Volume 20, issue 2 (2020)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 24
Issue 9, 4731–5219
Issue 8, 4139–4730
Issue 7, 3571–4137
Issue 6, 2971–3570
Issue 5, 2389–2970
Issue 4, 1809–2387
Issue 3, 1225–1808
Issue 2, 595–1223
Issue 1, 1–594

Volume 23, 9 issues

Volume 22, 8 issues

Volume 21, 7 issues

Volume 20, 7 issues

Volume 19, 7 issues

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the Journal
Editorial Board
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN 1472-2739 (online)
ISSN 1472-2747 (print)
Author Index
To Appear
 
Other MSP Journals
Hofer–Zehnder capacity and Bruhat graph

Alexander Caviedes Castro

Algebraic & Geometric Topology 20 (2020) 565–600
Bibliography
1 K Behrend, Gromov–Witten invariants in algebraic geometry, Invent. Math. 127 (1997) 601 MR1431140
2 I N Bernstein, I M Gelfand, S I Gelfand, Schubert cells, and the cohomology of the spaces G∕P, Uspehi Mat. Nauk 28 (1973) 3 MR0429933
3 A Caviedes Castro, Upper bound for the Gromov width of flag manifolds, J. Symplectic Geom. 13 (2015) 745 MR3480056
4 I Ekeland, H Hofer, Symplectic topology and Hamiltonian dynamics, Math. Z. 200 (1989) 355 MR978597
5 I Ekeland, H Hofer, Symplectic topology and Hamiltonian dynamics, II, Math. Z. 203 (1990) 553 MR1044064
6 F Farnoud, O Milenkovic, Sorting of permutations by cost-constrained transpositions, IEEE Trans. Inform. Theory 58 (2012) 3 MR2907698
7 A Floer, H Hofer, C Viterbo, The Weinstein conjecture in P × l, Math. Z. 203 (1990) 469 MR1038712
8 W Fulton, R Pandharipande, Notes on stable maps and quantum cohomology, from: "Algebraic geometry" (editors J Kollár, R Lazarsfeld, D R Morrison), Proc. Sympos. Pure Math. 62, Amer. Math. Soc. (1997) 45 MR1492534
9 W Fulton, C Woodward, On the quantum product of Schubert classes, J. Algebraic Geom. 13 (2004) 641 MR2072765
10 M Gromov, Pseudo holomorphic curves in symplectic manifolds, Invent. Math. 82 (1985) 307 MR809718
11 V Guillemin, Moment maps and combinatorial invariants of Hamiltonian Tn–spaces, 122, Birkhäuser (1994) MR1301331
12 V Guillemin, E Lerman, S Sternberg, Symplectic fibrations and multiplicity diagrams, Cambridge Univ. Press (1996) MR1414677
13 H Hofer, C Viterbo, The Weinstein conjecture in the presence of holomorphic spheres, Comm. Pure Appl. Math. 45 (1992) 583 MR1162367
14 H Hofer, E Zehnder, A new capacity for symplectic manifolds, from: "Analysis, et cetera" (editors P H Rabinowitz, E Zehnder), Academic (1990) 405 MR1039354
15 T Hwang, D Y Suh, Symplectic capacities from Hamiltonian circle actions, J. Symplectic Geom. 15 (2017) 785 MR3696591
16 A A Kirillov, Lectures on the orbit method, 64, Amer. Math. Soc. (2004) MR2069175
17 G Liu, G Tian, Weinstein conjecture and GW–invariants, Commun. Contemp. Math. 2 (2000) 405 MR1806943
18 A Loi, R Mossa, F Zuddas, Symplectic capacities of Hermitian symmetric spaces of compact and noncompact type, J. Symplectic Geom. 13 (2015) 1049 MR3480062
19 G Lu, Gromov–Witten invariants and pseudo symplectic capacities, Israel J. Math. 156 (2006) 1 MR2282367
20 G Lu, Symplectic capacities of toric manifolds and related results, Nagoya Math. J. 181 (2006) 149 MR2210713
21 D McDuff, D Salamon, J–holomorphic curves and symplectic topology, 52, Amer. Math. Soc. (2012) MR2954391
22 D McDuff, S Tolman, Topological properties of Hamiltonian circle actions, Int. Math. Res. Pap. (2006) MR2210662
23 M Pabiniak, Gromov width of non-regular coadjoint orbits of U(n), SO(2n) and SO(2n + 1), Math. Res. Lett. 21 (2014) 187 MR3247049
24 A Postnikov, Quantum Bruhat graph and Schubert polynomials, Proc. Amer. Math. Soc. 133 (2005) 699 MR2113918
25 Y Rinott, Multivariate majorization and rearrangement inequalities with some applications to probability and statistics, Israel J. Math. 15 (1973) 60 MR368308
26 B Siebert, Algebraic and symplectic Gromov–Witten invariants coincide, Ann. Inst. Fourier (Grenoble) 49 (1999) 1743 MR1738065
27 M Usher, Deformed Hamiltonian Floer theory, capacity estimates and Calabi quasimorphisms, Geom. Topol. 15 (2011) 1313 MR2825315
28 A Vince, A rearrangement inequality and the permutahedron, Amer. Math. Monthly 97 (1990) 319 MR1048445