Volume 20, issue 1 (2020)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 25
Issue 6, 3145–3787
Issue 5, 2527–3144
Issue 4, 1917–2526
Issue 3, 1265–1915
Issue 2, 645–1264
Issue 1, 1–644

Volume 24, 9 issues

Volume 23, 9 issues

Volume 22, 8 issues

Volume 21, 7 issues

Volume 20, 7 issues

Volume 19, 7 issues

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
 
Subscriptions
 
ISSN (electronic): 1472-2739
ISSN (print): 1472-2747
 
Author index
To appear
 
Other MSP journals
Minimal pseudo-Anosov stretch factors on nonoriented surfaces

Livio Liechti and Balázs Strenner

Algebraic & Geometric Topology 20 (2020) 451–485
Bibliography
1 J W Aaber, N Dunfield, Closed surface bundles of least volume, Algebr. Geom. Topol. 10 (2010) 2315 MR2745673
2 C C Adams, The noncompact hyperbolic 3–manifold of minimal volume, Proc. Amer. Math. Soc. 100 (1987) 601 MR894423
3 I Agol, Volume change under drilling, Geom. Topol. 6 (2002) 905 MR1943385
4 I Agol, P A Storm, W P Thurston, Lower bounds on volumes of hyperbolic Haken 3–manifolds, J. Amer. Math. Soc. 20 (2007) 1053 MR2328715
5 P Arnoux, J C Yoccoz, Construction de difféomorphismes pseudo-Anosov, C. R. Acad. Sci. Paris Sér. I Math. 292 (1981) 75 MR610152
6 M Bauer, An upper bound for the least dilatation, Trans. Amer. Math. Soc. 330 (1992) 361 MR1094556
7 R Breusch, On the distribution of the roots of a polynomial with integral coefficients, Proc. Amer. Math. Soc. 2 (1951) 939 MR45246
8 J H Cho, J Y Ham, The minimal dilatation of a genus-two surface, Experiment. Math. 17 (2008) 257 MR2455699
9 D Gabai, R Meyerhoff, P Milley, Minimum volume cusped hyperbolic three-manifolds, J. Amer. Math. Soc. 22 (2009) 1157 MR2525782
10 E Hironaka, Small dilatation mapping classes coming from the simplest hyperbolic braid, Algebr. Geom. Topol. 10 (2010) 2041 MR2728483
11 E Hironaka, E Kin, A family of pseudo-Anosov braids with small dilatation, Algebr. Geom. Topol. 6 (2006) 699 MR2240913
12 N V Ivanov, Coefficients of expansion of pseudo-Anosov homeomorphisms, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. 167 (1988) 111 MR964259
13 E Kin, S Kojima, M Takasawa, Entropy versus volume for pseudo-Anosovs, Experiment. Math. 18 (2009) 397 MR2583541
14 E Kin, M Takasawa, Pseudo-Anosovs on closed surfaces having small entropy and the Whitehead sister link exterior, J. Math. Soc. Japan 65 (2013) 411 MR3055592
15 S Kojima, G McShane, Normalized entropy versus volume for pseudo-Anosovs, Geom. Topol. 22 (2018) 2403 MR3784525
16 E Lanneau, J L Thiffeault, On the minimum dilatation of braids on punctured discs, Geom. Dedicata 152 (2011) 165 MR2795241
17 E Lanneau, J L Thiffeault, On the minimum dilatation of pseudo-Anosov homeromorphisms on surfaces of small genus, Ann. Inst. Fourier (Grenoble) 61 (2011) 105 MR2828128
18 C J Leininger, On groups generated by two positive multi-twists : Teichmüller curves and Lehmer’s number, Geom. Topol. 8 (2004) 1301 MR2119298
19 L Liechti, On the arithmetic and the geometry of skew-reciprocal polynomials, Proc. Amer. Math. Soc. 147 (2019) 5131 MR4021075
20 L Liechti, B Strenner, The Arnoux–Yoccoz mapping classes via Penner’s construction, preprint (2018) arXiv:1805.01248
21 L Liechti, B Strenner, Minimal Penner dilatations on nonorientable surfaces, J. Topol. Anal. (2019)
22 C T McMullen, Polynomial invariants for fibered 3–manifolds and Teichmüller geodesics for foliations, Ann. Sci. École Norm. Sup. 33 (2000) 519 MR1832823
23 C T McMullen, Billiards and Teichmüller curves on Hilbert modular surfaces, J. Amer. Math. Soc. 16 (2003) 857 MR1992827
24 P Milley, Minimum volume hyperbolic 3–manifolds, J. Topol. 2 (2009) 181 MR2499442
25 H Minakawa, Examples of pseudo-Anosov homeomorphisms with small dilatations, J. Math. Sci. Univ. Tokyo 13 (2006) 95 MR2277516
26 R C Penner, A construction of pseudo-Anosov homeomorphisms, Trans. Amer. Math. Soc. 310 (1988) 179 MR930079
27 R C Penner, Bounds on least dilatations, Proc. Amer. Math. Soc. 113 (1991) 443 MR1068128
28 A Schinzel, H Zassenhaus, A refinement of two theorems of Kronecker, Michigan Math. J. 12 (1965) 81 MR175882
29 H Shin, B Strenner, Pseudo-Anosov mapping classes not arising from Penner’s construction, Geom. Topol. 19 (2015) 3645 MR3447112
30 B Strenner, Algebraic degrees of pseudo-Anosov stretch factors, Geom. Funct. Anal. 27 (2017) 1497 MR3737368
31 B Strenner, Lifts of pseudo-Anosov homeomorphisms of nonorientable surfaces have vanishing SAF invariant, Math. Res. Lett. 25 (2018) 677 MR3826841
32 W P Thurston, On the geometry and dynamics of diffeomorphisms of surfaces, Bull. Amer. Math. Soc. 19 (1988) 417 MR956596
33 C Y Tsai, The asymptotic behavior of least pseudo-Anosov dilatations, Geom. Topol. 13 (2009) 2253 MR2507119
34 A D Valdivia, Sequences of pseudo-Anosov mapping classes and their asymptotic behavior, New York J. Math. 18 (2012) 609 MR2967106
35 M Yazdi, Pseudo-Anosov maps with small stretch factors on punctured surfaces, preprint (2018) arXiv:1801.01754
36 A Y Zhirov, On the minimum dilation of pseudo-Anosov diffeomorphisms of a double torus, Uspekhi Mat. Nauk 50 (1995) 197 MR1331364