Volume 20, issue 1 (2020)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 21
Issue 2, 543–1074
Issue 1, 1–541

Volume 20, 7 issues

Volume 19, 7 issues

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the Journal
Editorial Board
Editorial Interests
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
ISSN (electronic): 1472-2739
ISSN (print): 1472-2747
Author Index
To Appear
Other MSP Journals
Contracting isometries of $\mathrm{CAT}(0)$ cube complexes and acylindrical hyperbolicity of diagram groups

Anthony Genevois

Algebraic & Geometric Topology 20 (2020) 49–134

The main technical result of this paper is to characterize the contracting isometries of a CAT(0) cube complex without any assumption on its local finiteness. Afterwards, we introduce the combinatorial boundary of a CAT(0) cube complex, and we show that contracting isometries are strongly related to isolated points at infinity, when the complex is locally finite. This boundary turns out to appear naturally in the context of Guba and Sapir’s diagram groups, and we apply our main criterion to determine precisely when an element of a diagram group induces a contracting isometry on the associated Farley cube complex. As a consequence, in some specific cases, we are able to deduce a criterion to determine precisely when a diagram group is acylindrically hyperbolic.

diagram groups, $\mathrm{CAT}(0)$ cube complexes, acylindrically hyperbolic groups
Mathematical Subject Classification 2010
Primary: 20F65, 20F67
Received: 28 July 2017
Revised: 16 September 2018
Accepted: 1 April 2019
Published: 23 February 2020
Anthony Genevois
Université Paris-Sud