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The spherical manifold realization problem asks which spherical three-manifolds
arise from surgeries on knots in S3. In recent years, the realization problem for
C—, T-, O- and I-type spherical manifolds has been solved, leaving the D-type
manifolds (also known as the prism manifolds) as the only remaining case. Every
prism manifold can be parametrized as P(p, q) for a pair of relatively prime integers
p > 1 and g. We determine a list of prism manifolds P(p, q) that can possibly be
realized by positive integral surgeries on knots in S3 when g < 0. Based on the
forthcoming work of Berge and Kang, we are confident that this list is complete. The
methodology undertaken to obtain the classification is similar to that of Greene for
lens spaces.

57M25, 57R65

1 Introduction

There are many notions of simplicity for closed three-manifolds. Perhaps the simplest is
that of a manifold with a finite fundamental group. One of the most prominent problems
in three-manifold topology is to indicate the list of the simplest closed three-manifolds
that can be realized by the simplest three-dimensional topological operations. Given
that every closed three-manifold can be obtained by performing surgery on a link in S3
(see Lickorish [14] and Wallace [23]), the aforementioned realization problem may be
stated as follows:

Question 1.1 Which closed 3—-manifolds with finite fundamental groups can be real-
ized by surgeries on nontrivial knots in S3?
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By the work of Thurston [22], any knot in S is precisely one of a torus knot, a satellite
knot or a hyperbolic knot. Moser [15] classified all finite surgeries on torus knots. Later,
Boyer and Zhang [4, Corollary 1.4] showed that if surgery on a satellite knot K C S3
results in a manifold with a finite fundamental group, then K must be a cable of a torus
knot. Such surgeries are classified by Bleiler and Hodgson in [3, Theorem 7]. In regard
to the surgery coefficient, Culler—Gordon-Luecke—Shalen [5] proved that any cyclic
surgery must be integral. As further proved by Boyer and Zhang [4, Theorem 1.1], the
coefficient of any finite surgery is either p or p/2 for some integer p. Li and Ni [13]
showed that if half-integral surgery on a hyperbolic knot results in a manifold Y with
a finite fundamental group, then Y is homeomorphic to p/2 surgery on either a torus
knot or a cable of a torus knot. As a result, we henceforth restrict attention to integral
surgeries.

Using Perelman’s geometrization theorem, closed three-manifolds with finite fundamen-
tal groups can be characterized as those three-manifolds that admit spherical geometry.
A spherical 3—manifold (also known as an elliptic 3—manifold) has the form

Y =53/G,

where G is a finite subgroup of SO(4) that acts freely on S3 by rotations. The center
Z =Z(G) of G = m1(Y) is necessarily a cyclic group. According to the structure
of G/Z, spherical manifolds (besides S3) are divided into five types: C or cyclic, D
or dihedral, T or tetrahedral, O or octahedral, I or icosahedral. In particular, if G/Z is
the dihedral group

Dap=(x,y|x*=y>=(xy)P =1)

for some integer p > 1, we get the D-type manifolds. These manifolds are also known

as the prism manifolds.

Greene [10] solved the integer surgery realization problem (that is, Question 1.1 when
the surgery coefficient is integral) for lens spaces, namely, the C—type manifolds. Later,
Gu [12] provided the solution for T-, O— and I-type manifolds. This leaves the D—type
manifolds as the only remaining case, and that is the theme of the present work.

There are many more prism manifolds than any other type of spherical manifolds. It
is straightforward to check that for each integer m > 0, there are only finitely many
spherical manifolds Y of other types with | H1 (Y )| = m. However, for each m divisible
by 4, there are infinitely many prism manifolds with the order of the first singular
homology equal to m. To justify, let P(p,q) be the oriented prism manifold with
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Seifert invariants

(1) (—=1:(2.D. 2. D.(p.9)),
where p > 1 and ¢ are a pair of relatively prime integers. These manifolds satisfy
2) [H1(P(p.g)| = 4lq|.

Therefore, any integer p > 1 relatively prime to ¢ will give a prism manifold P(p, q)
with the desired order of the first singular homology. In regard to the realization
problem, however, we still have a finiteness result. It was first proved by Doig in [7]
that, for a fixed |¢/|, there are only finitely many p for which P(p, g) may be realized
by surgery on a knot K C S3. Later, Ni and Zhang [16] proved an explicit bound for p
in terms of ¢:

p <4q|.

We are now in a position to state the main result of the paper:

Theorem 1.2 Given a pair of relatively prime integers p > 1 and g < 0, if the
prism manifold P(p,q) can be obtained by 4|q|—-Dehn surgery on a knot K in S3,
then P(p,q) belongs to one of the six families in Table 1. Moreover, the knot Floer
homology group of K is determined by P(p,q) and the family containing it.

Remark 1.3 The six families in Table 1 are divided so that each changemaker vector
(see Definition 1.5) corresponds to a unique family. However, a prism manifold
P(p,q) could belong to different families, and not just a unique one. In particular,
given P(p,q), there may be several knots with surgery yielding P(p, ¢), and such that
these knots have different knot Floer homology groups. We will address the overlaps
between these families in Section 13.1. See Table 3.

All the known examples of integral cyclic surgeries (lens space surgeries) come from
Berge’s primitive/primitive (or simply P/P) construction [1]. There is a generalization of
this construction to Seifert-fibered surgeries due to Dean [6], called the primitive/Seifert-
fibered (or P/SF) construction. See Definition 13.3. The surface slope Dehn surgery on
a hyperbolic P/SF knot results in a Seifert-fibered space. Berge and Kang [2] classified
all P/SF knots in S3. Further, they specified the indices of the singular fibers of the
Seifert-fibered manifolds resultant from the surface slope surgeries on such knots.
Since prism manifolds are Seifert-fibered spaces over S? with three singular fibers of
indices (2,2, p), following from the work of Berge and Kang, we obtain a list of prism
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manifolds that are realizable by knot surgeries. It turns out that this list coincides with
Table 1 when g < 0. However, since Berge and Kang’s work is not publicly available,
we will not claim that we have resolved the realization problem for prism manifolds
when g < 0. Instead, we will state this part of the realization problem as a conjecture.

Conjecture 1.4 For any P(p,q) in Tables 1 and 2, there exists a knot K such that
the 4|q|-Dehn surgery on K resultsin P(p,q).

Our study (not included in this paper) of the Berge—Kang classification indicates that
the knot K in Conjecture 1.4 can be taken to be a Berge—Kang knot.

The methodology undertaken to prove Theorem 1.2 is inspired from that of Greene [10].
A prism manifold P(p, g) with ¢ <0 naturally bounds a negative definite four-manifold
X(p,q). See Section 2. Suppose that P(p, q) is realized by 4|q|-surgery on a knot
K C S3. In particular, P(p,q) bounds the two-handle cobordism Waiq) = Waq1(K),
obtained by attaching a two-handle to D* along K C S3 with framing 4|¢|. Note that
the surgery coefficient is dictated by homology considerations: see equation (2). The
four-manifold Z := X (p, q) U—Wy, is a smooth, closed, negative definite 4—manifold
with bp(Z) =n + 4, where n + 3 = bo(X(p, q)) for some n > 1. Donaldson’s Theo-
rem A [8] implies that the intersection pairing on H(Z) is isomorphic to —Z" 14, the
negative of the standard (n44)-dimensional Euclidean integer lattice. Consequently,
the negative of the intersection pairing on X(p,q), denoted A(p,q), embeds as a
codimension-one sublattice of Z"#. For the prism manifold P(p, q) to arise from a
knot surgery, this already gives a restriction on the pair (p, g). We then appeal to the
innovative work of Greene that provides even more constraints on A(p, q). To state
this essential step, we first need to make a combinatorial definition.

Definition 1.5 A vector 0 = (09, 01,...,0+3) € Z" T4 that satisfies 0 < 0¢ <07 <
-+« < Op4+3 is a changemaker vector if for every k with 0 <k <o94+014+---+0n+3,
there exists a subset S C {0, 1,...,n+3} suchthat k =) ; g 0;.

The lattice embedding theorem of Greene [11, Theorem 3.3] now reads as follows:
if P(p,q) with ¢ <0 is realized by 4|g|—surgery on K C S3, then A(p, ) embeds
into Z" %4 as the orthogonal complement of a changemaker vector o € Z" 4. By
determining the pairs (p, g) which pass this refined embedding restriction, we get the
list of all prism manifolds that could possibly be realized by positive integral surgeries
on knots.

Algebraic € Geometric Topology, Volume 20 (2020)



The prism manifold realization problem 761

Theorem 1.6 Given a pair of relatively prime integers p > 1 and q < 0, we have that
A(p.q) = (0)* for a changemaker vector o € Z"+* if and only if P(p,q) belongs to
one of the six families in Theorem 1.2. If we further assume that Conjecture 1.4 holds
true in this case, then there exists a knot K C S* and an isomorphism of lattices

¢: (2", 1) — (H2(Z),—Qz)

satisfying the property that ¢(0’) is a generator of Hy(—Wy4|). Here I is the standard
inner product on Z"+* and Q7 is the intersection form of Z = X(p,q) U ~Waq)-

1.1 Prism manifolds P(p, q) with ¢ >0

As discussed, digging up the list of P/SF knots in S> given in [2], we obtain a family
of knots with prism manifold surgeries. We can get a list 2T of prism manifolds with
g > 0 arising from surgeries on knots in S3. See Table 2. In light of Theorem 1.2, we
make the following conjecture.

Conjecture 1.7 Given a pair of relatively prime integers p > 1 and q > 0, if P(p,q)
can be obtained by 4q—Dehn surgery on a knot K in S3, then P(p,q) € P™.

Theorem 1.2 leaves open the integer surgery realization problem for manifolds P(p, q)
with ¢ > 0, and Conjecture 1.7 proposes the solution. A natural direction to pursue
is to indicate the list of all knots in S3 that admit surgeries to spherical manifolds.
In [1], Berge proposed a complete list of knots in S with lens space surgeries. Indeed,
Berge’s conjecture states that the P/P knots form a complete list of knots in S3 that
admit lens space surgeries. All the known examples of spherical manifolds arising
from knot surgeries will provide supporting evidence to the following conjecture:

Conjecture 1.8 Let K be a knot in S> that admits a surgery to a spherical manifold.
Then K is either a P/SF or a P/P knot.

We point out that Conjecture 1.8 implies Conjecture 1.7.

When g > p, P(p.q) is the double branched cover of S with branching locus being
an alternating Montesinos link, thus it is the boundary of a sharp 4-manifold; see
Ozsviath and Szabd [20]. Greene’s strategy can still be used to study the realization
problem in this case, but the lattices will not be of D—type. We plan to address this
case in a future paper.
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1.2 Organization

In Section 2, we give the basic topological properties of prism manifolds, and explain
how to reduce the realization problem to a problem about lattices. In Section 3, we
study the D-type lattices which are central in our paper. There is a natural vertex basis
for a D—type lattice. Every vector in the vertex basis is irreducible. A classification of
irreducible vectors is given in Proposition 3.9. In Section 4, we endow a changemaker
lattice (0)* with a standard basis S , and study the question when such a lattice is
isomorphic to a D-type lattice. From the standard basis elements of a changemaker
lattice we can form an intersection graph; see Definition 4.16. We collect many
structural results about this graph.

Section 5 addresses some technical lemmas regarding the nonexistence of certain
edges in the intersection graph associated to a changemaker lattice. The elements
of a standard basis S, viewed as an ordered set, are of three types: tight, just right,
and gappy (Definition 4.1). As it turns out, the classification of changemaker lattices
that are isomorphic to D—type lattices relies highly on the properties of one specific
element vy of the standard basis: whether it is tight, just right or gappy, together
with its placement in S. Accordingly, we will do a case-by-case analysis to enumerate
the possible standard bases for such a lattice. This occupies Sections 6-11. Section 12
is devoted to converting these standard bases into vertex bases to get a list of pairs
(p, q) corresponding to the D—type lattices found in Sections 6-11.

In Section 13 we discuss how one may tabulate all the Berge—Kang P/SF knots that
admit prism manifold surgeries. Thus we finish the proofs of Theorems 1.2 and 1.6.

Acknowledgements Ni was partially supported by NSF grant number DMS-1252992
and an Alfred P Sloan Research Fellowship. Ballinger, Hsu, Mackey and Ochse were
supported by Caltech’s Summer Undergraduate Research Fellowships (SURF) program.
Ballinger also wishes to thank Samuel P and Frances Krown for their generous support
through the SURF program. We are grateful to John Berge for sending us the preprint [2]
and some useful programs. We thank Zhengyuan Shang for finding a typo in Table 3.
We thank the referee for a very thorough review.

2 Background

In this section, we start with recalling some basic facts about prism manifolds, then
provide a concise strategy to translate the prism manifold realization problem into a
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5-e—~0

—Pi/qy )y, —Prlq,

Figure 1: The surgery diagram of a Seifert-fibered space.

lattice theory question. Meanwhile, the necessary background from Heegaard Floer
homology will be cited.

2.1 Prism manifolds

It is well known that every spherical manifold is a Seifert-fibered space, that is, a
three-manifold with a surgery diagram as depicted in Figure 1.! The data
3) (e;(p1,91). (P2.92), - ... (Pr.qr))

are called the Seifert invariants, where e is an integer, and (p1,41), ..., (pr,qr) are
pairs of relatively prime integers such that p; > 1. The rational number

r
eorb:=e+2%
: i

is called the orbifold Euler number. The oriented homeomorphism type of a Seifert-
fibered space is determined by the multiset

Lol

together with e.. It is elementary to verify that if a Seifert-fibered space is a rational
homology sphere, it must be the case that ey, # 0, and

“) |[Hi(Y)| = p1p2--- prleowl.

For a pair of relatively prime integers p > 1 and ¢, a prism manifold P(p,q) is a
Seifert-fibered space over S? with three singular fibers of indices (2,2, p), having the
Seifert invariants

=52, 1,2, 1,(p.9).

It is well known that P(p,q) has exactly two Seifert fibrations, and the above one
is the only fibration over an orientable base orbifold [21]. As a result, the orbifold

I'We only consider Seifert-fibered spaces whose base orbifold has genus zero.
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Euler number of the above Seifert fibration, which is ¢/ p, is a topological invariant

for P(p,q). Hence P(p1,41) = P(p2.4q2) if and only if (p1.4q1) = (p2,42). Here
“=~” denotes orientation-preserving homeomorphism.

Following from their Seifert-fibered presentations, prism manifolds enjoy the symmetry

P(p,—q) =—P(p.q),

where —P(p, q) is the manifold P(p, q) with opposite orientation. The fundamental
group of P(p,q) has presentation

(5) 7 (P(p,q) = (x,y | xyx~t = y71, x4l = yP),

The center of this group is a cyclic group of order 2|g| generated by x2. It follows
from (5) that H{(P(p,q)) is cyclic if and only if p is odd. Hence if P(p,q) is
obtained by surgery on a knot in 3, p must be odd.

Lemma 2.1 Suppose that P(p, q) is obtained by 4|q|-surgery on a knot K C S3. If
K is a torus knot, then (p,q) = 2k +1,k) or 2k +1,—k—1) for some k >0, and K
is T(2k +1,2). If K is a satellite knot, then either (p,q) = (2k + 1, 9k 4 4) for some
k>0, and K is the (12k+5,3)—cable of T(2k +1,2),0r (p,q) = 2k +1,—-9k —5)
for some k > 0, and K is the (12k+7,3)—cable of T (2k + 1,2).

Proof First suppose that P(p, gq) is obtained by 4|g|—surgery on a torus knot 7'(r, s).
On one hand, it follows from [15, Proposition 3.1] that if 4|¢| Dehn surgery along
T (r,s) results in a Seifert-fibered manifold with three singular fibers, then the fibers
have indices r, s and ‘rs - 4|q|‘. On the other hand, the prism manifold P(p,q)
has fibers of indices 2, 2, p. By comparing the indices we find that the torus knot is
T'(2k 4+ 1,2). This implies that p = 2k + 1, and we can deduce that |g| =k or k + 1.
Note that the slope of the Seifert fiber of the complement of K is 4k + 2. If |¢| =k,
since 0 < 4k < 4k + 2, the orbifold Euler number of the resulting manifold is positive;
thatis, g = k. If |g| =k + 1, since 0 < 4k + 2 < 4k + 4, the orbifold Euler number
of the resulting manifold is negative; that is, g = —k — 1.

