Volume 20, issue 1 (2020)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 25
Issue 6, 3145–3787
Issue 5, 2527–3144
Issue 4, 1917–2526
Issue 3, 1265–1915
Issue 2, 645–1264
Issue 1, 1–644

Volume 24, 9 issues

Volume 23, 9 issues

Volume 22, 8 issues

Volume 21, 7 issues

Volume 20, 7 issues

Volume 19, 7 issues

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
 
Subscriptions
 
ISSN (electronic): 1472-2739
ISSN (print): 1472-2747
 
Author index
To appear
 
Other MSP journals
The complement of a nIL graph with thirteen vertices is IL

Andrei Pavelescu and Elena Pavelescu

Algebraic & Geometric Topology 20 (2020) 395–402
Bibliography
1 J Battle, F Harary, Y Kodama, Every planar graph with nine points has a nonplanar complement, Bull. Amer. Math. Soc. 68 (1962) 569 MR155314
2 J Campbell, T W Mattman, R Ottman, J Pyzer, M Rodrigues, S Williams, Intrinsic knotting and linking of almost complete graphs, Kobe J. Math. 25 (2008) 39 MR2509265
3 Y Colin de Verdière, Sur un nouvel invariant des graphes et un critère de planarité, J. Combin. Theory Ser. B 50 (1990) 11 MR1070462
4 J H Conway, C M Gordon, Knots and links in spatial graphs, J. Graph Theory 7 (1983) 445 MR722061
5 A Kotlov, L Lovász, S Vempala, The Colin de Verdière number and sphere representations of a graph, Combinatorica 17 (1997) 483 MR1645686
6 L Lovász, A Schrijver, A Borsuk theorem for antipodal links and a spectral characterization of linklessly embeddable graphs, Proc. Amer. Math. Soc. 126 (1998) 1275 MR1443840
7 N Robertson, P D Seymour, R Thomas, Linkless embeddings of graphs in 3–space, Bull. Amer. Math. Soc. 28 (1993) 84 MR1164063
8 H Sachs, On spatial representations of finite graphs, from: "Finite and infinite sets, II" (editors A Hajnal, L Lovász, V T Sós), Colloq. Math. Soc. János Bolyai 37, North-Holland (1984) 649 MR818267