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Towards the K.2/–local homotopy groups of Z
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Previously (Adv. Math. 360 (2020) art. id. 106895), we introduced a class zZ of 2–local
finite spectra and showed that all spectra Z 2 zZ admit a v2 –self-map of periodicity 1 .
The aim here is to compute the K.2/–local homotopy groups ��LK.2/Z of all
spectra Z 2 zZ using a homotopy fixed point spectral sequence, and we give an almost
complete answer. The incompleteness lies in the fact that we are unable to eliminate
one family of d3 –differentials and a few potential hidden 2–extensions, though we
conjecture that all these differentials and hidden extensions are trivial.

55N20, 55Q10, 55Q51

1 Introduction

We recently (see [6]) introduced the class of all finite 2–local type 2 spectra Z such
that there is an isomorphism

H�Z ŠA.2/==E.Q2/

of A.2/–modules, where A.2/ is the subalgebra of the Steenrod algebra generated by
Sq1 , Sq2 and Sq4 . We denote this class by zZ . Let K.n/ denote the height n Morava
K–theory and k.n/ its connective cover. Let tmf denote the connective spectrum
of topological modular forms. The two key features of zZ (see [6] for details) are as
follows:

� Every Z 2 zZ admits a self-map vW †6Z ! Z which induces multiplication
by v1

2
on K.2/�–homology of Z , ie Z admits a v1

2
–self-map.

� Every Z 2 zZ satisfies tmf^Z ' k.2/.

The purpose of this paper is to compute the K.2/–local homotopy groups of any Z 2 zZ .

It is difficult to overestimate the importance of K.n/–local computations in stable
homotopy theory. At every prime p , the homotopy groups of LK.1/S

0 have been
known to capture the patterns in chromatic layer 1 of the stable homotopy groups
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of spheres (also known as the image of J ) since work of Adams [1]. Likewise,
the chromatic fracture square, the chromatic convergence theorem of Ravenel [22,
Theorem 7.5.7], as well as the nilpotence and periodicity theorems of Hopkins and
Smith [13, Theorems 3 and 9], suggest that the K.n/–local homotopy groups of S0

or other finite spectra encapsulate information about the patterns in the nth chromatic
layer of the stable homotopy groups of spheres.

However, our motivation to compute the K.2/–local homotopy groups of Z comes
from its relevance to the telescope conjecture due to Ravenel [20, Section 10]. One of
the various formulations of the telescope conjecture is as follows. Let X be a p–local
type n spectrum. By [13, Theorem 9], X admits a vn –self-map vW †tX ! X, ie
a self-map such that K.n/�v is an isomorphism. Then the homotopy groups of the
telescope of X,

T .X / WD hocolim
������!

.X v
�!†�tX v

�!†�2tX v
�! � � � /;

are the vn –inverted homotopy groups of X, ie ��T .X /D v�1
n ��X. Since K.n/� D

Fp Œv
˙1
n �, the localization of a spectrum with respect to K.n/ can be thought of as,

roughly speaking, another way of “inverting vn ” in the homotopy groups of X. More-
over, there is always a natural map

�W T .X /!LK.n/X:

Telescope conjecture (Ravenel) For every type n spectrum X, the map � is a weak
equivalence.

It follows from the thick subcategory theorem [13, Theorem 7] that if the telescope
conjecture is true for one p–local type n finite spectrum then it is true for all p–local
type n finite spectra (see [22]). For chromatic height nD1, the telescope conjecture was
proved by Miller [17, Theorem 4.11] using the mod p Moore spectrum Mp.1/ when
p > 2, and by Mahowald [16, Theorem 1.0] using the bo–resolution [15, Theorem 2.4]
of the finite spectrum Y WDM2.1/^C� when p D 2. While the telescope conjecture
is true for n� 1 at every prime, it remains an open question for all other pairs .n;p/.