When KX is a satellite knot, we deduce from [4, Corollary 1.4] that K must be a cable
of a torus knot. Therefore, we can use the classification of finite surgeries on such
knots in [3, Theorem 7]: the classification is given in [3, Table 1]. It follows that K
is the (12k+6 F 1, 3)—cable of T (2k + 1,2), and |¢| = 9% + 4 or 9% + 5. When
|g| = 9% + 4, the (36k+16)—surgery on the (12k+35, 3)—cable of T'(2k + 1,2) is the
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_ao

60

_p/q/

Figure 2: A surgery diagram of P(p,q).

same as the %(36k+ 16)—surgery on T (2k + 1,2). Since the resulting manifold has
a singular fiber of index 2k 4+ 1, p = 2k + 1. Similarly, we can deal with the case
|q| = 9% +5. O

Remark 2.2 1n [16], it is proved that if P(2k 4+ 1,k) or P(2k +1,—k — 1) can be
obtained by positive surgery on a knot K C S3, then K must be T(2k +1,2).

One key step in the proof of Theorem 1.2 is that every prism manifold P(p, q) with
g < 0 bounds a negative definite four-manifold. Writing

k= LQJ <0, ¢'=qg—kp>0,
p
then P(p,q) has an equivalent Seifert fibration with Seifert invariants

(—1+k:(2.1), (2,1, (p.q")).

Correspondingly, we get a surgery diagram for P(p, q) as in Figure 2, where ag =

1 —k > 2. Having p/q’ > 1, expand p/q’ in a continued fraction
_ 1
(6) £/=[a1,...,an] =ay — 1 .
q gg—— L
dae 1
3 1

apn

where the a; are integers satisfying a; > 2. Equivalently, we can write
(7 _—qz[ao—l,al,...,an]_.

p
Let X(p,q) be the four-manifold that P(p,q) bounds, obtained by attaching two-
handles to D* instructed by the framed link in Figure 3. More precisely, each unknot
component in Figure 3 denotes a disk bundle over S? with Euler number specified by
its coefficient. The manifold X(p, ¢q) is obtained from plumbing these disk bundles
together: two disk bundles are plumbed if the corresponding unknot components are
linked.
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_ao

Figure 3: An integral surgery diagram of P(p,q).
Let
Ox: Ha2(X) x H2(X) > Z

denote the intersection pairing on X = X(p,q). The second homology of X has
rank n 4 3, generated by elements X, X«x, Xg, ..., X, . Note that x4 and x4« corre-
spond to the vertices with weights —2 in Figure 3.

Lemma 2.3 X(p, q) is a negative definite four-manifold.

Proof We will show that —Qyx is positive definite. Given a vector v € H»(X), for
eachi =1,...,n,itis easy to check that —Qx (v, v) is an increasing function of the a;.
In particular it suffices to prove the claim when each a; satisfies a; = 2. Proceeding
by induction on b2(X) =n + 3 with n > 1, we get that

det(—Qyx) = 4.

Since all principal minors are positive by induction, —Qy is positive definite. O

2.2 The realization problem: from correction terms to lattice theory

In what follows, we will present the methodology we apply to prove Theorem 1.2. One
main ingredient is the correction terms in Heegaard Floer homology.

In [17], Ozsvéth and Szabdé defined the correction term d (Y, t) that associates a rational
number to an oriented rational homology sphere Y equipped with a Spin€ structure t.
They showed that this invariant obeys the relation

d(—Y, ) = —d(Y, 1),
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-2
Figure 4: A negative definite plumbing diagram of P(p, q).

where —Y is the manifold Y with the reversed orientation. If Y is boundary of a
negative definite four-manifold X, then

®) c1(5)> +ba(X) < 4d(Y, 1)
for any s € Spin®(X) that extends t € Spin°(Y).
Definition 2.4 A smooth, compact, negative definite 4—manifold X is sharp if for

every t € Spin®(Y), there exists some s € Spin®(X) extending t such that the equality
is realized in equation (8).

The manifold X = X(p, ¢) is an example of a sharp four-manifold. In order to prove
this, it will be profitable to view the plumbing diagram of X, depicted in Figure 4, as
a weighted graph, that is a graph equipped with an integer-valued function m on its
vertices. Given a weighted graph G, let V' be the abelian group freely generated by
the vertices of G. Define a quadratic form

O VRV ->Z

as follows. For each vertex v, Qg (v ® v) = m(v); for each pair of distinct vertices v
and w, Qg(v®w) is 1 if v and w are connected by an edge, and 0 otherwise.
Definition 2.5 A weighted graph G is said to be a negative definite graph if

e G is adisjoint union of trees, and

¢ the quadratic form associated to G is negative definite.
The degree of a vertex v, denoted d(v), is the number of edges incident to v. A
vertex v is said to be a bad vertex of the weighted graph if

m(v) > —d(v).

Given a weighted graph G, we can get a four-manifold X¢ obtained from the plumbing
construction instructed by G . In [18], Ozsvath and Szab6 showed that if G is a negative
definite weighted graph with at most two bad vertices, then X is sharp. In summary,
using Lemma 2.3:
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Lemma 2.6 X(p,q) is a sharp four-manifold.

We end this subsection by presenting how the integer surgery realization problem for
prism manifolds translates to a lattice theory question.

Definition 2.7 A lattice is a finitely generated free abelian group L together with a
positive definite quadratic form

(-,-): LxL—R.
The lattice is integral if the value of the quadratic form is in Z.

Throughout this paper, we will only consider integral lattices.

Definition 2.8 Suppose p > 1 and g < 0 are a pair of relatively prime integers. The
D—type lattice A(p,q) is the lattice freely generated by elements

©) Xy Xk, X0, X1 ..., Xp

with inner product given by
—1 if {7, j} is either {x, 0} or {xx, 0},
—1 if|li—jl=1with0<i,j <n,
(10) (xioxj) =142 ifi=j € {* xx},
a;j 1f0<i=j<n,
0 in other cases,

where the coefficients ao, ..., a, satisfy a; > 2 and also (7). We then call (9) a vertex
basis of A(p,q).

The inner product space (H»2(X),—Qx) equals A(p,q), where X = X(p, q) is the
four-manifold with Kirby diagram as in Figure 3. See also Figure 4. Now suppose that
4|q|-surgery along a knot K C S3 produces P(p,q) with ¢ <0. Let Wa|q| denote the
associated two-handle cobordism from S3 to P(p,q), capped off with D*. Form the
closed, oriented, smooth four-manifold Z = X(p, g)U—W,)4|. Since by (Si’lq| (K))=0,
it follows that

by(Z) =by(X) + bz(—W4|q|) =n+4.

The 4-manifold —W,,, is negative definite. Using this together with Lemma 2.3 and
the fact that H>(X) © Ha(—Wyjq)) = H2(Z), it follows at once that Z is negative
definite. Using Lemma 2.6, and with the notation of this section in place, the following
is immediate from [11, Theorem 3.3].
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Theorem 2.9 Suppose P(p,q) with g <0 arises from positive integer surgery on a
knot in S3. The D—type lattice A(p,q) is isomorphic to the orthogonal complement
(o)L of some changemaker vector o € Z"*+*, and the generator of H(Wy)4|) maps
too.

Using techniques that will be developed in the next sections in tandem with Theorem 2.9,
we will find a classification of all D—type lattices A(p, g) isomorphic to (¢-)* for some
changemaker vector o in Z"T#. If the corresponding prism manifold P(p,q) does
indeed arise from surgery on a knot K C S3, we are able to compute the Alexander
polynomial of K from the values of the components of o. Giving an algorithmic
method to compute the coefficients of the polynomial occupies the rest of this section.

Let X be the closed surface obtained from capping off a Seifert surface for K in Wy,.
It is straightforward to check that the class [X] generates Ha(Wy4)). It follows from
Theorem 2.9 that, under the embedding H>(X) @ Ha(—Wyq) — H2(Z), [X] gets
mapped to a changemaker vector o . Let {eg, e1, . .., 543} be the standard orthonormal

basis for Z" 14, and write
n+3

o= E oje;.
i=0

Also, define the characteristic covectors of Z" T4 to be
n+3

Char(Z" %) = { Z cie

i=0

¢; odd for all i} .

We remind the reader that, writing the Alexander polynomial of K as
(11) Ag(T)=bo+ Y bi(T'+T7),

i>0
the k™ torsion coefficient of K is

e (K) =" jbit .

jz1
where k > 0. With the preceding notation in place, the following lemma is immediate
from [11, Lemma 2.5].

Lemma 2.10 The torsion coefficients satisty

min, x(c2—n—4) foreachi €{0,1,...,2|¢l},

ti(K) =
1K) 0 fori > 2|q|,
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where ¢ is subject to

¢ € Char(Z"™*), (c,0) +4|¢g| =2i (mod 8|q]).
Fori >0,
bi =ti—1—2t; +ti+1 and by = 1—221)[,
i>0

where the b; are as in (11).

3 D-type lattices

Let L be a lattice. Given v € L, let |v| = (v,v) be the norm of v. Following
Greene [10], say that an element £ € L is reducible if £ = x 4+ y for some nonzero
x,y € L with (x,y) >0, and irreducible otherwise. We say £ is breakable if { =x+y
with |x|, |y| > 3 and (x, y) = —1, and unbreakable otherwise.

The main goal of this section will be to characterize the irreducible and unbreakable
elements of a D—type lattice A(p,g). Since any isomorphism of lattices must send
irreducible elements to irreducible elements, and similarly unbreakables to unbreak-
ables, this will let us constrain the form of an isomorphism between A(p,q) and a
changemaker lattice.

The pairing graph, also introduced in [10], will be one of the main tools we use to

study lattices:

Definition 3.1 Given a lattice L and a subset V C L, the pairing graph is the graph
G (V) = (V. E), where e = (v;,v;) € E if (v;,v) #0.

Proposition 3.2 For each i € {x,*x*,0,...,n}, x; is an irreducible element of
A(p,q).

Proof Take some w € A(p, q) with w # 0, x;. Write

n
W = WxXx + Wi Xsx + Z WjXj
Jj=0
and consider (w, x; — w). This is

ajw;(1—w;)— Z aj wj2 + (terms not involving the a; ).
J#i
Here the a; are as defined in (7) when j > 0, and (x;,x;) = a;. We also let
ax = axx = 2. The above expression is nonincreasing with respect to each a;. Therefore,
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to show that (w, x; —w) is negative, it suffices to show this when all of the a; are 2. In
this case, A(p, q) is isomorphic to the standard D, 43 lattice, the lattice of elements of
Z"t3=(e_5,e_1,eq,...,e,) the sum of whose coefficients is even. This isomorphism
sends

(12) Xxb>e_p+e_1, Xsxt>—€2+4e_1, XxXj=>—ej_1+e (j=0).

If e; +e; € Z"T3 is written as a sum of two other elements of Z" 3 with nonnegative
pairing, these must be =e; and fe;. However, these are not in Dy 3. Therefore,
the image of x; is an irreducible element of D, 43, so x; is an irreducible element
of A(p,q). |

Corollary 3.3 The lattice A(p,q) is indecomposable, namely, A(p,q) is not the
direct sum of two nontrivial lattices.

Proof Suppose that A(p,q) = L1 & L,. Then each x;, being irreducible, must be
in either L, or L. However, any element of L has zero pairing with any element
of Ly. Since X; ~ Xj+1, G({*, x%,0,...,n}) is connected. This means that all of
the x; are in the same part of the decomposition, and the other is trivial. |

This gives us some information about irreducibility in the D—type lattices, but we want
something more complete. Another important class of irreducible elements is that of
the intervals:

Definition 3.4 For A C {*,*x,0,...,n}, let [A] ;=) ,c4x;. Wesay x € A(p,q)
is an interval if x = [A] for some A where G (A) is connected and A does not contain
both * and *x*.

Proposition 3.5 Intervals are irreducible.

Proof As in the proof of Proposition 3.2 we may assume that all of the a; = 2, and
consider the image of an interval x in Z”*3 under the embedding (12). (Note that the
reduction to the case a; = 2 only works because all the coefficients ¢; of x =) ¢;x;
are 0 or £1.) Since x is an interval, the image of x is again of the form +e; L e,
which is irreducible as in Proposition 3.2. O

For linear lattices, this is essentially the end of the story — Greene proves that every
irreducible is either an interval or the negation of an interval. The situation here is
somewhat richer, but is similar in spirit: every irreducible is either an interval, or can
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be obtained from one by applying some involution of the lattice. To prove this, we first
need to know a few involutions of A(p,q).

Definition 3.6 Let m be the smallest index for which a;, > 3. Forany 0 < j <m,
let yj = Xu + Xax +2205i<j xi,and let 7;: A(p,q) — A(p, q) be the reflection in

the subspace spanned by yo, ..., y;. More explicitly, 7; acts as
Xk if i = x,
Xx if 1 = %%,
Ti(x) =X if 0<i <},
X — Xgex —2X0— - —2x;—1—x; if i =],
—X; if i > J.

Lemma 3.7 Each t; satisfies (t;(x),1;(y)) = (x,y) and sz(x) = x. Furthermore,
for any v,w € A(p,q), (v,w) = (r;(v), w) (mod 2).

Proof Each 7; is areflection, which gives the first two properties. For the last property,
it suffices to check that (z; (v;), vk) = (v, vx) (mod 2) forall 7, j, k, which is entirely
straightforward. a

The following special case of Lemma 3.7 will be used very heavily in what follows:
Lemma 3.8 If x € A(p,q), then (x, Xx) = (X, Xxx) (mod 2).
Proof This follows from Lemma 3.7 since Xxx = To(Xx). O

The 7; preserve the pairings on A(p,q), so 7;(x) is irreducible whenever x is. This
gives some noninterval examples of irreducible elements of A(p, ¢). For example,

Xs+ Xax + X0+ -+ x;i = —10(X0+ -+ X;)
and (as long as m > 2)
X+ X +2x0 +2x1 X2 4+ X = T2 (X2 + -0+ X5)

are both irreducible. However, these are essentially the only examples:

Proposition 3.9 If x € A(p,q) is any irreducible element, either x or —x is an
interval, or there is some j such that either t;(x) or —t;(x) is an interval.
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Proof Suppose x = ) ¢;x; is irreducible. Replacing x by —x if necessary, we can
assume that co > 0 and there is at least one ¢; > 0. Let A C {*, x%,0,...,n} be the
set of indices i with ¢; <0, and let y = ) .. 4 ¢;x;. Clearly, (y,x —y) is a sum
of terms of the form —c;¢;» with ¢; < 0 and ¢;» > 0, so is nonnegative. Since x is
irreducible, then y = 0, so actually all of the ¢; are nonnegative.

Now, let B C {*, x%,0,...,n} be the set of indices i with ¢; # 0. The pairing graph
G (B) must be connected, since otherwise x could be written as a sum of two nonzero
elements that pair to zero.

If ¢; € {0, 1} for all i, then x = [B]. Since G (B) is connected, either x is already an
interval, or B = {*, *%,0,..., j} for some j, but then —7p(x) = x¢ +---+ x; is an
interval.

If ¢; > 1 for some i, let z = [B], and consider the pairing (z, x —z). If 0 ¢ B, then
let jo =min B and j; = max B, so

(z,x—z) = ( > (@i —2)(ci - 1)) +¢jo + ¢y —2.
Jo<i<ji
Since ¢; > 1 for each i € B, and a; > 2 for each i, this is nonnegative, contradicting
the irreducibility of x. Therefore, 0 € B, so cg > 1. Since G (B) is connected, then,
ci >1forall 0 <i <maxB.

Now let j be the largest index with ¢; > 1. Suppose there were some largest k,
0<k < j,with ¢ <c¢j,andlet w = xg4q1 +---+x;. Then

(w,x —w) = ( Z (ai —2)(ci — l)) + (ck41—ck)+(cj—cjy1)—2.

k+1<i<j
Since all of the ¢; are at least 1, each of these terms is nonnegative, so this cannot

happen. Therefore, ¢; > ¢; > 1 forany 0 <i < j.

Finally, let wo = xo + -+ + xj, and let w1 = X« + X4« + wo. Consider

(10, x — wo) = ( S (@ -2 —1)) —(Cat Con— o) + (¢ D) — a1,

0<i<j
(wi, x —wyq) = ( Z (ai =2)(ci — 1)) + (Cx + Cxx —Co) + (¢j —2) —Cj+1.
0<i<j

The first term of each of these sums is nonnegative and, for at least one of these sums,
the second term is nonnegative. Moreover, ¢; > 2, so the third term is also nonnegative.
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The last term ¢; 41 is O or 1. Therefore, for both of these to be negative, the first three
terms must be zero, and the last one must be negative. Since ¢; > 1 for i < j, the
first term can only be zero when a; =2 for 0 <i < j, so j <m, where m is as in
Definition 3.6. For the remaining terms to be zero or negative, ¢; = 2, ¢o = Cx + Cxx,
and ¢;j+1 =1.

