409
20 D S Freed, The Verlinde algebra is twisted equivariant K–theory, Turkish J. Math. 25 (2001) 159 MR1829086
21 D S Freed, M J Hopkins, C Teleman, Twisted equivariant K–theory with complex coefficients, J. Topol. 1 (2008) 16 MR2365650
22 M R Gaberdiel, T Gannon, D–brane charges on non-simply connected groups, J. High Energy Phys. (2004) MR2080884
23 P G Goerss, The Adams–Novikov spectral sequence and the homotopy groups of spheres, preprint (2008) arXiv:0802.1006
24 A Hatcher, Algebraic topology, Cambridge Univ. Press (2002) MR1867354
25 R P Held, U Suter, Die Bestimmung der unitären K–Theorie von SO(n) mit Hilfe der Atiyah–Hirzebruch–Spektralreihe, Math. Z. 122 (1971) 33 MR292104
26 L Hodgkin, On the K–theory of Lie groups, Topology 6 (1967) 1 MR214099
27 M Karoubi, Twisted K–theory : old and new, from: "K–theory and noncommutative geometry" (editors G Cortiñas, J Cuntz, M Karoubi, R Nest, C A Weibel), Eur. Math. Soc. (2008) 117 MR2513335
28 M Karoubi, Twisted bundles and twisted K–theory, from: "Topics in noncommutative geometry" (editor G Cortiñas), Clay Math. Proc. 16, Amer. Math. Soc. (2012) 223 MR2986868
29 M Khorami, A universal coefficient theorem for twisted K–theory, J. Topol. 4 (2011) 535 MR2832567
30 A Liulevicius, A theorem in homological algebra and stable homotopy of projective spaces, Trans. Amer. Math. Soc. 109 (1963) 540 MR156346
31 J Maldacena, G Moore, N Seiberg, D–brane instantons and K–theory charges, J. High Energy Phys. (2001) MR1877986
32 V Mathai, J Rosenberg, Group dualities, T–dualities, and twisted K–theory, J. Lond. Math. Soc. 97 (2018) 1 MR3764065
33 J P May, A general algebraic approach to Steenrod operations, from: "The Steenrod algebra and its applications" (editor F P Peterson), Lecture Notes in Mathematics 168, Springer (1970) 153 MR0281196
34 M Mimura, The homotopy groups of Lie groups of low rank, J. Math. Kyoto Univ. 6 (1967) 131 MR206958
35 M Mimura, H Toda, Homotopy groups of SU(3), SU(4) and Sp(2), J. Math. Kyoto Univ. 3 (1963) 217 MR169242
36 G Moore, K–theory from a physical perspective, from: "Topology, geometry and quantum field theory" (editor U Tillmann), London Math. Soc. Lecture Note Ser. 308, Cambridge Univ. Press (2004) 194 MR2079376
37 R E Mosher, Some stable homotopy of complex projective space, Topology 7 (1968) 179 MR227985
38 F P Peterson, Lectures on cobordism theory, 1, Kinokuniya (1968) MR0234475
39 D C Ravenel, Complex cobordism and stable homotopy groups of spheres, 121, Academic (1986) MR860042
40 J Rosenberg, Homological invariants of extensions of C–algebras, from: "Operator algebras and applications, I" (editor R V Kadison), Proc. Sympos. Pure Math. 38, Amer. Math. Soc. (1982) 35 MR679694
41 J Rosenberg, Continuous-trace algebras from the bundle theoretic point of view, J. Austral. Math. Soc. Ser. A 47 (1989) 368 MR1018964
42 G Segal, Classifying spaces and spectral sequences, Inst. Hautes Études Sci. Publ. Math. 34 (1968) 105 MR232393
43 R E Stong, Notes on cobordism theory, 7, Princeton Univ. Press (1968) MR0248858
44 H Toda, A topological proof of theorems of Bott and Borel–Hirzebruch for homotopy groups of unitary groups, Mem. Coll. Sci. Univ. Kyoto Ser. A. Math. 32 (1959) 103 MR108790
45 J H C Whitehead, A certain exact sequence, Ann. of Math. 52 (1950) 51 MR35997
46 Z i Yosimura, A note on complex K–theory of infinite CW–complexes, J. Math. Soc. Japan 26 (1974) 289 MR339131