We claim that in the case nD 2 and p D 2, the 2–local type 2 spectra Z 2 zZ are the
most appropriate ones to consider in our study of the telescope conjecture. Firstly, they
all admit a v1

2
–self-map, whereas other type 2 spectra with known v2 –periodicity, such

as M.1; 4/ and the A1 spectra, only admit v32
2

–self-maps, as shown, respectively, by
Behrens, Hill, Hopkins and Mahowald [5, Theorem 1.1] and by Bhattacharya, Egger
and Mahowald [7, Main Theorem]. Lower periodicity is desirable for computational
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reasons. Moreover, the fact that tmf^Z ' k.2/ makes the E1 –page of the tmf-based
Adams spectral sequence readily computable. Also, the Z 2 zZ are in many ways
the “correct” height 2 analogue of Y (the spectrum used in the proof of the telescope
conjecture at chromatic height 1 at the prime 2). This is because Y is a type 1 spectrum
which satisfies properties analogous to Z ; ie it admits a v1

1
–self-map, as shown by

Davis and Mahowald [10, Theorem 1.2], and satisfies bo^Y ' k.1/. We will further
strengthen our claim by giving an almost complete computation of the K.2/–local
homotopy groups of any Z 2 zZ , which is the “easier side” of the telescope conjecture
because of its computational accessibility.

We will use a homotopy fixed point spectral sequence

E
s;t
2
WDH s.G2I .E2/t .�//) �t�sLK.2/.�/;

of which (2-8) and (4-1) are consequences. This spectral sequence can be derived from
the work of Morava [18] and Devinatz and Hopkins [12]. We will give further details
in Section 2.

To compute the homotopy fixed point spectral sequence, we need to understand the
action of the big Morava stabilizer group G2 D S2 ÌGal.F4=F2/ on .E2/�Z , where
S2 is the small Morava stabilizer group (see Section 2 for details). This action can be
understood by explicitly analyzing the BP�BP–comodule structure on BP�Z via the
map

�W BP�BP! Homc.S2; .E2/�Z/

due to Devinatz and Hopkins [11]. The real hard work in this paper is to compute the
BP�BP–comodule structure on BP�Z and obtain the action of S2 on .E2/�Z via
the map � . The group S2 has a finite quaternion subgroup Q8 (to be described in
Section 4) and the pivotal result of this paper is Theorem 4.5, where we prove that
there is an isomorphism

.E2/0Z Š F4ŒQ8�

of modules over the group ring F4ŒQ8�. Part of the proof of Theorem 4.5 is a nontrivial
exercise in representation theory, which we have banished to Lemma A.1 in the appendix
in order to avoid distracting from the main mathematical issues at hand. Theorem 4.5
provides another point of comparison between Y and Z ; note that G1 D Z�

2
Š

Z=2�Z2 , and it can easily be seen that

.E1/0Y Š F2ŒZ=2�:
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Figure 1: The E2 –page of (4-1) with possible differentials and hidden extensions.

In Section 5, we run the algebraic duality resolution spectral sequence, a convenient tool
to compute the group cohomology with coefficients in .E2/�Z . Finally, in Section 6
we compute the E2 –page of (4-1). We locate two possible families of v2 –linear
d3 –differentials and several possible hidden extensions. Using the inclusion S0 ,!Z

of the bottom cell, we are able to eliminate one of the two v2 –linear d3 –differentials
and some of the possible hidden extensions.

Summary of results

In Figure 1, we summarize all possibilities for ��LK.2/Z from the work in this paper.
Figure 1 is a part of the homotopy fixed point spectral sequence (4-1), where we
represent possible d3 –differentials using dashed arrows and hidden extensions by
dotted lines. Any generator which is a multiple of a specific element � in the E2 –page
(to be discussed in Section 6) is displayed using a ı, otherwise using a �. Since the
homotopy groups of LK.2/Z are periodic with respect to multiplication by v1

2
, which

has bidegree .s; t � s/D .0; 6/, the different possible answers can be read off from the
portion 0� t � s � 5.

In Beaudry, Behrens, Bhattacharya, Culver and Xu [4], the tmf–resolution for one
particular model of Z 2 zZ is studied to compute its unlocalized homotopy groups.
This computation shows that the potential d3 –differentials and hidden extensions as
indicated in Figure 1 are trivial, giving us a complete computation of the K.2/–local
homotopy groups of that particular spectrum Z . We expect the same thing to happen
for every spectrum Z 2 zZ .

