Volume 20, issue 2 (2020)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 24
Issue 5, 2389–2970
Issue 4, 1809–2387
Issue 3, 1225–1808
Issue 2, 595–1223
Issue 1, 1–594

Volume 23, 9 issues

Volume 22, 8 issues

Volume 21, 7 issues

Volume 20, 7 issues

Volume 19, 7 issues

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the Journal
Editorial Board
Editorial Interests
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN (electronic): 1472-2739
ISSN (print): 1472-2747
Author Index
To Appear
 
Other MSP Journals
Trisections, intersection forms and the Torelli group

Peter Lambert-Cole

Algebraic & Geometric Topology 20 (2020) 1015–1040
Abstract

We apply mapping class group techniques and trisections to study intersection forms of smooth 4–manifolds. Johnson defined a well-known homomorphism from the Torelli group of a compact surface. Morita later showed that every homology 3–sphere can be obtained from the standard Heegaard decomposition of S3 by regluing according to a map in the kernel of this homomorphism. We prove an analogous result for trisections of 4–manifolds. Specifically, if X and Y admit handle decompositions without 1– or 3–handles and have isomorphic intersection forms, then a trisection of Y can be obtained from a trisection of X by cutting and regluing by an element of the Johnson kernel. We also describe how invariants of homology 3–spheres can be applied, via this result, to obstruct intersection forms of smooth 4–manifolds. As an application, we use the Casson invariant to recover Rohlin’s theorem on the signature of spin 4–manifolds.

Keywords
4–manifolds, Torelli group
Mathematical Subject Classification 2010
Primary: 57M27, 57M99
References
Publication
Received: 26 March 2019
Revised: 24 July 2019
Accepted: 9 August 2019
Published: 23 April 2020
Authors
Peter Lambert-Cole
School of Mathematics
Georgia Institute of Technology
Atlanta, GA
United States
https://www.math.gatech.edu/~plambertcole3