Since j < m, we can consider —7;41(x) = > c/x;. Fori > j, ¢/ =¢; <1 and
c]/. = 2¢j4+1 —c¢; = 0. Note that cj/.+1 =cj+1 =1#0. So ¢/ vanishes for i < j
as well, since —t; 41 (x) is still irreducible. Therefore, —7; y1(x) =) ;- j €ixi, which
is an interval. |

We will also want to know which irreducible elements of A(p, g) are breakable. Since
negation and the 7; preserve breakability, it will suffice to know this for intervals:

Lemma 3.10 An interval x = [A] is breakable if there are at least two indices i, k € A
with a;,a; > 3.

Proof Suppose that i,k € A with a;,a; > 3. Fix some index J with i < J <k,
andlet To={je€AdA|j<J}and Ty ={j€A|J <j}. Sincei € Ty and k € T,
[[To]| = 3 and |[T1]| = 3. Also, since x is an interval, j € A forall i < j <k, so
J € Ty and J + 1 € Ty. Therefore, ([To],[T1]) = —1, and x is breakable. |

Definition 3.11 When [A;] is unbreakable and has norm at least 3, let z; € A; be
the unique element with |z;| > 3.

Finally, let us determine when two D-type lattices are isomorphic.
Proposition 3.12 If A(p,q) = A(p’,q’), then p=p' and g =q’.

Proof Suppose L is a lattice isomorphic to A(p, g) for some p and ¢. To recover p
and ¢ from L, it suffices to recover the ordered sequence of norms (| x|, |x1],...,|Xx]|)
of the vertex basis, or equivalently to recover the weighted tree 7 corresponding
to A(p,q). As in the proof of [10, Proposition 3.6], we will first recover the vertices
with weight at least 3, and then fill in the vertices of weight 2. Let R C L be the
sublattice generated by the vectors of norm 2 in L. Every such element is irreducible
as in Proposition 3.2. It then follows from Proposition 3.9 that R is generated by
vertices with weight 2, since the involution 7; does not change the norm, and that an
interval of norm 2 merely has vertices of norm 2.
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Let Vy be the set of irreducible, unbreakable elements of L of norm at least 3, and
let V' be the quotient of Vp by the equivalence v ~ u whenever either v —u € R or
v+u € R. By Proposition 3.9 and Lemma 3.10, each irreducible, unbreakable element
of L corresponds (up to sign and applications of the 7;) to an interval containing a
unique vertex of weight at least 3. We claim that the set V' is in bijection with the
vertices in 7 of weight at least 3. In fact, if v —u or v 4+ u can be written as a sum
of vectors of norm 2, the corresponding high-weight vertices must be the same: if
we write v = ) v;x; and £7;(v) = ) vjx; (where £7;(v) is an interval), then the
coefficient v; is nonzero for exactly one i with |x;| > 3. Since applying any z; does
not change the coefficient v; when |x;| > 3 except by a sign, the original coefficient v;
is also nonzero (in fact, £1) for exactly one i with |x;| > 3. Similarly, there is exactly
one j with |x;| >3 with u; nonzero and equal to 1, where u = ) u;x;. Therefore,
one of v —u or v+ u can be written as a sum of vertices of weight 2 if and only if the
high-weight vertices are the same. This finishes the proof of the claim. Also, if v € L
is a representative of some class in V', then |v| is the weight of the corresponding
vertex.

Let W be the set of indecomposable sublattices of R. Each element of W corresponds
to a connected subgraph of 7, all of whose vertices have weight 2. As a lattice, each
element w € W is isomorphic to either the root lattice Ay, for some ny,, orto Dy, if
the corresponding subgraph contains all of x., X«x, Xo and x;. This last case happens
for at most one w € W. Now, form a bipartite graph B as follows: the vertex set
is VU W, and there is an edge between v € V and w € W if, for some representative
v € L of v and some element W € w, (v, w) # 0. This happens if and only if there is
an edge in 7 between the vertex corresponding to v and some vertex of the subgraph
corresponding to w. In B, each w € W neighbors at most two vertices v € V, or at
most one if the corresponding sublattice is isomorphic to Dy, .

We say an edge connecting v € V and w € W is special if w is isomorphic to A3,
and there exists a representative v of v such that there exist exactly 4 vectors W € w
satisfying |w| =2 and (v, w) = —1. It is easy to check that an edge is special if and
only if ag = 2, a; > 2, w is generated by x4, X«x and xg, and v corresponds to xj.

The graph B contains all of the information about how the blocks of vertices of
weight 2 fit together with the other vertices in 7. Since the part of 7 corresponding
to one of those blocks must be the Dynkin diagram of the corresponding sublattice,
reconstructing 7 is straightforward. The vertex set of 7 is a copy of V' together with a
copy of Vy, for each w € W, where V,, is a set containing rank(w) vertices. The edges

Algebraic € Geometric Topology, Volume 20 (2020)



776 W Ballinger, C Hsu, W Mackey, Y Ni, T Ochse and F Vafaee

in 7 are constructed as follows. If the sublattice w is isomorphic to Ay, , connect the
vertices in V3, together in a path Py, . For each nonspecial edge in 3 connecting v
and w, connect v to one of the ends of P,,. For each w, at most two vertices in V
need to be connected in this way, so they can always be connected so that no end of Py,
has valency 3 in 7. If there is a special edge between v and w, connect the middle
vertex of Py, to v. If the sublattice w is isomorphic to Dy, , connect ny, —2 of the
vertices in Vy, into a path, connect the remaining two to one end of the path, and if
there is a v € V neighboring w in B, connect it to the other end. Finally, for v,v € V,
put an edge between them if there are representatives U, v with (7,7’) # 0 and v, v’
do not have a common neighbor in B. For the weights, put a 2 on any vertex in Vy,,
and |U] on a vertex v € V, where 7V is a representative of the class v. a

4 Changemaker lattices

According to Theorem 2.9, whenever P(p, ) comes from positive integer surgery on a
knot, A(p, q) is isomorphic to the orthogonal complement (o')* for some changemaker
vector o € Z"T*. A lattice is called a changemaker lattice if it is isomorphic to the
orthogonal complement of a changemaker vector. In this section, we will prove some
basic structural results about D-type lattices which are also changemaker lattices.

Write (eg, e1,...,en+3) for the orthonormal basis of 7"t and write 0 = Y ioie.
Since A(p, q) is indecomposable (Corollary 3.3), o # 0, otherwise (o) would have
a direct summand Z. So o9 = 1.

We will need several results from [10, Section 3] about changemaker lattices:

Definition 4.1 [10, Definition 3.11] The standard basis of (o) is the collection
S ={v1,...,05+3}, where

ji-1
v = (280 + Zei) —ej

i=1

whenever 0; = 1409 +---+0j-1, and
Vj = (Z e,-) —€j
i€A

whenever 0 = ) ;4 0;, with A C {0,..., j — 1} chosen to maximize the quantity
> iea2'. A vector v; € S is called tight in the first case, just right in the second case
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aslongas i+ 1€ A whenever i < j —1 and i € A, and gappy if there is some index i
withi € A,i <j—1,and i+ 1 ¢ A. In this situation, call i a gappy index for v;.

Definition 4.2 For veZ"T* suppv ={i|(e;,v)#0} and suppt v={i | (e;, v) > 0}.

Lemma 4.3 [10, Lemma 3.12(3)] If |vg+1| =2, then k is not a gappy index for any
v € S.

Proof This follows from the maximality of the set A: if this did not hold, we could
remove k from A and add k + 1, increasing the sum Y ;. 42" but leaving the sum
Y ica 0i unchanged. ]

Lemma 4.4 [10, Lemma 3.13] Each v; € S is irreducible.
Lemma 4.5 [10, Lemma 3.15] If v; € S is breakable, it is tight.

Lemma 4.6 [10, Lemma 3.14(2)] If v, € S istight, j >t and v; = e; +ej—1 —e;,
then v; + v; is irreducible.

Lemma 4.7 If v; € S istight, j >t and v; =eqg+---+e;—1 —i—(ZieA e,')—ej for
some A C{t+1,...,j—1}, then v; — v, is irreducible.

Proof For contradiction, suppose there exist x and y with

Vj —Vr =—€pt+e+ (Zei) —ej=x+Yy
i€A
such that (x,y) >0. Write x = )_x;e; and y = _ yje;. Since |x; + y;| <1 forall i,
x;yi <0 forall i. Since (x,y) =Y x;y; >0, we must have x;y; = 0 for each i.
Observe only eg and e; have negative coefficients in v; —v;. If xg = x; = 0 (resp.
Yo = y; = 0), then since x (resp. y) is in (o)* and has nonnegative coefficients,
x =0 (resp. y =0). If xo =0 and x; =—1,since ) 0;y; =0, y = ez —eo for some
0<s<t.Since y =v; —v; —x, xg =—1 and x;y5 # 0, a contradiction. If xo = —1
and x; = 0, we get a contradiction just as in the previous case. a

If we have a lattice L isomorphic to both a D-type lattice A(p,g) and a changemaker
lattice (G)J‘, it has both the vertex basis Xx, X%, Xo, ..., X, and the standard basis
V1,...,Up+3. Since each of the v; is irreducible, we can use Proposition 3.9 to
constrain its expression in terms of the x;. In some cases, we can say more:
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Lemma 4.8 If A(p,q) is isomorphic to (o) for some changemaker o € Z"+*, then
there is an isomorphism ¢: A(p,q) => (o) that sends x4 to v and Xy« to vy for
some index f. Furthermore, if ag =2, then f = 3 and we can also choose ¢ to send
Xo to vy.

Proof Let ¢o: A(p,q) — (o) be an isomorphism. Both x4 and x4 have norm 2,
and (x«,x«x) = 0. The only elements of (O')J‘ of norm 2 have the form e; — ¢;
for indices i and j with 0; = o;. Since the entries of o are nondecreasing, actually
0; =0} =o0; forany min(i, j) <k <max(i, j), so in particular 0; =0} =0 = Om+1
for m = min(i, j). We define an automorphism y of Z"™# as follows. If |j —i| =1,
let

Vie))=em, Y(ej)=emt1, Y(e))=e whenl¢li,j}.

If |j —i|>1, then ¥ (e;) and ¥ (e;) are as above, and

1ﬁ(em—i-l):emax(i,j)v V(er) =e when [ ¢{i,j,m+1}

Since v fixes o, it restricts to an automorphism ¥ of (o)L . Consider ¥ o ¢, which
sends ¢0_1(e,' —¢;) to the standard basis vector vy 41. Since (X, Xxx) = 0, this
process can be done separately for x4 and x4, making them both sent to standard
basis vectors ve, vy. By precomposing with the automorphism of A(p, ¢) that switches
X and X«x, we can assume e < f, and then Lemma 3.8 ensures that ¢ = 1, because
otherwise (Ve—1,x%) = —1 while (ve—1, x4%) = 0.

When ag =2, xo has norm 2 and pairing —1 with both xx and Xxx, $0 xo =e1—ey_1
or —eg + ey. It follows that 09 = 01 = --- = 0y_1 = 0. Therefore, v2 =e; —e3,
so (vz,v1) = —1. By Lemma 3.8, (v2,vs) is odd. This can happen only if f =3,
S0 vy = e3—ep, and xo = €1 —ep Or —eg + e3. Since 09 = 01 = 03 = 03, any
permutation of {0, 1,2, 3} induces a permutation of {eg, €1, €2, €3}, hence gives an
automorphism of (O‘)J‘. If xo = e; — ey, we are done. If xg = —ep + €3, we can
precompose ¢g with the automorphism exchanging x4 and x.x, and postcompose ¢g
with the automorphism given by the permutation (02)(13). |

From now on, let L = (0/)* be a changemaker lattice isomorphic to some D-type lattice,
and identify X, X«x, Xo, ..., X, with elements of L according to an isomorphism
chosen as in Lemma 4.8. Since o¢g = 1, by Lemma 4.8, we see that

(13) 01 =09 =1.
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Lemma 4.9 Forany v; € S, we have j —1 € suppv;.

Proof This is just the second part of [10, Lemma 3.12(1)], plus the fact that v; =
ep—eq. O

Lemma 4.10 If ag = 2, then a1 > 3.

Proof Suppose a9 = 2. Note that x; satisfies (x1,xo) = —1 and (x1,x%) =
{x1, x4%) = 0. Therefore, if we write x; = Z;’:& ciei,thenco=c1=c—1=c3—1.
Also, x1 is not in the span of xg, xx and X««, so there is some j >3 with ¢; # 0.
Therefore, at least three of the ¢; are nonzero, so a; = |x1| > 3. O

In particular, this means that m <1 in the notation of Definition 3.6. So we only ever
need to use the involution 7; for j € {0, 1} to make irreducible elements into intervals.

Lemma 4.11 If v; is a standard basis vector for j # 1, f and v; is not tight, then
(vi,v1) = (vj,vr) €{—1,0}. If vj istight, j = f —1 and (vj,v1) =—(v;,vr) = 1.

Proof Using Lemma 4.3, suppv; N {0, 1} # {0}, so (v;,v1) € {0, —1} unless v; is
tight. Similarly, either j # f —1 and suppv; N{f =1, f} #{f —1},0r j = f —1
and suppv; N{f —1, f} ={f —1}. Ineither case, (v;,vs) €{0,—1}. By Lemma 3.8,
these two values have the same parity, so they must be equal if v; is not tight. If v; is
tight, (v;,v1) is 1, so (vj,vr) is —1. Therefore, j = f —1. m|

Corollary 4.12 There is at most one tight vector in S. If ag = 2, there is no tight
vector.

Proposition 4.13 If a¢ > 3, then for any standard basis vector v;, either v; is an
interval or to(v;) is. If ap = 2, the same conclusion holds with 7, instead of tp.
Furthermore, this interval contains * or *x if and only if j is 1 or f or v; is tight. If
ag = 2, then this interval contains 0 if and only if j = 2.

Proof First, suppose that a9 > 3, so m = 0 and Proposition 3.9 says that one of v;,
—v;, To(vj) or —7o(v;) is an interval. It remains only to show that we do not ever
need to use a negation. If j € {1, f}, v; € {X«, Xxx} is an interval. Therefore, suppose
J #1, f.If v istight, by Lemma 4.11 (v, yo) =0, where yo = X + X« is defined
in Definition 3.6. Since 7¢ is the reflection in the line spanned by yg, we get that
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70(vj) = —v; and —19(v;) = v;, and we are done because we do not need to use the
negation or —7g. If v; is not tight, Lemma 4.11 says that (v;, x«) = (v}, Xx) €{0, —1}.
If (vj,xx) =0, we get (vj, yo) = 0. We are done by the same argument as before. If

(vj,xx) = (vj, x4x) = —1, we have
(t0(v)), xx) = (10(V)), To(Xxx)) = (V) Xax) = —1
and similarly (to(v;), X««) = —1. Therefore, if —v; or —7o(v;) were an interval [A],

it would satisfy
([A] xx) = ([A]. x4x) = 1.

This can only happen if *, %% and O are all in A, so [A] is not an interval.

If ag =2, then (vy, V2, v3) = (X«, X0, Xxx), all of which are intervals, so we can assume
J > 3. By Corollary 4.12, v; is not tight, so Lemma 4.11 implies that (v;,v;) =
(vj,v3). Since |v1| = |v2| = |v3| =2, Lemma 4.3 implies that suppv; N {0, 1,2, 3}
is either {0, 1,2,3}, {2,3} or @. In any case, (v;,v1) = (v;,v3) = 0. Therefore,
7o(vj) = —v;. This means that, for j > 3, one of v;, —v;, 71(v;) or —71(v;) must
be an interval. We can assert that O is never in this interval, since v; has zero pairing
with v; = x4 and v3 = x4«. If 1 is not in this interval, then also (vj,xo) =0, so
(vj,¥1) =0. Since 77 is the reflection in the plane spanned by yo, y1, 71(v;) = —v;,
and we are done. It remains only to show that if [A] is an interval containing 1 but
not 0, then neither —[A] nor —t1([A]) can be a standard basis vector, which holds
because in this case

{(—[4], x0) = (=1 ([4]), x0) = 1,

and by Lemma 4.11 for any nontight standard basis vector this pairing is either 0
or —1. O

From now on, let T denote 7 if ag > 3, or 71 if ag = 2. For each standard basis
vector vj, let [4;] be an interval for which either v; = [4;] or v; = 7([4,]), and
let €, =1 if v; = [4;], and —1 otherwise. When ao > 3, for all j except 1 and f,
€; is uniquely determined; when ag = 2, for j # 1,2, 3, ¢; is uniquely determined.
However, €1 and €7 can be freely chosen since t exchanges vy and vy. To resolve
this ambiguity, we will choose [A1] and [A7] to make €; = —er = €_;, and, when
ag =2, choose €3 = 1. This makes A1 = A, and, when vy_ istight, Ay = Ay = {*}
whenever x € Ar_;, and {*x} otherwise. By Proposition 4.13, this means that either
* or *x is in none of the A;, which gives the following fact:
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Lemma 4.14 If A; and Ay are disjoint, ([A;], [Ax]) is either O or —1. Otherwise,
([A;], [Ax]) is either |[A; M Ag]| =1 or |[[A; N Ag]| —2, where |[A; N Ag]| is either
[[A;]| or 2 if [A}] is unbreakable.