Conjecture 1 For every Z 2 zZ , the K.2/–local homotopy groups of Z are given by

��LK.2/Z Š F2Œv
˙1
2 �˝E.a1; a3; a5; �/;

where jai j D i , j�j D �1 and jv2j D 6.
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The spectrum Z in the unpublished work mentioned above would be the first finite
2–local spectrum for which we have complete knowledge of its K.2/–local homotopy
groups. It can be built using iterated cofiber sequences of five different self-maps
(see [6]) starting from S0 . Thus, one could work backwards from ��LK.2/Z , using
Bockstein spectral sequences iteratively to get information about ��LK.2/S

0 .

Organization of the paper

The results in this paper are independent of the choice of Z 2 zZ , and hence Z will
refer to an arbitrary spectrum Z 2 zZ for the rest of the paper.

We devote Section 2 to recalling some fundamental results which connect the theory of
formal group laws to homotopy theory.

In Section 3 we compute the BP�BP–comodule structure of BP�Z .

In Section 4, we briefly recall some of the details of the height 2 Morava stabilizer
group S2 and compute the action of S2 on the generators of .E2/�Z .

In Section 5, we compute the group cohomology with coefficients in .E2/�Z using
the duality spectral sequence as well as a result of Henn, reported by Beaudry [3].

In Section 6, we analyze the homotopy fixed point spectral sequence for Z and eliminate
one of the two possible F2Œv

˙1
2
�–linear families of d3 –differentials and some of the

possible hidden extensions.

In the appendix, we include the representation theory exercise omitted from the proof
of Theorem 4.5.
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2 Formal group laws and homotopy theory

The theory of formal group laws was developed by number theorists and eventually
found by Lazard and Quillen to have deep relations with homotopy theory. We will
review these relations, primarily following Lubin and Tate [14] and Ravenel [21]. We
will conclude with a formula relating the action of the Morava stabilizer group on a
Morava module to the structure of a corresponding BP�BP–comodule.

Definition 2.1 Let R be a Z.p/–algebra. A formal group law over R is a power
series F.x;y/ 2RŒŒx;y�� satisfying

� F.x;y/D F.y;x/,

� x D F.x; 0/,

� F.F.x;y/; z/D F.x;F.y; z//.

When R is a graded Z.p/–algebra we set jxj D jyj D �2 and we require that F.x;y/

be a homogeneous expression in degree �2.

Definition 2.2 Given formal group laws F and G over R, a homomorphism from F

to G is a power series f 2RŒŒx�� such that f .0/D 0 and

f .F.x;y//DG.f .x/; f .y//:

A homomorphism f is an isomorphism if f 0.0/ is a unit in R, and an isomorphism f

is said to be strict if f 0.0/D 1. A strict isomorphism from F to the additive formal
group law is called a logarithm of F.

Notation 2.3 We will often use the notation xCF y to denote F.x;y/ and Œn�F .x/
to denote the n–fold sum x CF � � � CF x . We will denote the set of formal group
laws over R by FGL.R/, and the groupoid of formal group laws over R with strict
isomorphisms by .FGL.R/;SI.R//. When R is torsion-free, then the image of F in
.R˝Q/ŒŒx;y�� has a logarithm, which we will denote by logF 2 .R˝Q/ŒŒx��.

Definition 2.4 Let R be a torsion-free Z.p/–algebra and let F be a formal group law
over R. Then F is called p–typical if its logarithm is

logF .x/D
X
i�0

lix
pi

with l0 D 1.
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Now we recall the p–local analogue of the famous theorem of Lazard and Quillen
[19, Theorem 2]. All formal groups discussed will be assumed to be p–typical unless
otherwise stated.

