Volume 20, issue 1 (2020)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 25
Issue 6, 3145–3787
Issue 5, 2527–3144
Issue 4, 1917–2526
Issue 3, 1265–1915
Issue 2, 645–1264
Issue 1, 1–644

Volume 24, 9 issues

Volume 23, 9 issues

Volume 22, 8 issues

Volume 21, 7 issues

Volume 20, 7 issues

Volume 19, 7 issues

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
 
Subscriptions
 
ISSN (electronic): 1472-2739
ISSN (print): 1472-2747
 
Author index
To appear
 
Other MSP journals
Incidence bicomodules, Möbius inversion and a Rota formula for infinity adjunctions

Louis Carlier

Algebraic & Geometric Topology 20 (2020) 169–213
Bibliography
1 M Aguiar, N Bergeron, F Sottile, Combinatorial Hopf algebras and generalized Dehn–Sommerville relations, Compos. Math. 142 (2006) 1 MR2196760
2 M Aguiar, W Ferrer Santos, Galois connections for incidence Hopf algebras of partially ordered sets, Adv. Math. 151 (2000) 71 MR1752242
3 M Aigner, Combinatorial theory, 234, Springer (1979) MR542445
4 D Ayala, J Francis, Fibrations of –categories, preprint (2017) arXiv:1702.02681
5 J C Baez, J Dolan, From finite sets to Feynman diagrams, from: "Mathematics unlimited: 2001 and beyond" (editors B Engquist, W Schmid), Springer (2001) 29 MR1852152
6 J E Bergner, A M Osorno, V Ozornova, M Rovelli, C I Scheimbauer, 2–Segal sets and the Waldhausen construction, Topology Appl. 235 (2018) 445 MR3760213
7 L Carlier, Möbius functions of directed restriction species and free operads, via the generalised Rota formula, preprint (2018) arXiv:1812.09915
8 P Cartier, D Foata, Problèmes combinatoires de commutation et réarrangements, 85, Springer (1969) MR0239978
9 M Content, F Lemay, P Leroux, Catégories de Möbius et fonctorialités : un cadre général pour l’inversion de Möbius, J. Combin. Theory Ser. A 28 (1980) 169 MR563554
10 T Dyckerhoff, M Kapranov, Higher Segal spaces, I, 2244, Springer (2019)
11 I Gálvez-Carrillo, J Kock, A Tonks, Decomposition spaces in combinatorics, preprint (2016) arXiv:1612.09225
12 I Gálvez-Carrillo, J Kock, A Tonks, Decomposition spaces and restriction species, Int. Math. Res. Not. (2018)
13 I Gálvez-Carrillo, J Kock, A Tonks, Decomposition spaces, incidence algebras and Möbius inversion, I : Basic theory, Adv. Math. 331 (2018) 952 MR3804694
14 I Gálvez-Carrillo, J Kock, A Tonks, Decomposition spaces, incidence algebras and Möbius inversion, II : Completeness, length filtration, and finiteness, Adv. Math. 333 (2018) 1242 MR3818099
15 I Gálvez-Carrillo, J Kock, A Tonks, Homotopy linear algebra, Proc. Roy. Soc. Edinburgh Sect. A 148 (2018) 293 MR3777576
16 D Gepner, R Haugseng, J Kock, –Operads as analytic monads, preprint (2017) arXiv:1712.06469
17 L Illusie, Complexe cotangent et déformations, II, 283, Springer (1972) MR0491681
18 A Joyal, Quasi-categories and Kan complexes, J. Pure Appl. Algebra 175 (2002) 207 MR1935979
19 A Joyal, The theory of quasi-categories and its applications, II, lecture notes (2008)
20 A Joyal, Distributors and barrels, preprint (2012)
21 P Leroux, Les catégories de Möbius, Cahiers Topologie Géom. Différentielle 16 (1975) 280
22 J Lurie, Higher topos theory, 170, Princeton Univ. Press (2009) MR2522659
23 J Lurie, Higher algebra, book project (2017)
24 M D Penney, Simplicial spaces, lax algebras and the 2–Segal condition, preprint (2017) arXiv:1710.02742
25 G C Rota, On the foundations of combinatorial theory, I : Theory of Möbius functions, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 2 (1964) 340 MR174487
26 R P Stanley, Enumerative combinatorics, I, Wadsworth & Brooks/Cole (1986) MR847717
27 T Walde, Hall monoidal categories and categorical modules, preprint (2016) arXiv:1611.08241
28 M B Young, Relative 2–Segal spaces, Algebr. Geom. Topol. 18 (2018) 975 MR3773745