Proof For simplicity in this proof, call whichever of * or ** occurs in some of
the A; —1. If A; and Ay are disjoint, either there is no index i with x; € A; and
Xij+1 € Ay, in which case they pair to 0, or there is exactly one, in which case they
pair to —1. If A; and A do have nonempty intersection, either min A; = min Ay
or max A; = max Ay, in which case ([A4;], [Ax]) is |[A; N Ag]| — 1, or this does not
hold, in which case ([4;], [Ax]) = |[4; N Ax]| —2. To compute |[A; N Ag]|, note that
forany A C {—1,0,...,n} with G(A) connected,

(14) Al =2+ (@i —2).

i€A
so removing indices with a; =2 from A does not change |[A]|. If [4;] is unbreakable,
by Lemma 3.10 A; has at most one element i with a; > 3, so |[A; N Ag]| is either
|[A;]] if A contains the index for which a; > 3, or 2 if it does not. |

Definition 4.15 Following Greene [10], say that two intervals [4;] and [Ax] are
distant if they do not intersect and ([4,], [Ax]) = 0, that they are consecutive and write
Aj T Ay if they do not intersect and ([4;], [Ax]) = —1, and that they share a common
endpoint if they intersect and ([4;], [Ax]) = |[A; N Ax]| —1. If A; and Ay share a
common endpoint and A; C Ay, write A; < Ay . Say that two intervals abut if they
are either consecutive or share a common endpoint. Write A; M Ay if A; N Ay # @
and they do not share a common end point.

Definition 4.16 Let the intersection graph G(T), where T C S is a subset of the
standard basis, be the graph with vertex set 7', and with an edge between v; and v;
(write v; ~ v;) whenever [A4;] and [A;] abut. If v; ~v; and i < j, we say v; isa
smaller neighbor of v;.

For the intersection graph to be a useful concept, we need to somehow relate abutment
of intervals to pairings in the lattice. First, we need to know how the pairings between
intervals relate to the pairings between standard basis vectors:

Lemma 4.17 For any two standard basis vectors v;, v; with {i, j} # {1, f}, we have
(vi,v;) = £([A;].[A}]). Furthermore, if both v; and v; have norm at least 3, then

(vi,vj) = €i€; ([Ai]. [4;]).
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Proof If ¢, =¢;, (vi,v;) = ([A4;].[A;]) since 7 is a reflection. Otherwise,

([Ai]. [4;]) = (z(vi). v;) = (vi. T(v))),

so the desired results will hold as long as either 7(v;) = —v; or t(v;) = —v;. It
follows from the proof of Proposition 4.13 that the only intervals (corresponding to
standard basis vectors) that are not simply negated by t are x., X«x, intervals with left
endpoint 0 and, if ag = 2, intervals with left endpoint 1. Note that any interval with
left endpoint O is not tight since the tight vector pairs differently with x, and X.x.

First, consider the case ag > 3. If one of [4;] or [A;] is either x4 or x4s and the
other is an interval with left end O (which in particular is neither tight nor xs or Xux),
then the result follows from the facts that t(xx) = x4« and Lemma 4.11. If both
[A;] and [A;] are intervals starting at O, then neither one is tight, by Lemma 4.5 both
are unbreakable. Therefore, since ag > 3 and 0 is in both A4; and A;, every other
k € A; UA;j has a; =2; see Lemma 3.10. Assume (v;,v;) # £([A4;],[4,]), then it

follows from (14) that |v;| = |v;| = ag. Note that
(vi,v;) = (t([4iD. [4,]) = ([4i]. 7([4; D)
and 7([A;]) = —[A;] — X« — Xx, and we can compute that (v;, v;) is either 3 —ag

if Aj # Aj,or2—aq if A; = A;. We can check that neither of these can occur: for
any two standard basis vectors, (v;,v;) > —1, so ag is either 3 or 4, and (v;,v;)
is either 0 or —1. By Lemma 4.11, (v;, v1) = (v;,v1) = (vi, vf) = (vj,vf) = —1,
so 1 € supp™ v; Nsupp™ v;j. Therefore, (v;,v;) =0, and ap = 3. However, using
Lemma 4.9, the only possible standard basis vectors of norm 3 that have pairing —1
with both vy and vy are ey + ey > —ey_q and ey + ey — eryq, but these have
pairing 1 with each other. This contradiction shows that there cannot be two standard
basis vectors corresponding to intervals with left endpoint 0. Therefore, given any two
standard basis vectors of norm at least 3 (so neither one is x4 Or Xxx ), one of them
must be negated by t, which proves the last statement in this case.

When ag = 2, the situation is similar. Using Proposition 4.13, the only standard
basis intervals that are not negated by t are X, X«x, Xo and intervals that start
at 1. The vector x¢ is fixed by t. For any interval [A] with left end 1, 7([4]) =
—[A] = x4 — X% — 2X0, SO {Xx, [A]) = (xx, T([A])) = 0, and this also holds for x.
It only remains to rule out the case in which [4;] and [A;] are both intervals with left
end 1. In this case, again v; and v; are unbreakable, so 1 is the only index k € A; UA;
with ax > 3, |v;| = |vj| = a1, and (v;, v;) is either 3 —ay or 2 —ay, always < 0.
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However,
(Vi Xx) = (Ui, X)) = (V) Xx) = (Vj, Xaex) =0
and
(vi, x0) = (v), x0) = —1,

so supp™ (v;)N{0,1,2,3} =supp™ (v;)N{0, 1,2, 3} = {2, 3}. This forces (v;,v;)>1,
a contradiction. Again, since X, Xxx, and xg all have norm 2, at least one of any
pair of standard basis vectors of norm at least 3 is negated by 7, and the conclusion
follows. O

Because all of the A; are subintervals of one interval and the pairings between the
[A;] are, up to sign, the same as the pairings between standard basis vectors, many of
the results from [10] about the intersection graph carry over unchanged to this situation.
Most importantly, [10, Lemma 4.4] holds unchanged:

Lemma 4.18 [10, Lemma 4.4] If v; and v; are unbreakable standard basis vectors
of norm at least 3, then |(v;,v;)| <1, with equality if and only if [A;] and [A;] are
consecutive and (v;, vj) = —¢€;€;.

The proof of Lemma 4.18, which will not be repeated here, is identical to the one
Greene gives. The overall strategy is similar to the one used in Lemma 4.17: showing
that, for unbreakable standard basis vectors v;, v, of norm at least 3, if 4; N A4;
contains an index k with a; > 3 then the pairing (v;, v;) will be too large given the
form of the standard basis vectors. The proof actually shows:

Corollary 4.19 If v; and v; are unbreakable standard basis vectors of norm at least
3, then z; # z;, where z; is as defined in Definition 3.11.

Corollary 4.20 If {i, j} # {1, f} and v; ~ vj, then (v;,v;) # 0. If v; »~v; and v;
and v; are both unbreakable, then (v;,v;) =0.

Proof If v; ~ v;, then ([A4;],[A4;]) is equal to either —1 or |[4; N A;]| —1#0. It
follows from Lemma 4.17 that (v;,v;) # 0.

If v; ~ v;, by Lemma 4.17 we only need to show ([A4;],[4,]) =0.If A; and A; are
distant, we are done. If A; h A;, by Lemma 4.14 and its proof

([A:]. [4;]) = |[4i 0 A;]] = 2.

By Corollary 4.19, A;NA; does not contain any vertex with norm >3, so |[4;NA;]|=2
and our conclusion holds.
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In particular, when S contains no breakable vectors, G(S) is almost the same as @(S ),
with the only differences being that G(S) has an edge between v and vy while @(S )
does not.

Corollary 4.21 At most one unbreakable vector other than vy or vy neighbors vy
in G(S). The same holds for vy and, when ag = 2, for v;.

Proof If v; ~ vy or v; ~ vy, then using Proposition 4.13 and Corollary 4.20 we get
either j € {1, f} or 0 € A;. If ap > 3 and v; is unbreakable, then z; = 0, so no
other unbreakable standard basis vector corresponds to an interval containing 0. When
ag = 2, by Proposition 4.13 and Corollary 4.20 v, is the only neighbor of v; or vs,
and when v; ~ v, for some j ¢ {1, f} and v; is unbreakable, z; = 1. |

Once we have Lemma 4.18, almost all of the remaining results of [10, Section 4] carry
over. In particular, we have versions of [10, Lemmas 4.8 and 4.10], with identical
proofs.

Definition 4.22 A claw in a graph G is a set of four vertices (v;x, y,z) with v
adjacent to x, y and z, and no two of x, y and z adjacent to each other.

Lemma 4.23 [10, Lemma 4.8] G(S) has no claws.
Let S be the set of unbreakable elements of S, and let Sg = {v1,va,...,vg}.

Definition 4.24 A triple (v;, vj,vg) € (S)3 is a heavy triple if each of v;, v; and vg
have norm at least 3, and any two of them are connected by a path in G(S) that does
not pass through the third. If the heavy triple (v;,v;, vg) spans a triangle, we say it is
a heavy triangle.

Lemma 4.25 [10, Lemma 4.10] No triple is heavy.

Proof Suppose that (v;,v;,vg) is heavy, with z; < z; < zx. Then any path from
v; to v in G(S) would contain an unbreakable interval containing z 7, contradicting
Corollary 4.19. O

The last of Greene’s results that we will need to characterize the D—type lattices that
are isomorphic to changemaker lattices is a description of the cycles that can occur
in G(S). However, this will require more modification since Greene’s proof relies
on the intervals [A;] being linearly independent, which fails in this situation since
[A1] = [Af]. Luckily, this is the only problem:
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Lemma 4.26 [A;], [A3],...,[An+2] and [A,+3] are linearly independent.

Proof We remind the reader we are using the notation that L = (o) is a changemaker
lattice isomorphic to some D—type lattice; also that we identify xs, Xsx, X0, - . . , Xp With
elements of L according to an isomorphism chosen as in Lemma 4.8. Consider the map
7. LR®Q - LRQ givenby m(x) =x—1(x). Forany x e LQQ, 7#(t(x)) =—n(x),
so in particular 7 ([A4;]) = +7(v;) for each standard basis vector v;.

When ag > 3, 7 is the reflection in a line, so im 7w has dimension n + 2. Since
(v1,v2,...,Vn43) spans L®Q, we get that (7w (vy), w(v2),...,7(Vp+3)) spans im 7.
However, 7(v1) = —m(vr), so actually 7(v2),...,m(vy+3) suffice. Since im 7 has
dimension n + 2, this means that 7 (v3), ..., 7(v,+3) are linearly independent. Since
7w ([A;]) = £m(v;) for each i, a linear dependence among [A42],...,[An+3] would
induce one among 7 (v2),..., 7(vs+3), and the conclusion follows.

When ag = 2, 7 is the reflection in a plane, so im(x) has dimension n 4 1, and
a basis is (7(v3), w(v4),...,m(vy+3)). The same argument as before gives that
[A3],[A4],...,[An+3] are linearly independent. It remains only to be seen that
[A2] = v, is not in the span of ([A3],...,[An+3]). Note that [A3] = v; and, for j > 3,
7(vj) = —v; or —v1 —2v2 — V3 —Vj, SO

span([43], ..., [An+3]) Cspan(vy, v1 + 202 + V3,04, ..., Up+3),

and the right side does not contain vs. |
Once we have this, a proof identical to that of Greene’s Lemma 3.8 [10] gives:

Lemma 4.27 Any simple cycle in G({vz,v3,...,Vy+3}) induces a complete sub-
graph.

Actually, since [A1] = [Af], for any j ¢ {1, '}, v; ~ vy if and only if v; ~ vr, so
the same statement holds for G({vy,v2,...,Vf_1. Vfq1,..., Un+3)).
Lemma 4.28 For any simple cycle C C G(S), one of the following holds:

e The vertex set V(C) induces a complete subgraph of G(S).

e C has exactly four vertices, of which three are vy, v ¢ and vy, and vy_y IS
breakable.

Proof If C contains exactly 3 vertices, C is a complete subgraph. So we assume C
contains at least 4 vertices. If either vy or vy isnotin C, the previous lemma says that
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C induces a complete subgraph. Otherwise, vi, vy € V(C). Since any neighbor (other
than vy ) of vy also neighbors vy, v; must have two neighbors v; and vy alsoin C,
which will also neighbor vs. By Corollary 4.21, one of these, say vy, is breakable.
By Lemmas 4.5 and 4.11, k = f — 1, and neither vy nor vy has any other neighbors.
This means that the vertices of C other than vy, vy, v; and vy_y all lie on a path y
for which one end neighbors v; and the other neighbors vs_. It remains to see only
that y is empty. Since vy neighbors both v; and vr_y, if y were nonempty we could
form a new simple cycle going from v; to vy_; along y, then to v and back to v;.
This does not contain v, so induces a complete subgraph. This means that any vertex
of y neighbors vz, so y is empty. a

Lemma 4.29 Any cycle in G(S) has three vertices, unless it contains a breakable
vector, in which case it can contain 4.

Proof By Corollary 4.21 and Lemma 4.28, we can assume that V' (C) does not contain
both vy and vy and that V(C) induces a complete subgraph. If vs_; is breakable and
in V(C), then V(C) \ {vy_;} will still induce a complete subgraph, so it suffices to
assume that V(C) contains no breakable vector. If V(C) had more than two vectors
of norm at least 3, any three of them would form a heavy triple. Since V(C) induces a
complete subgraph, any two vectors of norm 2 in V(C) are of the form v; = ¢;—1 —¢;
and v; 1 = ¢; —e; 41 for some index i. However, any other standard basis vector v;
that neighbored both v; and v;4+1 would have to have a gappy index at either i — 1
or i, which cannot happen by Lemma 4.3 because v; and v;4+; both have norm 2.
Therefore, V(C) has at most one vector of norm 2, and at most two vectors of norm at
least 3, so has at most 3 vectors overall. Since C is a cycle, it must have exactly 3. O

The main use we will have for this characterization of cycles is the following lemma
that restricts the possible forms of gappy vectors, which is [10, Lemma 7.1]. As usual,
the proof will not be repeated.

Lemma 4.30 [10, Lemma 7.1] Suppose that vg € S is gappy, and that S contains no
breakable vector. Then vy is the unique gappy vector, Vg = —eg +eg_1+---+e; +eg
forsome k +1 < j < g, and v and viy, belong to distinct components of G(Sg—1).

5 Blocked vectors

In this section, we define blocked vectors and prove some lemmas about blocked
vectors. These lemmas will be useful in the later sections.
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Definition 5.1 Let m € {1,2,...,n+2}. A vector v; € Sy, is (m, N)-blocked if
v; ~v; forany m < j < N. Otherwise, v; is (m, N)—open. When N =n + 3 and
Sy =S, we simply say v; is m—blocked or m—open.

Lemma 5.2 When v -1 1s unbreakable, vy and vy are f—blocked.

Proof If ag > 3, by Corollary 4.19 As_; is the unique unbreakable interval contain-
ing xo, so vy, vy are f-blocked. If ag =2, then f =3 and |v1| = |v2| = |v3] =2
by Lemma 4.8. Since 0, 1,2 cannot be gappy indices, no vector other than v, can
neighbor vy and v3 at the same time, so vy and v3 are 3-blocked by Lemma 4.11. O

Below, we introduce the notion of an (m, N)-blocking neighbor. We will see in
Lemma 5.5 that a standard basis vector is (m, N)-blocked if it has two (m, N)—
blocking neighbors that do not abut each other.

Definition 5.3 Let v;,v; € S;, be such that v; ~v;. We say v; is an (m, N)-blocking
neighbor of v; if one of the following holds:

(1) v; is (m, N)-blocked.

(2) |vi| =3, |vj| = 3, both unbreakable; v, is unbreakable for m < £ < N.

3) j=ix1land|v;|=|vj|=2.

4) j=i=x1, |max(,;)l =2 and vy, ;) is unbreakable; vy is (m, N)-blocked
for £ < min(i, j) and vy is unbreakable for m <€ < N.

When N =n+3 and Sy = S, we simply say v; is an m—blocking neighbor of v; .
Lemma 5.4 Suppose v; is an (m, N)-blocking neighbor of v;. If v; ~ vy for some
m <k <N, then vj + vg.

Proof We prove this case by case.

(1) Since v; is (m, N)-blocked, by definition vg ~+ v;.