The assignment of a Z.p/–algebra R to the set FGL.R/ is functorial, and we denote
this functor by

FGL.�/W Z.p/–algebra! Set:

Similarly, the functor which assigns a graded Z.p/–algebra R� to the set of homoge-
neous formal group laws over R� of degree �2 is denoted by

FGL.�/W Graded Z.p/–algebra! Set:

Theorem 2.5 (Cartier, Lazard and Quillen) The covariant functor FGL.�/ defined
on the category of Z.p/–algebras is represented by the Z.p/–algebra

zV D Z.p/Œzv1; zv2; : : : �;

ie FGL.R/ŠHomZ.p/.
zV ;R/. The covariant functor FGL.�/ defined on the category

of graded Z.p/–algebras is represented by the graded Z.p/–algebra

BP� D Z.p/Œv1; v2; : : : �

with jvi j D 2.pi � 1/, ie FGL.R�/ŠHomZ.p/.BP�;R�/, where HomZ.p/.BP�;R�/
is the set of graded Z.p/–algebra maps from BP� to R� .

Example 2.6 (Honda formal group law) Defining the ring homomorphism

�nW
zV ! Fpn ; zvi 7!

�
1 if i D n;

0 if i ¤ n;

gives the Honda formal group law �n over Fpn . This formal group law satisfies

Œp��n
.x/D xpn

:

A theorem of Lazard says that �n is unique in that every formal group law of height n

over a separably closed field of characteristic p is isomorphic to �n , though this
isomorphism might not be strict.

Remark 2.7 The generators zvi 2
zV are defined by the property that

Œp�F zV .x/D pxCF zV

X
i>1

F zV
zvix

pi

;
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where F zV is the universal p–typical formal group law over zV . Similarly, the vi 2 BP�
are defined by the property that

Œp�FBP�
.xx/D pxxCFBP�

X
i>0

FBP�
vi xx

pi

;

where FBP� is the universal p–typical formal group law over BP� and jxxj D �2. The
generators fzvi W i > 0g and fvi W i > 0g are often called the Araki generators in the
literature.

Consider the functor

�W Z.p/–algebra!Graded Z.p/–algebra

which sends R 7!RŒu˙1�, where u is a formal variable in degree �2. If F is a formal
group law over R, then

F .xx; xy/ WD uF.u�1
xx;u�1

xy/;

where jxxj D jxyj D �2, is a formal group law over RŒu˙1�. Mapping F 7! F defines
a natural transformation between the functors FGL.�/ and FGL.�/ ı � . Since F zV is
a formal group law over the graded ring zV Œu˙1�, we obtain a map

(2-1) � W BP�! zV Œu˙1�

and it follows from comparing the p–series (see Remark 2.7) that �.vi/D u1�pi

zvi .

We can also ask about how to represent groupoids of formal group laws. We can
do this in two ways, either by considering the groupoid of formal group laws with
isomorphisms, or the smaller groupoid of formal group laws with strict isomorphisms.

Lemma 2.8 Let F be a p–typical formal group law and let G be an arbitrary formal
group law over a Z.p/–algebra R, and let f be an isomorphism from F to G. Then
G is p–typical if and only if

f �1.x/D

FX
i�0

tix
pi

;

where ti 2R for every i and t0 2R� .

If we want f to be a strict isomorphism, then we must have t0 D 1. In the context of
graded Z.p/–algebras, ti is forced to be in degree 2.pi � 1/. Thus we can define a
Hopf algebroid .BP�;BP�BP/ with

BP�BPD BP�Œt1; t2; : : : W jti j D 2.pi
� 1/�;
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which represents the functor

.FGL.�/;SI.�//W Graded Z.p/–algebra!Groupoid

which assigns a graded Z.p/–algebra R� to the groupoid of p–typical formal group
laws over R� with strict isomorphisms. Let �L; �RW BP�! BP�BP denote the left
and the right units of the Hopf algebroid BP�BP. Note that the universal isomorphism
f W ��

L
FBP� D FBP� ! ��

R
FBP� satisfies the formula

f �1.xx/D xxCFBP�

X
i�1

FBP�
ti xx

pi

;

where jxxj D �2.

