Volume 20, issue 2 (2020)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 24
Issue 6, 2971–3570
Issue 5, 2389–2970
Issue 4, 1809–2387
Issue 3, 1225–1808
Issue 2, 595–1223
Issue 1, 1–594

Volume 23, 9 issues

Volume 22, 8 issues

Volume 21, 7 issues

Volume 20, 7 issues

Volume 19, 7 issues

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the Journal
Editorial Board
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN 1472-2739 (online)
ISSN 1472-2747 (print)
Author Index
To Appear
 
Other MSP Journals
The Reidemeister graph is a complete knot invariant

Agnese Barbensi and Daniele Celoria

Algebraic & Geometric Topology 20 (2020) 643–698
Bibliography
1 J W Alexander, G B Briggs, On types of knotted curves, Ann. of Math. 28 (1926/27) 562 MR1502807
2 V I Arnold, Plane curves, their invariants, perestroikas and classifications, from: "Singularities and bifurcations" (editor V I Arnold), Adv. Soviet Math. 21, Amer. Math. Soc. (1994) 33 MR1310595
3 S Baader, Note on crossing changes, Q. J. Math. 57 (2006) 139 MR2237515
4 R Budney, Structure of Gordian graph of knots, MathOverflow post (2016)
5 A Coward, M Lackenby, An upper bound on Reidemeister moves, Amer. J. Math. 136 (2014) 1023 MR3245186
6 T Ekholm, L Ng, V Shende, A complete knot invariant from contact homology, Invent. Math. 211 (2018) 1149 MR3763406
7 E Flapan, Infinitely periodic knots, Canad. J. Math. 37 (1985) 17 MR777036
8 C M Gordon, J Luecke, Knots are determined by their complements, J. Amer. Math. Soc. 2 (1989) 371 MR965210
9 R Halin, Über die Maximalzahl fremder unendlicher Wege in Graphen, Math. Nachr. 30 (1965) 63 MR190031
10 J Hass, T Nowik, Invariants of knot diagrams, Math. Ann. 342 (2008) 125 MR2415317
11 D Joyce, A classifying invariant of knots, the knot quandle, J. Pure Appl. Algebra 23 (1982) 37 MR638121
12 L H Kauffman, S Lambropoulou, Hard unknots and collapsing tangles, from: "Introductory lectures on knot theory" (editors L H Kauffman, S Lambropoulou, S Jablan, J H Przytycki), Ser. Knots Everything 46, World Sci. (2012) 187 MR2885236
13 R Kirby, Problems in low dimensional manifold theory, from: "Algebraic and geometric topology, II" (editor R J Milgram), Proc. Sympos. Pure Math. XXXII, Amer. Math. Soc. (1978) 273 MR520548
14 J Marché, Comportement à l’infini du graphe gordien des nœuds, C. R. Math. Acad. Sci. Paris 340 (2005) 363 MR2127111
15 Y Miyazawa, A distance for diagrams of a knot, Topology Appl. 159 (2012) 1122 MR2876719
16 M Polyak, Minimal generating sets of Reidemeister moves, Quantum Topol. 1 (2010) 399 MR2733246
17 K Reidemeister, Elementare Begründung der Knotentheorie, Abh. Math. Sem. Univ. Hamburg 5 (1927) 24 MR3069462
18 V A Vassiliev, Cohomology of knot spaces, from: "Theory of singularities and its applications" (editor V I Arnold), Adv. Soviet Math. 1, Amer. Math. Soc. (1990) 23 MR1089670