(2) For contradiction, suppose vx ~ v;j. Since vg ~ v; and vg ~ v;, |vg| > 3.
Otherwise, if |vg| = 2, vg has only one smaller neighbor. Since we assume v;, v;
and vy are unbreakable, (v;, vj, vg) is a heavy triangle; see Lemma 4.25.

(3) Suppose vg ~ v; for contradiction. Assume j =i + 1. This assumption is made
without loss of generality because the situation vy ~ v;,v; and v; ~ v; is symmetric
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ini and j. Since vg ~v; and v; = e; —e;j4+1 (i > 0), exactly one of i and 7 + 1
is in supp v. Since |v;| = 2, j —1 =1 cannot be a gappy index by Lemma 4.3.
Therefore, i ¢ supp vg and i + 1 € supp vy . Since v; ~v; and v; = e;_1 —e;, we get
i — 1 € supp vg . This contradicts Lemma 4.3 since |v;| = 2.

(4) Again, suppose v ~ v; for contradiction. Assume j = i + 1 without loss
of generality, since the situation is symmetric in { and j. From item (3), we may
assume |v;| > 3 and |v;| =2. Asinitem (3), i ¢ suppvg and i + 1 € suppvg. Let
£ = min supp v . Since v; ~ v; and i ¢ supp vy, we get £ <.

If £ =0, let s be the first gappy index of vy ; then s < i, and we claim that v; ~ vg+1.
Since (vg,vg4+1) > 0, if v ~ vg41, it follows from Lemmas 4.14 and 4.17 and
Corollary 4.20 that vsy1 is breakable, Ay M As4+1 and €, = €541. Thus, up to
applying ©, vy — vs41 becomes [Ag] — [As+1], which is reducible since it is the
signed sum of two distant intervals, a contradiction to Lemma 4.7. Since vg ~ Vg4
and s +1 < i, we have s =i — 1 by our assumption. Since |v;| > 3, we must
have (v;, vg) > 2. However, since v; and vy are both unbreakable, this contradicts
Lemma 4.18.

If £ >0, then (vg, vr) = —1. Since vi ~ vy, it follows from Corollary 4.20 that v,
is breakable, so £ = f — 1. By Lemmas 4.17 and 4.14, |v;| = 3. Using Lemma 4.9,
we get v = —ep +ep_1+tep. Since b <i<m<k,k>04+2s0k—1>L+1.
Since vg41 = vy = —egqq +eg, we have (g, vgy1) = 1,50 vg ~vgqq. L+ 1<,
then vy, is m-blocked by assumption, a contradiction. If £ + 1 =i, |v;| = 2, a
contradiction to our assumption that |v;| > 3. |

Lemma 5.5 If v; € Sy, has two (m, N)-blocking neighbors vj,,v;, € Sy, such that
Vj, * Vj,, then v; is (m, N)-blocked.

Proof Suppose vg ~ v; forsome m <k <N.ByLemma5.4, v;, ~ vt and vj, * vg.
However, this would imply {v;;vj,,vj,, Ut} is a claw. |
Lemma 5.6 Suppose that vy is just right for all k > m, and that v; € Sy, is unbreak-
able. Then v; € Sy, is m—blocked if either of the following holds:

(1) suppuv; has at least 4 elements > i.

(2) suppv; has at least 3 elements > i, and v; is m—blocked.

Proof In the first case, any v neighboring v; with k >m would have min supp vy <i,
hence |supp vg Nsuppv;| > 4 and (vg,v;) > 2, contradicting Lemma 4.18. In the
second case if v; ~ vg for some k > m, (vg,v;) > 1, so vg ~ vj, a contradiction. O
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Lemma 5.7 Suppose v; is (m, N)-blocked for all i <m. If S;,—1 contains at least
one unbreakable vector of norm > 3, then |vj| =2 forall m < j < N.

Proof We induct on N —m. The base case N —m =0 is trivial. Inductively, suppose
the lemma holds whenever N —m < k for any nonnegative integer k. The following
shows that the lemma also holds when N —m =k + 1.

Since v; is (m, N)-blocked for all i < m, either min supp vy, 41 =0 or |vy41| = 2.
Since S;;,—1 contains some unbreakable vector v; of norm > 3, min supp V41 =0
would imply v,+1 ~ v;, but v; is m-blocked. Therefore, |vy,+1| = 2.

Since S;,—1 contains a high norm vector, v, has some smaller neighbor vy, which
is (m, N)-blocked by assumption. By Definition 5.3(1) and (4), vs and vy,41 are
(m—+1, N)-blocking neighbors of vy,. Since |vym+1| =2 and s < m, vy * Vy41.
Hence, by Lemma 5.5, vy, is (m+1)-blocked.

Since N —(m + 1) <k and v; is (m+1, N)-blocked for all i < m + 1, the inductive
assumption implies |v;| =2 forall m +1 < j < N. Since we have also shown
|vm+1| = 2, this finishes the induction proof. |

Lemma 5.8 If G(S;,) is disconnected, every connected component has at least one
m—open vector.

Proof Otherwise, a component of G(Sy,) would still be a component in G(S,+3),
disconnected from the rest of G(Sy,+3). However, this contradicts Corollary 3.3, which
says the lattice is indecomposable and G(Sy+3) is connected. |

Lemma 5.9 Suppose S contains no breakable vector. If S,, contains at least one
vector of norm > 3, and contains exactly one m—open vector v; with j < m, then
Um-+1 nheighbors v; and has no other smaller neighbors, and |vi| =2 forall k >m+1.

Proof Since S, has a high norm vector, v;,+1 has some smaller neighbor, which
must be v;. By Lemma 5.8, G(Sy,) is connected, so v; neighbors some v; € Sy,.
Since v; is the only m—open vector in Sy, v; is m-blocked, and v; is an m-blocking
neighbor of v; by Definition 5.3(1). Since vp+1 ~v; and j <m, |vpmy1| > 3. By
Definition 5.3(2), v 41 is an (m+1)-blocking neighbor of v;. By Lemma 5.5, v; is
(m+1)-blocked. The rest follows by Lemma 5.7. O
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6 a)= 2
In this section, we assume ag = 2. By Lemma 4.8, f =3 and v, =e; —e5.

Lemma 6.1 If vg ~ vy for s > 3, then v, is s—blocked.

Proof By Lemmas 4.8 and 4.10, v, = x¢ and |x1| = a1 > 3. If vy ~ vy, then, by
Corollary 4.19, Ay is the unique interval containing x; . Therefore, vy, v3 and vy are
the only neighbors of v5. a

Lemma 6.2 The vector vy is just right and |v4| € {3, 5}.

Proof By Lemma 5.2, v; and v3 are 3—-blocked. We can then use Lemmas 4.3 and 4.9
to get our conclusion. m]

Lemma 6.3 Suppose |v4| =3. Unless 4 =n+ 3, we have |vs| € {2,6} and |v;| =2
for j >5.

Proof By Lemma 5.2, v; and v3 are 3-blocked. Lemma 6.1 implies that v, is
4-blocked since vq4 ~ vy. If vs exists, then to avoid pairing with vy, v, and vs,
either |vs| = 2 or |vs| = 6. In either case, v4 is 5-blocked by Lemma 5.5 and
Definition 5.3(1) and (4) or (1)~(2). By Lemma 5.7, |v;| =2 forall j > 5. m]

Lemma 6.4 Suppose |v4| = 5. There is an index s for which vy is just right, |vg| =
s—1,and |vj| =2 for 4 < j <s. Either s =n+3, or |vsg41| =3 and |v;| =2 for
j>s4+1.

Proof Note that G(S) is connected while G(S4) has two components with vertex
sets {vq, v2,v3} and {v4}. Since v; and vz are 4-blocked, v, must be 4—open. Let
s > 4 be the (unique) index with vg ~ v,. Since |vz| =2, 1 cannot be a gappy index
for vs. Hence, vg ~ v, implies {1, 2} Nsupp vy = {2}, which then implies 3 € supp vy .
To avoid having pairing 2 with v4 (which would contradict Lemma 4.18), 4 € supp vy
and vy ~ vg.

For contradiction, suppose there exists |v;| > 3 with 4 < j < s chosen minimally.
Since |vs| =--- = |vj—1| = 2, we have v4 ~ v5s ~--- ~vj_1. Since v; does not
neighbor vy, va, v3, and [(v4, v;)| <1 by Lemma 4.18, we must have min supp v; > 4.
Thus, v; pairs nontrivially with one of v4,vs,...,vj—1. In other words, in G(Ss5—1),
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v; is in the same connected component as v4. Since |v;| =2 for 4 <i < j, no i can
be a gappy index for 4 <i < j —1. Since 2, 3,4 e suppvs, {2,3,...,j—1} Csupp vs.
Hence, (vs,v;) > |v;| —2, which in turn implies vy ~ v, creating a heavy triple
(v4,v;,vs) and resulting in a contradiction.

Therefore, |v;| =2 for 4 < j <s. It follows from Lemma 4.3 that vy is just right,
and |vg| = s — 1. So all the adjacency relations in G(Sy) are

V1 ~ V2, V1~UVU3, UV2~VU3, V2~VUs~Uq4~Us~ "~ VUs—1.

By Lemma 6.1, since vy ~ vg, v2 is s—blocked. By Lemma 5.5 and Definition 5.3(3)
and (4), v; is s—blocked when 4 < j <s—1. By Lemma 5.5 and Definition 5.3(1)
and (2), v4 is s—blocked. By Lemma 5.5 and Definition 5.3(1), vs is s—blocked. So
vg—1 is the only possible s—open vector. If s <n+ 3, the connectivity of G(S) implies
that vg_; is s—open, so we can use Lemma 5.9 to conclude that vg_; is the only
smaller neighbor of vs4 1, which implies that vg41 = es—1 +es —es41, and |v;| =2
for j >s+1. a

To summarize, we have the following proposition:

Proposition 6.5 When aog = 2, one of the following holds:
(1) |v4]| =3, |vi| =2 fori=>>5.
(2) |v4]| =3, |vs| =6, and |v;| =2 fori >5.
B) |va| =5, |vi|=2for5<i<s—1,|vg|=s5—1,and s =n+3.
4) |va| =5, |vi|=2for 5<i <s—1, |vs| =5—1, |[vs41| =3, and |v;| =2 for
Jj>s+2.
The corresponding changemakers are
e (1,1,1,1,2I5)) with s > 0,
o (1,1,1,1,46) 45 +2, (45 + 6)l1]),
where als! means s copies of a.
Remark 6.6 We obtain the corresponding changemaker vectors by using Definition 4.1.
Here, we do one example in detail for clarification: Proposition 6.5(1). We remind

the reader that op = 01 = 1; see equation (13). In the beginning of this section we
obtained that v, = ey —e3, that is, 0 = 01 = 1; also that f = 3, which in turn implies
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that |v3| = 2 and therefore v3 = ey —e3. Thatis, o3 = g5 = 1. Initem (1), |v4]| = 3,
which implies that v4 = e5 4+ e3 —e4. This gives us that 04 = 03 + 0, =2. We also
have |v;| =2 for i > 5. That is, v; = ¢;—1 —e; and so g; = 2 for i > 5. Therefore,
o=(1,1,1,1, 2[5]), and that s > O since the index 4 exists.

Remark 6.7 We combine degenerate cases when listing changemakers at the end
of each section, and in our parametrization s, > 0 unless otherwise specified. The
parameter s is not the previous s in this section. The same convention is also used in
later sections.

7 Classification of S s

From now on, we assume ag > 3. In this section, we classify the possible forms of
V1,..., V. Always, vy =eg—ey, and vy = ef_| —ey.

Lemma 7.1 For 1 <i < f —1, we have v; ~ v;. Moreover, VF_1 ~ V7.

Proof By Lemma 4.11, (v;,v1) = (v;,vr) =0 for 1 <i < f —1. By Lemma 3.8,
(vi—1,v1) = (vr_1.v7) = —1 (mod 2), so vr_; ~ V1. |

Proposition 7.2 When f =3, vy =2eg+e1 —e2.

Proof It follows from Lemma 7.1 that v, ~v1, S0 Vo =e1—ep or Vo =2¢9+e1—e5.
Since (v, v1) # 0, we have xg € Az, so |va| > |xo| = ap > 3. O

Proposition 7.3 When f > 3, we have vy = eg + e1 — ez, and v; is just right for all
j<f—1.
(1) If vp_y is tight, then |v;| =2 for2<j < f —1.
(2) If vg_y is just right, then vy_y = ey + -+ ey_o —ey_q, and one of the
following holds:
(@ |vj|=2for2<j<f—1.
(b) f =5 and |v3| =4.
(¢) f=6,|vs] =2 and |vg] =3.

(3) Ifvg_y isgappy, then f >5 and vy_y =ey+e3+---+er_o—er_;, and one
of the following holds:
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@ |vj|=2for2<j<f—1.
(b) |va|=4,and |vj|=2for3<j < f—1.
() |v3|=2,|va| =3 and |vj|=2ford<j < f—1.

Proof By Lemma 7.1, vy ~ vy, SO vz = eg + e; — e>. Again using Lemma 7.1, to
avoid a claw, any two smaller neighbors of vs_; other than vy neighbor each other.
Therefore, to avoid a cycle of length 4, which would violate Lemma 4.29, vs_; has
at most two smaller neighbors other than v;. Furthermore, if vs_ is not tight and
has two smaller neighbors, then one of them must have norm 2, otherwise these three
vectors would form a heavy triple. (Recall that vy_; is the only possible tight or
breakable vector by Lemma 4.5 and Lemma 4.11.)

When there exists |v;| > 2 for some 2 < j < f —1, define
s=min{2<j < f—1]|v;|>3}.

The only possible gappy index for vy is 1, which cannot occur since then either
(vs,v1) = —1 or (vg, v3) =2, contradicting Lemma 7.1 or Lemma 4.18. Thus, vy is
just right. Let

k = minsuppvs < s —2.

To avoid a claw (Vg; Vk—1, Vg1, Vs), We must have k < 2. Since (vg,v1) =0,

k €{0,2}.
So

(15) (v, v2) = £1 £0.

Suppose vy_; is tight; then (vs_y,v2) =2 = |va| — 1. It follows from Lemmas 4.14
and 4.17 that € = €5 _1, and A5 shares an end with A¢_;. Since the left endpoint of
Ay_1 is v« (see Proposition 4.13 and the paragraph following it), A2 and Ay_; share
right endpoints. By Lemma 4.18 and (15), As { A2. Therefore, either A5 ¥ Ay and
(vs,vp_1)==%1,0r Ay Ar_y and (vg, vp_1) = |vs|—2. If k =0, then (vy, vy_y) =
|vs| — 1, which does not fall into either case. Hence, k = 2 and (vs,vr_;) = [vs] —2.
We claim that Ag and Ay_; are not consecutive. Otherwise, (vs,vs_1) = 1 and
€s = —€7_1 = —€3. Hence (vs,v2) = —([4s]. [A2]) = 1, contradicting the fact that
k=2.S0 A5 th Ay_y . However, since vg ~ vy_y, (v2; Vs, Vr_1,v3) is a claw. Thus,
vs cannot exist when vy _p is tight.

Suppose vy_1 is just right. From the first paragraph we know that vy_; has at most
one smaller neighbor with norm > 3. Since vs_; ~ vy, minsupp vs_; = 1. Therefore,
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vr_1 ~v; for 2<j < f—1if and only if |v;| > 3. This implies v; and vy are the
only smaller neighbors of vs_;, and |v;| =2 for s <i < f —1. Since (vy_j,vs) <1,
either s =3 and vy = eg +e1 +e3 —e3,0r s =4 and vy = ep + e3 — e4. In either
case, unless s + 1 = f —1, (Vs:v2,Vs+1,Vr—1) forms a claw. Thus, f = s+ 2.

Suppose vy_; is gappy. By Lemmas 4.5 and 4.11, § contains no breakable vector.
Since vf_1 ~ vy, 1 =minsuppvy_;. By Lemma 4.30,

Vf—1=e1+ei+--terp—ep g

for some j > 3, and all other standard basis vectors are just right. By Lemma 4.9,
f —2€suppvr_y,s0 f—2>j>3. Since vy_; ~ vz, then, by the discussion in
the first paragraph of this proof,

(16) vi~vrop and 2<i< f—-1 = |uy|=2.