Similarly, one can consider the case where R is ungraded and f is an isomorphism
that need not be strict. Thus we define

fVT D zV ŒQt˙1
0 ; Qt1; Qt2; : : : W jQti j D 0�;

getting a Hopf algebroid . zV ; fVT /, which represents the functor

.FGL.�/; I.�//W Z.p/–algebra!Groupoid

which assigns a Z.p/–algebra R to the groupoid of p–typical formal group laws over R

with isomorphisms. In this case the universal isomorphism zf W ��
L
F zV D F zV ! ��

R
F zV

satisfies the formula
zf �1.x/D

X
i�0

F zV
Qtix

pi

:

Let us define
F zV .xx; xy/D uF zV .u

�1
xx;u�1

xy/;

yG.xx; xy/D Qt0u��RF zV .Qt
�1
0 u�1

xx; Qt�1
0 u�1

xy/;

yf .xx/D Qt0u zf .u�1
xx/;

where jxxj D jxyj D �2. It is easy to see that the triple .F zV ; yf ; yG/ is an element of the
groupoid .FGL.fVT Œu˙1�/;SI.fVT Œu˙1�//. Hence the map � of (2-1) can be extended
to a left BP�–linear map

(2-2) � W BP�BP!fVT Œu˙1�:

Since

yf �1.xx/D u zf �1.Qt�1
0 u�1

xx/D u

�X
i�0

F zV
Qti Qt
�pi

0
u�pi

xxpi

�
D

X
i�0

F zV
Qti Qt
�pi

0
u1�pi

xxpi
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and
yf �1.xx/D �. zf �1.x//;

we get that the map � in (2-2) satisfies

(2-3) �.ti/D Qti Qt
�pi

0
u1�pi

:

Now we briefly recall the notion of deformation, which arose in number theory and
has important implications for homotopy theory.

Definition 2.9 Let k be a field of characteristic p > 0 and � a formal group law
over k . A deformation of .k; �/ to a complete local ring B with projection

� W B! B=m

is a pair .G; i/ where G is a formal group law over B and

i W k! B=m

is a homomorphism satisfying i� D �G.

A morphism from .G1; i1/! .G2; i2/ is defined only when i1 D i2 , in which case it
consists of an isomorphism

f W G1!G2

of formal group laws over B such that

f .x/� x mod m:

Such morphisms are also called ?–isomorphisms. Note that the set Def�.B/ of
deformations of .k; �/ to B with ?–isomorphisms forms a groupoid. The work of
Lubin and Tate [14, Theorem 3.1] guarantees the existence of a universal deformation.
More precisely:

Theorem 2.10 (Lubin and Tate) Let � be a formal group law of finite height over
a field k of characteristic p > 0. Then there exists a complete local ring E.k; �/

with residue field k and a deformation .F� ; id/ 2 Def�.E.k; �// such that for every
.G; i/ 2Def�.B/, there is a unique continuous1 ring homomorphism � W E.k; �/!B

and a unique ?–isomorphism from .G; i/ to .�F� ; i/.

1A ring homomorphism of local ring is continuous if the image of the maximal ideal of the domain is
contained in the maximal ideal of the codomain.
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Remark 2.11 It is well known (see [14]) that if k is a perfect field and � has height n,
then a choice of F� determines an isomorphism

E.k; �/ŠW .k/ŒŒu1; : : : ;un�1��

of complete local rings, where W .k/ is the ring of Witt vectors on k .

The automorphism group Aut.�=k/ of � acts on E.k; �/ as follows (also see
[11, Section 1]). Let 
 2 kŒŒx�� be an invertible power series. Choose an invertible
power series z
 2E.k; �/ŒŒx�� as a lift of 
 and define zF
 over E.k; �/ by

zF
 .x;y/ WD z

�1
�
F�.z
 .x/; z
 .y//

�
:

Note that the lift zF
 depends on the choice of lift z
 . Since . zF
 ; id/ 2Def�.E.k; �//,
the Lubin–Tate theorem gives us a unique homomorphism

z�
 W E.k; �/!E.k; �/

and a unique ?–isomorphism

y
 W zF
 ! z�
F� :

The composite

f
 W F�
z
�1

��! zF

y

�! z�
F�

does not depend on the choice of z
 and is an element of the groupoid�
FGL.E.k; �//; I.E.k; �//

�
:

Therefore the classifying map for F� ,

z�� W zV !E.k; �/;

can be extended to a left zV –linear map

z�� W fVT!Mapc.Aut.�=k/;E.k; �//:

Let us simply denote ��.Qti/.
 / by Qti.
 / for 
 2Aut.�=k/. The elements Qti.
 / satisfy
the equation

f �1

 .x/D

X
i�0

F�
Qti.
 /x

pi

:

One can also consider the graded formal group law � over kŒu˙1�. Note that
Aut.�=k/ Š Aut.�=kŒu˙1�/ via the invertible map 
 .�/ 7! u
 .u�1�/. One can
similarly define the graded universal deformation formal group law F� over the
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graded ring E.k; �/Œu˙1�. Let 
 2 Aut.�=k/ act on E.k; �/Œu˙1� via the ring
homomorphism �
 W E.k; �/Œu

˙1�!E.k; �/Œu˙1� such that

�
 .x/D

�
z�
 .x/ if x 2E.k; �/;

Qt0.
 /x if x D u:

Notice that

�
F�.xx; xy/D Qt0.
 /uz�
F�.Qt0.
 /
�1u�1

xx; Qt0.
 /
�1u�1

xy/

and
yf
 .xx/D Qt0.
 /uf
 .u

�1
xx/

is a strict isomorphism between F� and �
F� . Thus we have a left BP�–linear map

(2-4) �� W BP�BP!Mapc.Aut.�=k/;E.k; �/Œu˙1�/:

It can be easily checked that �� is identical to the composite map

BP�BP �
�!fVT Œu˙1�

z�� Œu
˙1�

����!Mapc.Aut.�=k/;E.k; �/Œu˙1�/:

Let us denote the map ��.ti/.�/ simply by ti.�/. It follows from (2-3) that

(2-5) ti.
 /D Qti.
 /Qt0.
 /
�pi

u1�pi

for 
 2 Aut.�=k/. Also keep in mind that f
 fits into the commutative diagram

F�

��

f

// z�
F�

��

�



// �

where the vertical squiggly arrows are reduction modulo mD .p;u1; : : : ;un�1/. Thus,
for 
�1 D a0xC� a1xpC� Ca2xp2

C� � � � 2 kŒŒx��, we have

(2-6) Qti.
 /� ai and ti.
 /� aia
�pi

0
u1�pi

mod m:

It follows from [21, Corollary 4.3.15] that, when � has height n and k � n,

(2-7) Qtk.
1
2/�

kX
iD0

Qti.
1/Qtk�i.
2/
pi

mod m:

Now let’s focus on the Honda formal group law �n over Fpn and let Fn denote its
universal deformation. By Remark 2.11, we have

E.Fpn ; �n/DW .Fpn/ŒŒu1; : : : ;un�1��;
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where W .Fpn/ are the Witt vectors of Fpn , which has an action of the small Morava
stabilizer group

Sn WD Aut.�n=Fpn/:

Note that the map �n of Example 2.6 which defines the Honda formal group law
factors through Fp . Therefore �n has coefficients in Fp . Consequently, the big Morava
stabilizer group

Gn WD Aut.�n=Fp/D Sn ÌGal.Fpn=Fp/

acts on E.Fpn ; �n/. The Lubin–Tate universal formal group law Fn over E.Fpn ; �n/

is given by the ring homomorphism

� W zV !E.Fpn ; �n/; zvi 7!

8<:
ui if i < n;

1 if i D n;

0 if i > n;

which means that

Œp��n
.x/D pxCFn

u1xp
CFn
� � � CFn

un�1xpn�1

CFn
xpn

:

We also have a graded formal group law Fn over the graded ring .En/� , defined as
.En/� WDE.Fpn ; �n/Œu

˙1�, which is given by the ring homomorphism

� W BP�! .En/�; vi 7!