In particular, vs ~ vg_y. If |v;] = 2 forany 2 <i < f — 1, to avoid a claw
(vj:Vj—1,Vj+1,Vr—1) we must have either j =3 or j = f—2.If j = f —2> 3,
we would have a cycle

02~U3~-~~~vf_1~1)2

of length f —2 > 3. So j = 3 if vy does not exist. Now assume vy exists. Note
vs ~ vz by (15), vr_1 ~v2, and v3 ~ vy if 3 <. To avoid a claw (v2;v3, Vs, VF_1),
either s = 3 or vy_; ~ v3. In the first case, v3 = eg +e1 + ez —e3. Since |v3| > 2,
vr_1 ~ v3, forcing j = 3. If |v;| > 3 for some i with 3 <i < f —1, by (16) we
have v; ~ vy_1. Hence i =4 and vgq = €2 + e3 — e4, wWhich would create a claw
(v2;v3,v4,vr_1). Therefore, |v;| =2 forall 3 <i < f —1. In the second case,
by (16) we have |v3| = 2. Since vy_; ~v3, j = 3. Since vy ~ vy_;, we have s = 4
and vy = ez + e3 —eq. If |vy| > 2 for some [ with 4 </ < f — 1, we would have
(vi,vr—1) > 0, contradicting (16). |

8 f >3,v,_1 gappy

Recall from Proposition 7.3 that when f >3 and vy_; is gappy, we have f >5 and

Vg =e9+e1—€, Vr_y=er1+e3+ -+eror—e€r_q.

Proposition 8.1 When vy_ is gappy, one of the following holds:

(1) f=n+3.
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(2) f=5,|v3|=2, |ve| =5,and |vj| =2 for j > f +1.
(3) |vgy1l=4,and |vj| =2 for j > f + 1. Either |v4| = 3, or |v3| = 4.

Proof When f =n+ 3, we getitem (1). If f <n + 3, however, as before we will
find it convenient to study the f-blocked vectors. First note that, by Lemmas 4.5
and 4.11, S contains no breakable vector. Since Uf_1 is unbreakable, vy and vy are
Jf-blocked by Lemma 5.2. Since vs_; ~ vy and v, vr_p is also f-blocked by
Lemma 5.5 and Definition 5.3(1)—(2). Lemma 4.30 then implies that v; is just right
for j > f.

We argue that when either f =5 and |vs_,| =4 or when f > 5, the only f—open
vector is vy_p. When f >5, v; is f-blocked for i < f —2 by Lemma 5.6, (the j

in the statement of Lemma 5.6 is f — 1) and the only possible f—open vectoris vs_5.
When f =5 and |v3| =4,

vz=e9+er+er—e3, Vg=e1+e3—ey4.

Since v3 ~ vy ~ vgq and v3 ~ v4, we have that v, is f-blocked by Lemma 5.5 and
Definition 5.3(1)—~(2), and again the only possible f—open vectoris vs_,. This justifies
the claim.

In the two cases (when f =5 and |vf_»| = 4 or when f > 5), by Lemma 5.9
Vry1 ~Vf_p,and |v;| =2 for j > f + 1. Since vs_, is the only smaller neighbor
of vryy and vy is justright, vy 1| = 4. This will give us a subset of the cases in
the first statement in item (3). (The item also includes the case f =5 and |vy_,| =2,
which will be obtained in the last paragraph; see below.) To see the second statement
in item (3), note that when |v3| =---=|vy 5[ =2 and |vry;| =4, (vVr_1,V2,Vr41)
forms a heavy triple, so either case (3b) or case (3c) in Proposition 7.3 happens.

When f =5 and |v3| =2, both v, and v3 are possibly f—open. Since ve ~ vy, V4
or vs, we have |vg| € {4, 5}. In either case, v, and v3 are 6-blocked by Lemma 5.6,
and by Lemma 5.7 |vj| =2 for j > f + 1. In the case |vg| = 5, this gives us
item (2). In the case |vg| = 4, we would have a heavy triple (vz, v4, Vg), contradicting
Lemma 4.25. |

The corresponding changemakers are
o (1,1,2,2,2I0 25 4+ 3,25 4+ 3),
o (1,1,2,4,46) 454 5 45 +5, (85 + 14)[1),
o (1,1,2,2,45) 454 3,45 + 3, 85 + 10)[1]).
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9 f>3,v,_1 justright

Assume f >3 and vy_; is just right. Recall from Proposition 7.3 that
Va=ep+er—ey, VUr_j=e1+-+efp—er_q.

First, we consider cases (2b) and (2c) in Proposition 7.3.

Lemma 9.1 If there exists |vj| > 3 forsome 2 < j < f —1, then f =n + 3.

Recall that in this case f = j +2 =5 or 6 by Proposition 7.3(2b)—(2c).

Proof of Lemma 9.1 By Lemma 5.2, v; and vy are f—blocked, since vF_q is
unbreakable. Therefore, vy_; is f-blocked by Lemma 5.5, since it neighbors vy
and v;. Because G(Sy) is connected, any G(Sy) is also connected for g > f". So there
are no gappy vectors by Lemma 4.30. By Lemma 5.6, v; is f-blocked for i < f —2.
It remains only to be shown that vs_, = v; is f-blocked, but this follows from
Lemma 5.5 and the fact that it neighbors v2 and vy_;, both of which are f—blocked
but do not neighbor each other. a

From now on in this section, we assume |v;| =2 for 2 <i < f — 1, ie case (2a) in
Proposition 7.3.

Lemma 9.2 The vector vy is just right. Furthermore:
(1) If f =4, then |vs| € {3,4,6}.
(2) If f =5, then |vg| € {3,4,5}.
(3) If f > 5, then |vriq| € {3.4}.

Proof The only vectors of norm at least 3 in Sy are vy and vy_q, so the only
possible gappy indices for vy are 1 and f —2. However, 1 cannot be a gappy index
because then either (vs4,v1) = —1 or (vs4q,v2) = 2, contradicting Lemma 5.2
or Lemma 4.18, and f —2 cannot be a gappy index because then (vsy,vr) = —1,
contradicting Lemma 5.2. Therefore, vy 1 is just right.

Let j = minsupp vy ;. To avoid pairing with vy and vy, either j =0 or 1 <j < f.
When f =4, we get j €{0,2,3} and |vs| € {3,4,6}. When f >4, j £ 0 because
otherwise (vs_1.vr41) = f —3 > 1, contradicting Lemma 4.18. So 1 < j < f.
Since (vf_j,vrqq) = f—2—j <1, wehave j > f—3. If j = f — 3, then
(VfF—3;Vf_4,Vf—2,Vr41) is a claw unless f = 5. Therefore, j is either /' —1 or
f —2,unless f =5 in which case j canbe f —3. |
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Lemma9.3 If f =4 and |vs|=6,0or f =5 and |vg| =5, then f +1=n+3.

Proof In either case, G(Sy41) is connected, so vs 5 is just right by Lemma 4.30.
Since (Vfi2,Vp41) <1 and vy yp ~ vy, we get minsuppvsy, € {f — 1, f +1}.
If minsuppvsy, = f — 1, then we have a heavy triple (vr_j,vr41,vr42). If
minsupp vy 4, = f + 1, then one obtains the claw (vry1:v2,Vr_1,Vr42). O

Now, assume we are not in the above two cases, ie

(17) log 41| € {3, 4}

Then G(Sf41) is disconnected. Let s > f + 1 be the smallest index with |vg| > 3.
Note that such an index must exist, since otherwise @(S ) would be disconnected,
contradicting Corollary 3.3.

Lemma 9.4 The only possible ( f+1)—open vectors are vy_,, Vy_y and vfy.

Proof Since vs_; is unbreakable, by Lemma 5.2 vy and vy are f-blocked. As the
statement is obvious for f =4, we may assume f > 4 without loss of generality. Since
[vi|=2for3<j < f—2,v;is f-blocked for 3 < j < f —2 by Definition 5.3(3)—
(4) and Lemma 5.5. The following shows v, is (f +1)-blocked. Suppose v; ~ v,
for some j > f + 1. If 2 ¢ suppv;, then v; ~ vy implies 0,1 € suppv;, which
contradicts |(vj,vz)| < 1. If 2 € suppv;, then {2,3,..., f —2} C suppv; because
none of 2,..., f —3 can be a gappy index. We also have f —1 € suppv;, because
otherwise (vj,vr_1) > f —3 > 1. Since |vs| =2, f —1 is not a gappy index, so
S €supp;. To satisfy (17) and [(vr1q,v;)| <1, it must be the case that [vs ] =3,
but this results in a heavy triangle (vs_1,vf41,0;). |

Lemma 9.5 If vy is just right, then s = f + 2. Furthermore, either |vs4 | =4 and
[vF4o| =4, 0r |vryq| =3 and |vs4,| = 5. Ineither case, f +2=n+3.

Proof Since |vg| > 3, we have j := minsupp vy <s— 1. By assumption, |vsy,| =
ce=|vg_1|=2.1f j > f+2, we would have aclaw (v;; v, —1,Vj41,vs). If j = f 41,
we would have a claw (vVf11:Vf42,Vs5,Vf_1 OF Vr_5). Since (vs,vr) = 0, in fact
J < f.Inparticular, vy ~vryq. By (17), vy 4 hasexactly one smaller neighbor, which
is either vs_y or vy_,. In either case, this is not a neighbor of vs —in the first case,
this would form a heavy triple, and in the second, it would make (vs,vs41) >2. To
avoid a claw (Vs 41: Vs, Vf 42, Vf—1 OF Vy_5), we musthave s = f+2. By Lemma 9.4,
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minsuppvy4o € {f — 1, f —2}. By (17), minsuppvsyg € {f — 1, f —2}. As we
showed earlier in this paragraph, the smaller neighbor of vy is not adjacent to vs 5,
SO Minsupp vs 1, 7 minsupp vy 4. The conclusion about vy, | follows.

To see vy, is the last standard basis vector, note that G(Sy5) is connected. By
Lemma 4.30, vy 3 is just right. Since |vg4,| > 4 and (vrio,vr43) <1, we see
|vry3] €42,3,4}. Since vy 3~ vy, we have vr i3 # 4. In G(Sr4,), there is a path
containing 4 vertices vs_o,Vf11,Vf42,Vf—1. Here vy 5, v are the two ends,
and vy 1, vr 4o are in the interior. Since |vf 43| € {2, 3}, vy 3 is adjacent to exactly
one of vy and vryo, and it does not neighbor vs_, or vy_j. So we get a claw
centered at the neighbor of vy 3. |

Lemma 9.6 If v is gappy, then f =4, |vs| =4, and
Vg =extes+- - +es—1—¢es.

Furthermore, if n +3 > s, then |vs41| =3, and |v;| =2 forall j > s+ 1.

Proof The possible gappy indices for vs are 1, f and f —2. However, 1 (resp. )
cannot be a gappy index, because otherwise (vg,v1) = —1 (resp. (vs,vr) = —1) or
(vs,v2) =2 (resp. (vs,vr41) > 2). Therefore,

Vs =ef _op+ej+ - +es—1—¢

for f < j <s.Wehave vg~vs_5 and vg~vy_y. If [ur 1| =3,then vr | ~vr_q,50
either (Vf_1:v1,Vr41,Vs) is aclaw, or (vy_1,Vr4q,vy) is a heavy triple. Therefore,
[vrpil =4, and vy ~vp . If j > f 4+ 1, then (vg,vr 5, Vf41,...,V;,V5) is
a cycle of length > 4. Therefore, j = f + 1, and vs ~ vr1y. To avoid a claw
(Vf—2;Vf_3,Vf41,Vs), we must have f =4 and j =5.

Since vy _y ~ vy, vs and va ~ vy, Vs, We get that vy and vy are both s—blocked
by Lemma 5.5 and Definition 5.3(1)—(2), hence vy is s—blocked by Lemma 5.5 and
Definition 5.3(1). Lemma 5.5 and Definition 5.3(1) and (3) can further imply that v,
is s—blocked for f 4+ 1< j <s—1. Thus, vs_; is the only s—open vector, and the
result follows from Lemma 5.9. O

Summarizing, we have:

Proposition 9.7 Suppose that f >3 and vy_, is just right. Then |vs_| = f —1,
and one of the following holds (other than vy in case (le), all vectors are just right):
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() |vjl=2for2<j<f—1.
(a) f=4,n=2, |vs|=6.
(b) f=5 n=3, |ve|] =5.
© n=f—1, |lvry1| =3, lvrpa| =5.
d) n=f-1 |vppl =4, lvrpa] =4
(e) f =4, |vs|=4, |vj|=2for5<j<sorj>s+1, |vg4+1]|=3,and

Vg =¢€r+e5+---+e5_1—és.

2) f=5n=2,|v3|=4.
3) f=6,n=3,|v3| =2, |va| =3.

The corresponding changemakers are
e (1,1,2,3,3,10),
e (1,1,2,2,5,5,14),
o (11,2011 25 43,254+ 3,45 4+ 6,85 + 14),
o (11,2011 25 43,25 4+3, 45 + 8, 85 + 14),
e (1,1,2,3,3,8,81 85 + 10, (85 + 18)[]),
e (1,1,2,4,7,7),
o (1,1,2,2,4,9,9).

10 f >3, v, tight
In this section, we assume f >3 and vy _1 is tight. By Proposition 7.3, v =eg+e1—e2
and |v;j| =2 for 2 < j < f —1. Since (vr_1,v2) =2 =|va]| -1,

(18) e2=¢€r_1 and Az <Afr_,4

by Lemmas 4.14 and 4.17. Since the left endpoint of Ay_; is x4 (which is only

contained in Ay, Ar_; and Ar), A2 and Ay_; must share the right endpoint.

Lemma 10.1 The vector vy_; is f—blocked. For j > f, we have [(vj,vr_1)| €
{0, |vj| —2}. The only possible f—open vectors are vy, vVf_p and vy.
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Proof Suppose for contradiction that v; ~ vy_; for some j > f. Since the left
endpoint of As_y is xx, A; cannot share its left endpoint with Az_. Since j > f and
(vi,vr_1) #0, we get |vj| > 3. Since z; # z5 (Corollary 4.19) and Ay < Af_y, A;
does not share its right endpoint with A¢_. Thus, A; T Ay_;. Since the left endpoint
of Ar_j is %, A; is distant from Aq, so (vj,v1) = 0. Since €3 = €r_;, we have
(vji,v2) = (vj,vr_1) = £1. This implies suppv; N{0,1,2} # &, so (vj,vr_1) > 0.
Hence, (vj,v2) = (v;j,vy_1) = 1. However, if (vj,v2) =1, using (v;,v1) =0 we
get 0,1,2 € suppv; and (v;,vs_1) > 3, a contradiction. Thus, for all j > f, we have
vj ~ vr_1, and immediately [(v;,vs_1)| € {0, |v;| —2} by Lemma 4.14.

Since |vi|=2for2<i < f—1, v; is f-blocked for 3 <i < f —2 by Lemma 5.5.
When 3 < f —1, by Definition 5.3(1) and (4) v -1 and vz are f-blocking neighbors
of vp. By Lemma 5.5, vy is f-blocked. When 3 < f —2, v3 is also f-blocked by
Lemma 5.5, since v, and v4 are f-blocking neighbors. |

Definition 10.2 Vi :=suppv; N{0,1,..., f}.

Lemma 103 Ve ={1,2,....f =2, f},Vrio={f -2} or@,and V; = & for
j>f+2.

Proof Suppose j > f and V; # @. Then minsuppv; € {0,1, f =2, f — 1} by
Lemma 10.1 and the parity condition (Lemma 3.8). We will discuss each of the four
possibilities of minsupp v;. Since |v1| = |vs| = 2, either 0 or f — 1 is not a gappy
index. Since |vi| =2 for 2 <i < f —1,no i is a gappy index for 2 <i < f —2.
The following shows 1 is not a gappy index of v;. For contradiction, suppose 1 €
suppv; and 2 ¢ suppv;. Since [(v;,v2)| <1, 0 ¢ suppv;. Since (v;,v2) =1, by
Lemma 4.18 and (18), €; = —e3 = —€7_;. Since (vj,v1) = —1, A; has x¢ as its
left endpoint, so z; € Ay_;. However, since (v;,vr) = (v;,v1) = —1 (mod 2), we
see suppv; N{f —1, f} ={f},s0 (vj,vr_1) > 0, contradicting z; € A¢_; and
€;j = —€y_1. Thus, the only possible gappy index in {0, 1,..., f —1}is f —2.

If minsuppv; =0,then 0,1,2,..., f —2 €suppv;, and (v;,v2) =1,50 €; = —€3
and A; T A2 by Lemma 4.18. However, since (v;,vr_1) > f —1 > 3, we have that
€j = €5_1, contradicting (18).

If minsuppv; = f—1, then (v;,vy_;) =—1. By Lemma 10.1, [{v;,vr_1)|=]v;|-2,
so |vj| =3, A; M Ay_y and €; = —€y_,. However, V; = {f — 1, f} by the parity
condition, so by Lemma 4.9, j = f 4+ 1. Now vryj = —eryq +er +er_q, 50
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Vr41 + vp_y is irreducible by Lemma 4.6. Since (vsyq,v1) =0, Ar4; does not
contain xg, s0 T([Afy1]) = —[As4q]. Since Aryy M Ar_; and €51 = —€p_q, up
to applying 7, vy_; +vr4; becomes [Ay_;]—[Ar41], which is a signed sum of two
distant intervals, contradicting the irreducibility of vs_1 +vryq.

If minsuppv; = 1, then 1,2,..., f —2 € suppv;. Since (vj,vr) = (vj,v1) =
—1 (mod 2) and f —1 is not a gappy index, f —1 ¢ suppv; and f € suppv;. Hence,
(vi,vr—1)= f—=2.ByLemma 10.1, (v;,vr_1) =|v;|—2, 50 |vj| = f. By Lemma4.9,
Jj—1,j €suppv;. So |v;|= f impliesthat j = f+1and Vr={1,2,..., /=2, f}.
If minsuppv; = f —2, then (v;,vr) = (vj,v1) = 0. Suppose (v;,vr_1) =0. Then
zj ¢ Af_q,s0 zj is to the right of z> by (18). However, since vz ~ v3 and vz ~vs_g
when f > 4, A3 is consecutive to A, on the left, so A43,..., Af_» (all of norm 2)
lie inside Af_; to the left of z5. This contradicts vs_, ~ v; when f > 4. When
f = 4, the contradiction instead comes via a similar argument from the fact that
vj ~ v but neither z; € Ar_; nor v; ~ vy_;. The above shows (v;,vs_1) # 0,
hence f —1 ¢ suppv;. Since (vj,vr) =0, we have V; ={ f —2}.

Since f € supp vy, we may conclude that Vyy ={1,2,..., f =2, f}.

For j > f +1, the above shows either V; =@ or V; ={f =2}. If V; ={f —2}, then
since |vj| —2 = (vj,vr_1) =1, we have that |v;| =3 and v; = —e; +e;—1 +es_5.
Since (vj,vr_1) >0 and (vf41,vr—1) >0, using Lemma 10.1 we have €; = €r_
and €71 =¢€f_;. Unless j = f +2 we have (v;,vr4q) =1, thus A; § Ary; and
€j = —€f41, a contradiction. |

It follows from Lemma 10.3 that

(19) Vppr=er+---tefoter—efqg
and that
Vfya =€fy1—€fq4p OF ef pteri)—efys.
Proposition 10.4 We have |v;| =2 for j > f + 2.
Proof By (19), Vfi1 ~ V1, Vf and 80 z¢ g is the leftmost vertex with norm > 3. In

particular, zy 1 € Ay_;. We also know that z> is the rightmost vertex in A¢_; with
norm > 3 from the beginning of this section. Thus, Ar 1 C Af_q.

By Lemma 10.3, Vryp ={f —2} or @. If Vs, = @, then vr 5 ~vr . Since
Afy1 CAp_y and z2 € Ay_q isto therightof Afyq, Apy o CAp_y. If Vigp =
{f—2}, weclaimthat zy , € Ar_;. When f >4, since v3 ~vy_;, v3~v3 and A
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shares the right endpoint with Ay _;, we see that A3 must abut A5 on its left. Then
since Vg o ~Vf o ~---~v3 and zf, is the unique element with norm > 3 in the
intervals Af+2, Af_o,..., As, it follows that z¢ , must be to the left of z>. When
Jf =4, this still holds because vsi, ~vr_y and vy, ~va. Hence zpp € Ap_;.
In either case, since zp € Af_; is to the right of z¢ 45, we get Ay o C Af_y.

Forany j > f +2, V; = @ by Lemma 10.3. Since (v;,vs_;) =0, Lemma 4.14
implies that either A; is distant from A¢_; or |v;| =2.If A; and Ar_; are distant,
by the result in the first paragraph in this proof Ay C Ay and v; ~ vy 1. When
Jf >4, the argument in the second paragraph shows that As_, C Ar_;, and when
S =4, weget Ar_, = Ay < Ar_; by (18). So we also have v; »vr_,. If |vj| =2,
then (v, vr41) = (vj,vr—2) = 0,50 v; » Vry1,Vr_». Thus, vryy and vr_, are
(f +2)-blocked. Since (vi,v;) =0 forall i > f + 2, we get that v; and vy are
(f+2)-blocked. The result follows from Lemmas 10.1 and 5.7. a

The corresponding changemakers are
o (1,1,28FU 25 45 25+ 5, (45 + 8)]),
o (1,1,20%1U 25 4+ 5 25 4+5, 45 + 8, (45 + 10)17]) for r > 0.

11 f=3

In this case, ag > 3, vy = —ep + €1 + 2eg is tight by Proposition 7.2, and the left
endpoint of Ap is X.

Lemma 11.1 If A, contains m distinct vertices X;,, Xj,, ..., Xj,, of norm > 3, then
S contains at least m — 1 vectors v; such that j >3, z; € A and V; # &, where V;
is as defined in Definition 10.2.

Proof Let A = A(p,q), A be the quotient of A by the sublattice spanned by vectors
of norm 2, and let 7: A — A be the quotient map. By the definition of t = ¢ in
Definition 3.6, we have

(20) ToT = —TI.

Since S spans A, it follows from Proposition 4.13 and (20) that {Jt([Ai])};.’;rl3 spans A.

In particular, x;,, X;,, ..., X;, are all linear combinations of the 7 ([A4;]). Hence there

m

are at least m — 1 intervals other than A, containing one x;,. Since Aj is the only

Algebraic € Geometric Topology, Volume 20 (2020)



The prism manifold realization problem 803

possibly breakable interval, Corollary 4.19 implies that at least m — 1 vertices among

Xiy» Xiys - - -+ Xi,, are each contained in an interval A; for some j > 3. For each
zj € Ay, we get (vj,v2) #0 and V; # @. O
Lemma 11.2 We have v4 = —e4 +e3+¢e3 orvy = —eq4 +e3+ey. Forall j =5,

Vi =@ or {0, 1} or {2,3}.

Proof Takeany j >4. Suppose 0, 1 ¢ V;. Then Lemma 4.11 implies that (v;, v3) =0,
soVi=a orV; ={2,3}.

Suppose 0 € V;. Then 1 € V; because |vi| =2 implies 0 cannot be a gappy index,
so V; =1{0,1,2,3} or {0,1} by Lemma 4.11. However, if V; = {0, 1,2, 3}, then,
using Lemma 4.14, (v;,v2) =2 implies z; € A, and |v;| =3 or 4, which contradicts
V; =1{0,1,2,3}. Hence, V; = {0, 1}.

Suppose 0 ¢ V; and 1 € V;. Then Lemma 4.11 implies that V; = {1,3}. Since
(vj,v1) =—1, x¢ is the left endpoint of A;, and z; = xo € A>. Hence, |(v;,v2)| =
|vj| =2, and |v;| = 3, which only happens when j = 4 by Lemma 4.9.

Since 3 € suppv4 by Lemma 4.9, vy = —e4 +e3+e3 or v4 = —eq4 +e3+ €. O

Lemma 11.3 There is at most one j > 4 such that V; = {2,3}. If V; = {2,3}, then
AjTAz and € =€3. Sovj ~ vy and z; ¢ A;.

Proof Suppose V; = {2,3}. Since (vj,v2) = —1, either A; ¥ A> and €; = €2, or
Azx A, [vj| =3 and €; = —ey. If j > 4, the latter is impossible because |v;| > 4
by Lemma 4.9. If j = 4 and A, M Ay4, notice that A4 does not contain xo since
(vg,v1) =0, 50 7([44]) = —[A4]. Up to applying t, v4 4+ v becomes ([A2] —[A4]),
which is reducible, contradicting Lemma 4.6.

Since j =min{i | |z;| > 3 and z; ¢ A}, there is at most one such ;. m|
Lemma 114 If V; =@ for 4 < j <m, then |vj| =2 for 4 < j <m.

Proof By assumption, vy, va, v3 are (4, m)-blocked. Unless m = 4 (the lemma is
vacuously true when m =4), |vs| =2 and vs ~v4 by Lemma4.9. If vy =—es+e3+ez,
then v, and vs are (5, m)-blocking neighbors of v4 by Definition 5.3(1) and (4), so
vq is (5,m)-blocked by Lemma 5.5. If v4 = —eq + €3 + €1, then vg ~ v1, hence
Z4 = Xg, and v; » v4 unless |v;| =2 or z; € Ap. If |v;| = 2, then v; ~ vq fori > 5.
For 5 <i <m, since (vj, v2) =0 we get z; ¢ A. Hence, vy4 is also (5, m)-blocked
in the case vq4 = —ey4 + e3 + e1. The result follows from Lemma 5.7. O
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Lemma 11.5 If v4 = —e4 + e3 + e1, then z4 = x¢, and A, contains at least two
vertices with norm > 3. Moreover, €x = €4 and v, ~ V4.

Proof We have (v4,v1) # 0, so A4 is an interval containing x¢ € A, z4 = X¢, and
|vg] = ap = 3. In particular, A and A4 are not consecutive. Since |v2| =6 > ag, A2
contains another vertex with norm > 3. Since (v4, v2) =1 = |v4| —2, we get €3 = €4,
AzmA4 and vy ~ vg4. O

Lemma 11.6 If V; = {0, 1} for some j > 4, then we must have j =5 and vs =
—es5+e4+e1+ep.

Proof Suppose V; = {0, 1} for some j > 4. Then (v;,v2) =3 and €¢; = €. By
Lemma 4.7, v; — vy is irreducible, so A; < A>. Hence |(vj,v2)| = |vj| —1, and
|vj| = 4. Depending on whether v4 = —e4 4+ e3 + €1 or v4 = —e4 + €3 + €3, we can
use Lemma 11.5 or Lemma 11.3 to conclude that €; = € = €4. So (v;,v4) <0 by
Lemma 4.18, and hence 4 € supp v;. Since |v;| = 4, Lemma 4.9 implies that v; must

be vs. O
First, we consider the case where v4 = —e4q + €3 + ¢. Lemma 11.3 implies that
Az T A4. We split the case v4 = —e4 + €3 + e3 into two subcases according to whether

A2 contains multiple high norm vertices.
Lemma 11.7 Suppose vq4 = —eq + e3+ e and ag = 6. Then |v;| =2 forall i > 4.

Proof Since ag = |xo| = |v2|, Xxo is the only vertex of norm > 3 in A,. By
Lemmas 11.2and 11.3, vs =—e5+e4 or —e5+e4+e1+eg. If v5=—es5+e4+e1+ep,
then (vs, v2) = 3, contradicting z5 ¢ A, . Therefore, vs = —e5 +e4. By Lemmas 11.2,
11.3 and 11.6, V; = & for all j > 4. The result follows from Lemma 11.4. O

Lemma 11.8 Suppose v4 = —eq4+e3+e and ag <6. Then, v5s =—es+eq4+e1+e€p,
and |v;| =2 forall i > 5, except possibly one vy, = —epm + em—1+ -+ e4.

Proof Since |xo| < |vz], there are at least 2 vertices of norm > 3 in A,. By
Lemma 11.3, z4 ¢ A. Therefore, by Lemma 11.1, there exists V; # @& for some
i >4. By Lemmas 11.2, 11.3 and 11.6, v5 = —e5 +e4 + €1 +¢ep, and V; = & for all
i > 5. This implies v, is 5-blocked by Corollary 4.20. Observe that v4 ~ vs. Since
(vs,v2) =3, we have z5 € A>. By Lemma 11.3, Ay T A4, 50 z4 ¢ Az. If |v;| =2 for
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some i > 6, then (v;,v5) =0, so vs ~ v;. If |v;| > 3, since z5 € A and A; T A4,
v5 ~ v; would imply that z; € A,. However, for i > 6, V; = @ and (v;, v2) =0, so
zi ¢ Ap. Thus, vs is 6-blocked.

Let m > 5 be the minimal index such that |v,,| > 3, if such m exists. If m = 6,
Vin = @ implies vg = —eg + €5 + e4. Assume m > 6; then vs is (m—1)—blocked.
By Lemma 5.5, v; is (m—1)-blocked for any 5 <i < m — 1. Thus, min supp v,, = 4.
Since vy, ~ vs, 4 is not a gappy index of v,,. Since |v;| =2 for 5 <i <m, i is not
a gappy index for 5 <i <m — 1. Hence, vy, is just right.

Since v, and vy, are m-blocking neighbors of v4 by Definition 5.3(1)—(2), v4 is
m-blocked by Lemma 5.5. We claim v,,—; is also m—blocked. Suppose v; ~ v;;—1
for some i > m, then |v;| > 3. Observe that v; is connected to vs through a path of
norm-2 vectors (vV; ~ Up—1 ~ Um—p ~-+-~ Vs5). Since z5 € Ap and A T A4, we must
have z; € A,, which contradicts V; = @ and (v;, v2) = 0. Thus, v; is m-blocked for
all i <m. By Lemma 5.7, |v;| =2 forall i >m. a

Next, we consider the case where v4 = —e4 +e3 + 7.

Lemma 11.9 Suppose vq4 = —eq+e3+ey. If v5=—es5+eqs+e1+eg, then |v;| =2
forall i > 5.

Proof Assume vs = —e5 + e4 +e1 +e9. By Lemmas 11.2 and 11.6, V; = @ or
{2,3} fori > 5. If V; ={2,3}, then by Lemma 11.3, v; ~ v, ¢, = €5 and z; ¢ A;.
Since (vs,v3) =3 =|vs|—1, A2 and As share the right endpoint and €5 = €5, so
v; ~ V5. Since z; ¢ Ay and z4 = xo (which follows from Lemma 11.5), v; ~ vq4.
Since (v;,v4) = 0, we have 4 € suppv;. Since v; ~ vs, we have 5 ¢ suppv; and
(vi,vs5) =1, so €5 = —¢;. However, this contradicts €5 =€ and €; =¢,. Thus, V; =&
for i > 5. Therefore, v;, vy and v3 are 5-blocked by Corollary 4.20. For i > 5, since
(vi,v2) =0, z; ¢ Ay. Since z4 = x¢, we get vq ~ v; for i > 5. Since vy, v2, V3
and vq are 5-blocked, |v;| =2 for all i > 5 by Lemma 5.7. |

Lemma 11.10 Suppose vq4 = —eq + e3 + e1. If there exists Vi, = {2,3}, then
Um=—€m+em_1+---+ezand |v;| =2 forall i >4,i #m.

Proof By Lemmas 11.2, 11.3, 11.6 and 119, V; = @ for all i > 4, i #* m. By
Lemma 11.4, |v;| =2 for 4 <i <m. Hence, i is not a gappy index for 4 <i <m—1.
Recall that z4 = x¢ from Lemma 11.5. By Lemma 11.3, z,,, ¢ A3, S0 vy + v4, and
4 € supp vy, . Therefore, vy, = —ey +ep—1+ -+ €2.
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Since V; = @ for i > m, we get that vy, v, v3 are m-blocked. Take any 4 < j <m.
Observe that v; is connected to v4 through a path of norm-2 vectors, and recall that
Z4 = X, so each A; is contained in the interior of A. For any i > m, v; ~ v; unless
[vi| =2 or z; € Ay. If |v;| =2, we have (v;,v;) =0, so v; ~v;. If z; € A, then
(vi,v2) # 0, so V; # &, a contradiction. So v; is m—blocked for 4 < j <m. By
Lemma 5.7, |v;| =2 forall i > m. O

Proposition 11.11 When f = 3 and v is tight, one of the following holds:
(1) v4=—eq+es+eyand |v;j|=2 forall i >4.

2) vg=—eq+esz+ey, v5=—es5+eq+e;+eg and |vi| =2 forall i >5 except

possibly one vy, = —ey +epm—1+ -+ e4.
(B) va=—es+es3+e1, v5=—es+eqs+e1+egand |vj|=2 forall i >5.
(4) v4 = —eq+e3+ ey and |v;| =2 for all i > 4 except possibly one vy, =

—em +em—1 +---F ez

Proof When vqy = —e4 + €3 + €3 and ag = 6, item (1) holds by Lemma 11.7. When
v4 =—e4+e3+ep and ag <6, item (2) holds by Lemma 11.8. When vq4 =—e4+e3+e;
and V5 = {0, 1}, item (3) holds by Lemma 11.9. When vq4 = —eq4+e3+e; and V5 =&
or {2, 3}, item (4) holds by Lemma 11.10 if there exists V;,, = {2, 3}, or by Lemma 11.4
if there is no V3, = {2, 3}. |

The corresponding changemakers are
e (1,1,3,3,45) (45 +6)[1]) for s +1 >0,
s (1,1,3,3,6.861, (85 + 6)[1]),
e (1,1,3,3,4,68) for s > 0.