8<:
uiu

1�pi

if i < n;

u1�pn

if i D n;

0 if i > n:

By the Landweber exact functor theorem,

.En/�.�/ WD .En/�˝BP� BP�.�/

is a homology theory, thus it is represented by a spectrum En , known as Morava
E–theory. By a theorem of Hopkins and Miller, reported by Rezk [23], the action
of Gn on .En/� lifts to one on En itself whose homotopy fixed point spectrum is

.En/
hGn 'LK.n/S

0;

which gives us a homotopy fixed point spectral sequence

E
s;t
2
WDH s.GnI .En/t /) �t�sLK.n/S

0:

The E2 –page of this spectral sequence can be found using a Lyndon–Hochschild–Serre
spectral sequence

H s1
�
Gal.Fpn=Fp/IH

s2.SnI .En/�/
�
)H s1Cs2.GnI .En/�/;
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which as a consequence of Hilbert’s Theorem 90 reduces to

H s.GnI .En/�/DH s.SnI .En/�/
Gal.Fpn=Fp/:

Thus, the spectral sequence of interest to us is

(2-8) E
s;t
2
WDH s.SnI .En/t /

Gal.Fpn=Fp/) �t�sLK.n/S
0:

3 The BP�BP–comodule BP�Z

For every Z 2 zZ , there is, by definition, an isomorphism

H�Z Š .A.2/==E.Q2//� D F2Œ�1; �2�=.�
8
1 ; �

4
2 /

of A.2/�–comodules [6]. We will use this fact to determine the BP�BP–comodule
structure of BP�Z . One can use the Adams spectral sequence

E
s;t
2
D Exts;t

A
.H�BP ˝H�Z;F2/) BPt�sZ

to compute BP�Z as a BP�–module. Note that

H�BP DA==E.Q0;Q1;Q2; : : : /;

where Qi are the Milnor primitives. By a change of rings, the E2 –page of the above
Adams spectral sequence is isomorphic to

(3-1) E
s;t
2
D Exts;t

A
.H�BP ˝H�Z;F2/Š Exts;t

E.Q0;Q1;::: /
.H�Z;F2/:

Let g denote the generator of H�Z in degree 0. As an E.Q0;Q1;Q2/–module,
A.2/==E.Q2/ is a direct sum of 8 copies of E.Q0;Q1/, generated by the elements
in the set

G D fg�; .�2
1g/�; .�4

1g/�; .�6
1g/�; .�2

2g/�; .�2
1�

2
2g/�; .�4

1�
2
2g/�; .�6

1�
2
2g/�g:

Since H�Z ŠA.2/ A.2/˝E.Q2/F2 and Q2 is in the center of A.2/, Q2 acts trivially
on H�Z . Using the iterative formula

Qi D Sq2i

Qi�1CQi�1 Sq2i

;

one can inductively argue that Qi for i � 2 acts trivially on H�Z . Thus, we have
completely determined H�Z as a module over E.Q0;Q1; : : : / from its A.2/–module
structure. Thus, as an E.Q0;Q1; : : : /–module,

H�Z ŠE.Q0;Q1; : : : /˝E.Q2;Q3;::: / G;
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and therefore the E2 –page of (3-1) is isomorphic to

E
�;�
2
Š F2Œv2; v3; : : : �˝G�;

where vi has bidegree .s; t/D .1; jQi j/D .1; 2
iC1�1/. Due to sparseness, the Adams

spectral sequence (3-1) collapses at the E2 –page. Hence, as a BP�–module,

(3-2) BP�Z Š BP�=.2; v1/hx0;x2;x4;x6;y6;y8;y10;y12i;

where xi and yi are generators in degree i chosen in such a way that the map
BP�Z!H�Z sends

x0 7! g; x2 7! �2
1g; x4 7! �4

1g; x6 7! �6
1g;

y6 7! �2
2g; y8 7! �2

1�
2
2g; y10 7! �4

1�
2
2g; y12 7! �6

1�
2
2g:

This identification allows us to infer the BP�BP–comodule structure of BP�Z from
the A.2/�–comodule structure of H�Z via the diagram

BP�Z
 
//

��

BP�BP˝BP� BP�Z

��

H�Z
 2

// A.2/�˝H�Z

First notice that the coaction map

 2W H�Z!A.2/�˝H�Z

sends

(3-3)

g 7! 1jg;

�2
1g 7! �2

1 jgC 1j�2
1g;

�4
1g 7! �4

1 jgC 1j�4
1g;

�6
1g 7! �6

1 jgC �
4
1 j�

2
1gC �2

1 j�
4
1gC 1j�6

1g;

�2
2g 7! �2

2 jgC �
4
1 j�

2
1gC 1j�2

2g;