12 Determining p and ¢

Having classified all the (n+3)—dimensional D—type lattices which are changemaker
lattices, we now aim to concretely compute the pairs (p, ¢) for these lattices. More
precisely, we will give a list P~ of prism manifolds with the property that if positive
surgery on some knot in S3 results in a prism manifold P(p,q) with ¢ < 0, then
P(p,q) eP~.

Recall from Section 2 that a prism manifold P(p, g) is the boundary of a sharp 4—
manifold X(p,q) when g < 0. The homology group H»(X(p, q)) equipped with the
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inner product —Qx(,,4) becomes a lattice isomorphic to A(p,g). From the integers
ap,dai,...,dy in (10), we can recover p and g using (7).

Our strategy to determine p and ¢ is as follows. Let S ={v1, ..., v,+3} be the standard
basis for a changemaker lattice that is isomorphic to a D-type lattice. Convert S into a
vertex basis, denoted S* = {v{,..., v, 3}; that is, we need to do a change of basis to
convert S to a vertex basis; see the example below for instance. (Also, all the linear
transformations needed to change the standard bases corresponding to the changemaker
vectors to vertex bases are presented in Table 4, part 1.) Using the results of Section 4,
the a; will be recovered. We can then get the pair (p, g) using (7). The following
lemma helps to simplify some involved computations of continued fractions that we
will face. These properties are the first two items of [10, Lemma 9.5].

Lemma 12.1 For integers r,s,t > 2,

M [....rn2B8 e 7 =[....r=1,—(s+1),t—1,...]", and

Q) [....s.2H=[....s=1,—@¢+1)]".
Example 12.2 We illustrate how to obtain the pair (p, g) in the case when f =3,
vy is tight, and |v4| = 3 (cf Proposition 11.11(2)). We point out that the chosen

changemaker corresponds to the parameters t =0 and s > 1. Let S = {vy,...,vp+3}
denote the standard basis for the changemaker lattice L = (¢)~. One easily computes

o=(1,1,3,3,68""1 >0
From the pairing graph it follows that S is not a vertex basis. Taking
Uy = V2=V — U5 == Upt3,

we get that

S* ={v1,v3} U{v3,Un43,..., 05,04}
is indeed a vertex basis with norms given by the tuple
V*=(2,2,4,2"2 4.3) n=>2.

Using Lemma 12.1 together with (7), we get
16(n—1)+ 14
8n—1)+3
Observe that —g = 2(p + 4). Moreover, looking at the denominator of the right-hand

@1) 1 a—1,22 43 =
P

side of (21), we get that p = 3 (mod 8). Since n > 2, we have p > 11. The case in
the example is in Table 1, type 4 with r =2(n—1)+1, p=4r—1 and —g = 8r +6.
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range of parameters

type P(p,q) (p and r are always odd, p > 1)
1A P(p.—3(p*>=3p+4) p>7
1B P(p.—5(p*>—3p+4)) p=170r19 (mod22), p>22
2 P(P,— ! (r’p+ 1)) =—1 (mod4), r#-1,3,
|47 +2] p=2r—3 (mod 4r +2)
A P(p—o-(pH DY) =l
2r p=-—1(mod2r), p=>4r—1
B P(p—s D) rzs
2r p=r—4 (mod2r), p>3r—4
4 P(p—ym(@+12p+D) rA-3-LL
r

p=4r—1(mod2r?), p=>4r—1
s P(pmg s 0PpED) P £L
re=2r—1 p=2r—5(@modr>—2r—1), p>2r—>5

sporadic  P(11,-30), P(17,-31),
P(13,—47), P(23,—64)

Table 1: P, table of P(p,q) that are realizable, g < 0.

Similar computations for the D-type changemaker lattices give prism manifolds
P(p,q), so that up to reparametrization, each falls into one of the families in Table 1.
We shall denote the collection of these families by P~ . Here we divide the families
so that each changemaker vector corresponds to a unique family. The detailed corre-
spondence between the changemaker vectors and P(p, g) can be found in Table 4. It
should be noted that, as discussed in Section 2, the positive integer p is always odd.

13 Primitive/Seifert-fibered knots admitting prism manifold
surgeries

In the previous sections, we provided a list of changemaker vectors in Z"*t# whose
orthogonal complements are isomorphic to D—type lattices. This list gave rise to a
collection P~ of prism manifolds. Let o be a changemaker vector that corresponds to
P(p.q) € P~. We want find a knot K, C S3 on which some surgery yields P(p,q).
All known such knots are P/SF knots, which are classified in the forthcoming work of
Berge and Kang [2]; we outline their work here based on the preprint Berge shared
with us. To start, we need to recall some definitions.
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Definition 13.1 A Seifert-fibered 3—manifold is a 3—manifold together with a decom-
position into disjoint simple closed curves, called fibers, such that each fiber has a
tubular neighborhood that forms a standard fibered torus. A standard fibered torus
corresponding to a pair of coprime integers (m,n), with m positive, is the surface
bundle of the diffeomorphism of a disk given by rotation by an angle of 27zn/m, with
the natural fibering by circles. If m > 1, then the middle fiber is called singular.

Definition 13.2 Let H be a genus-two handlebody. A simple closed curve ¢ C dH is
primitive in H if H[c], the manifold obtained by adding a two-handle to H along c,
is a solid torus. A simple closed curve ¢ C dH is Seifert-fibered in H if H]c] is a
Seifert-fibered space.

Definition 13.3 Let X denote the genus-two Heegaard surface of the standard genus-
two Heegaard splitting of S3 = H Us H'. A knot K C S3 is called primitive/Seifert-
fibered, denoted P/SF, if it has a presentation as a simple closed curve on X such that
K is primitive in H’ and Seifert-fibered in H. The isotopy class in dv(K) of the
curves in dv(K) N X is called the surface slope of K with respect to . Below, we
will use y € Z to denote the surface slope.

P/SF knots are generalizations of doubly primitive knots (ie knots that can be isotoped
to lie on X and are primitive in both handlebodies H and H’) studied by Berge [1].
In [6], Dean studied the Dehn surgery on P/SF knots along their surface slopes. He
proved that the surface slope surgery on a P/SF knot results in either a Seifert-fibered
manifold or a connected sum of lens spaces [6, Proposition 2.3]. Also, Eudave Mufioz
proved that the latter case does not happen for hyperbolic P/SF knots [9, Theorem 4].

Berge and Kang, in [2], classified all P/SF knots. Furthermore, given a P/SF knot K,
they specified the indices of the singular fibers of the Seifert-fibered manifold obtained
from the surface slope surgery on K.

Recall that for a pair of relatively prime integers p > 1 and ¢, a prism manifold
P(p.q) is a Seifert-fibered manifold with base orbifold S? and three singular fibers
of index

(22) 2,2, p.
Using (2), if P(p, q) arises from the surface slope surgery on a P/SF knot, then

(23) y = surface slope = +4q.
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type  P(p.q)

range of parameters
(p and r are always odd, p > 1)

1A P(p.3(p?+3p+4)
1B P(p.5(p>+3p+4)

(X +2|< 2p-1))
3A P(p,g(p—l)(p 4))
3B P(p,% ~D(p—4)
4 P(p, ((2r+1)2p—1))

5P r)

sporadic  P(11,19), P(13,34)

p =5or3 (mod22)
r=—1(mod4), p=-2r+3 (mod4r+2)
p =1 (mod?2r)

p=r+4 (mod2r)

p=—4r +1 (mod 2r?)

r#1, =—2r+5 (modr?—2r—1)

Table 2: P, table of P(p,q) that are realizable, ¢ > 0.

The surface slope given in [2] is not necessarily positive, while we only consider

positive surgery. To get a knot with positive prism manifold surgery, we need to take

the mirror image of the Berge—Kang knot if the surface slope is negative. Suppose the

surface slope surgery on K results in P(p,q). Then p is the index of the singular
fiber with odd index, and ¢ satisfies (23). With a bit more work, we can determine the

sign of g. Since Berge and Kang’s paper [2] is not publicly available, we will omit the

prism manifold type

changemaker

braid word

3A (1,1,2,5,5)

(01+--011)°(01) 2

P@3,-14
( ) 5 (1,1,3,3,6) (030405020304010203)> (0102) 1°
((19, 3)—cable of T'(3,2))

2 (1,1,2,4,5,5) (01---013)°0102

P(11,—18) o s
3B (1,1,3,3,4,6) (0’1"'0'5) (010203)
3A (1,1,2,5.5.86))  (01---07)°% (07 01)?

P(8s +3,—(16s + 14)) 4 (1,1,3,3,6,80) (o ---013)%(01 -+~ 07)% 77

sz 1 spor

s=1

1,1,2,4,7,7) (o1

017) (0201) 2

Table 3: Prism manifolds arising from multiple changemaker vectors.
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vertex basis (with X, X4, omitted)

Prop” changemaker vector {x0,...,Xn}
9.7 (1,1,2,4,7, 7) {U4,—U3,U2}
(1,1,2,3,3,10) {v3, —vs, v2}
(1,1,2,2,4,9,9) {vs, —v4, —V2, —V3}
(17152a2a5»5714‘) {U4,_U6,—Uz,_v3}
(1,1,28+1 (2543)2] 45+6,85+14) {Vs+3, Us+5, —Vs+6,
—Vs42,...,—V2}
(1,1,26410 (2543)P) 4548, 85+14) {Us+3, Us+6, —Us+5,
—Vs42,...,—Va2}
(17 17 23 3» 35 83 S[S]a 8S+1O’ (8S+18)[t]) {U3, _v5+67 —V2, —VUs,..., _vS+57
—Us+75---5 _vS+t+6}
6.5 (1,1,1,1,2[S]), s>0 {va,V4,V5,...,V543}
(1,1,1,1,461 4542, (4s+6)) {V2, Vg4, —V4, ..., —Vsy3,
—Us45, 00 —Vrtsta)
104 (1,1,28H 25+5)21 (45+8)[]), {VUst5, ., Vigstas
t>0 Us+3—V[1,542] ~V[s+5,¢ +5+4]>
Us42,...,V02}
(1, 1,26+ (254-5)12]) {Vs43—V[1,542], Us42, - .- U2}
(1,1,28F1 (254+5)12 4548, (4s+10)1),  {v545, Vst 3—V[1 542]—V[s+5.54+145]5
t>0 Usht+5s -+ s Us46s Us 2,0 -0, V2
11.11 (1,1,3,3,4B] (4s+6)l1), s>0 V4, ., Vg3, V2—V1—V[4543]5
Us+4, -+, Vt4s+3
(1,1,3,3,6h), >0 {U2—V1, Vg, ..., Vsa3}
(1,1,3,3,4,68), 5>0 {V4, V2—V1—V[4 514 Us4ds - .- U}
(1,1,3,3,6,861 (8s+6)l1), s>0 {V2—V1—V[5 514]> Us4ds - - -, Vas
Us455 o5 Ut std)
8.1 (1,1,2,2,281 2s5+3)2), >0 {Vs44, V3, Vg, - -0, Vg3, —V[2.543])

(1,1,2, 4,481 (45+5)2 (8s+14)l1)

(1,1,2,2, 451 (45+3)21 (8s+10)[]),
s >0

(1,1,2,2, 321 100)

{Vs4a, —V2,V3,..., Vsy3,
Vg6 -+ Vitst5)
{Us+4+v3v —V3, —V2, —V4,
ceos TUs43, —Ust6s - - s —Vrts+5)
{va+v3, —v3, —v2, —Vg, ..., —Vs45}

Table 4: D-type changemakers vs prism manifolds, 1.

process of determining the sign here. Instead, we directly give the list 2T of realizable

P(p,q) with g > 0 in Table 2 without proof, and will justify this list in future work.

Unlike Table 1, we do not have the notion of changemaker vector here. We divide these

Algebraic € Geometric Topology, Volume 20 (2020)
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Prop" vertex norms {ay, ...,a,} prism manifold parameters P~ type
9.7 {4,4,3} p=11, —q=730 spor
{3,6,3} p=17, —q=31 spor
{5,3,3,2} p=13, —q=47 spor
{4,5,3,2} p=23 —q=064 spor
{s+3,3,5,21 31 p=225+39, —q=225%+755+64 1B
{s+3.4,4,261 3} p=22s+41, —q=225>+79s+71 1B
{3.54+3,3,4,261 3 2=y p =272 4272 4 4r —1, 4
—q=Qr+1)*t+1)+8r +6,
r=—2s+5)
6.5  {2,3,2b-1 p=2s+1, —gq=s+1, r=-1 5
2,543,520 3 201y p =42 _64 (P2 —2r — 1)1, 5
—q=r*(t+1)+2r—1,
r=—02s+3)
104 {s+4,206-1 4 2ls] 3y p=Qt+1)Q2s+4)—1, 3A
—q = (s+2)(2t + 1)(2s +4) +3),
r=2t+1
{s +6,20 3} p=2s+3—q=2s>+11s+ 14, 3A
r=1
{s 44,3271 3 2ls] 31 p=Q2t+3)(2s+5)—4, 3B
—q = (25 +5)((2t + 3)s + 5t + 6),
r=2t+3

Table 4: D-type changemakers vs prism manifolds, II.

prism manifolds into families in such a way that it reflects the “symmetry” between
the two tables, noting that a knot may correspond to more than one family in Table 2.
We take P =P~ UPT.

13.1 Manifolds corresponding to distinct changemaker vectors

As we mentioned before, the families in Table 1 are divided so that every changemaker
vector corresponds to a unique family. However, a lattice A(p, g) may be isomorphic to
the orthogonal complements of different changemaker vectors. Thus the corresponding
prism manifold P(p, q) lies in different families, and not just one. In Table 3, we list
all such P(p, q). Each of these prism manifolds is contained in two families, except
that P(11,—30) is contained in three families. If a P/SF knot admits a surgery to such

Algebraic € Geometric Topology, Volume 20 (2020)



The prism manifold realization problem 813

Prop" vertex norms {ay, ...,d,} prism manifold parameters P~ type
1111 {3,271 5 543 2011y p=@rr=2r—1)r+2r-5, 5
—q =r%4+2r—1, r=25+3
{6,3, 20—y p=2t+1, —q=9+5 r=3 5
{3,321 4y p=06s+5 —q=95+9, r=2s+3 3B
(4,2=10 4 3 g4 2 201y p=2s2r44r—1 4
—q=Qr+1)%*+8r+6, r=2s+1
8.1 {s+3,20+1 3} p=25+5 —q=25>4+Ts+7 1A
{s+3,3,4,2651 4 2l=11 p = 1615+30r+8s+11, 2
—q = 165> +5615+85%+245+49¢ + 18,
r=4s+7
{s+3,2,3,3,2=10 4 2l=1 = 16154181 +85+5, 2
—q = 16t5* +40t5+ 85> +25¢ +165+7,
r=—4s-5
{3,2,3,5,20-1 p=18t4+5 —q=25t+7, r=-5 2

Table 4: D-type changemakers vs prism manifolds, III.

a P(p,q), we require extra information in order to detect the changemaker vector that
corresponds to this knot. The information we will collect is the Alexander polynomial.

Let o be a changemaker vector such that A(p, g) = (o). Assume that o corresponds
to a knot K admitting a surgery to P(p,q). Using Lemma 2.10, we can compute the
Alexander polynomial Ag (7). We will explicitly exhibit a P/SF knot Ky admitting
a surgery to P(p,q), and directly compute Ag,(T") to check that it is equal to the
predicted Alexander polynomial Ag (7). So K¢ matches with o.

13.2 Proofs of the main results
This subsection is devoted to the proof of Theorems 1.2 and 1.6.

Proof of Theorem 1.6 If A(p,q) is isomorphic to a changemaker lattice L then it
belongs to the families classified in Sections 6-11. As in Section 12, we can find a
pair (p’,q’) such that L is isomorphic to A(p’,q’), and P(p’.q’) is in P~. Using
Proposition 3.12, the result follows. a

Table 4 parts I, I and III collect all results, matching each of the changemakers deduced
from Propositions 6.5, 8.1, 9.7, 10.4 and 11.11 to one pair (p,q) € P~ . In all families
of changemaker vectors, the parameters s and ¢ are assumed to be nonnegative, unless
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otherwise indicated. In Table 4, v[, 5] means vq +vg+1+---+vp for a <b. All vertex
bases are presented in the form {xg, x1,...,Xx,}. A superscript [—1] at an element
in the sequence of vertex norms means that the sequence is truncated just before the
element preceding it. For example, the sequence {3, s+ 3, 3, 4, 2ls1 3 olt _1]} becomes
{3,5+3,3,4,2651y when 1 = 0.

Proof of Theorem 1.2 It follows from the discussion in this and the last subsections
together with Theorem 1.6 that if P(p,q) = Sfm(K), then P(p,q) isin P~, and
Ak (t) is determined by P(p, g) and the family containing it. By [19], the knot Floer
homology group of K is also determined. O
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