�2
1�

2
2g 7! �2

1�
2
2 jgC .�

6
1 C �

2
2 /j�

2
1gC �2

1 j�
2
2gC �4

1 j�
4
1gC 1j�2

1�
2
2g;

�4
1�

2
2g 7! �4

1�
2
2 jgC �

8
1 j�

2
1gC �4

1 j�
2
2gC �2

2 j�
4
1gC �4

1 j�
6
1gC 1j�4

1�
2
2g;

�6
1�

2
2g 7! �6

1�
2
2 jgC .�

4
1�

2
2 C �

10
1 /j�2

1gC .�2
1�

2
2 C �

8
1 /j�

4
1gC �6

1 j�
2
2g

C .�2
2 C �

6
1 /j�

6
1gC �4

1 j�
2
1�

2
2gC �2

1 j�
4
1�

2
2gC 1j�6

1�
2
2g:

Algebraic & Geometric Topology, Volume 20 (2020)



1250 Prasit Bhattacharya and Philip Egger

The map

BP�BP!A�

sends vi 7! 0 and ti 7! �2
i , where �i is the image of �i under the canonical anti-

automorphism of A� . Moreover A.2/� ŠA�=.�
8
1
; �4

2
; �2

3
; �4; �5; : : : /. Therefore  2 ,

along with the fact that .2; v1/� BP� acts trivially on BP�Z , completely determines
the composite map

BP�Z
 
�! BP�BP˝BP� BP�Z! BP�BP=I2˝BP� BP�Z;

where

I2 D .v2; v3; : : : ; t
4
1 ; t

2
2 ; t3; t4; : : : /� BP�BP:

Note that all elements in the generating set fx0;x2;x4;x6;y6;y8;y10;y12g of BP�Z
have internal degrees between 0 and 12, whereas jtj j > 12 and jvj j > 12 when
j � 3. Therefore, for j � 3, tj and vj do not appear in the expression for  .xi/

and  .yi/, though v2 may be present. Using (3-3) and the fact that �2
1
D �2

1
and

�2
2
D �2

2
C�6

1
, we easily derive the coaction map  on the generators of BP�Z modulo

.v2; t
4
1
; t2

2
/ 2 BP�BP. We get

(3-4)

 .x0/D 1jx0;

 .x2/D t1jx0C1jx2;

 .x4/D t2
1 jx0C1jx4;

 .x6/� t3
1 jx0C t2

1 jx2C t1jx4C1jx6;

 .y6/� .t2C t3
1 /jx0C t2

1 jx2C1jy6;

 .y8/� t1t2jx0C t2jx2C t2
1 jx4C t1jy6C1jy8;

 .y10/� t2
1 t2jx0C.t

3
1C t2/jx4C t2

1 jx6C t2
1 jy6C1jy10;

 .y12/� t3
1 t2jx0C t2

1 t2jx2C t1t2jx4C t2jx6C t3
1 jy6C t2

1 jy8C t1jy10C1jy12:

Lemma 3.1 For any Z 2 zZ , BP�Z has one of the four different BP�BP–comodule
structures given below:

 .x0/D 1jx0;

 .x2/D t1jx0C 1jx2;

 .x4/D t2
1 jx0C 1jx4;

Algebraic & Geometric Topology, Volume 20 (2020)



Towards the K.2/–local homotopy groups of Z 1251

 .x6/D t3
1 jx0C t2

1 jx2C t1jx4C 1jx6;

 .y6/D .t2C t3
1 /jx0C t2

1 jx2C 1jy6;

 .y8/D .at4
1 C t1t2/jx0C t2jx2C t2

1 jx4C t1jy6C 1jy8;

 .y10/D .t
5
1 C t2

1 t2/jx0C t4
1 jx2C .t

3
1 C t2/jx4C t2

1 jx6C t2
1 jy6C 1jy10;

 .y12/D ..bC 1/t6
1 C t3

1 t2C .aC b/t2
2 /jx0C t2

1 t2jx2C .bt4
1 C t1t2/jx4C t2jx6

C t3
1 jy6C t2

1 jy8C t1jy10C 1jy12;

where a; b 2 F2 .

Proof For degree reasons, the congruences of (3-4) imply that there are coefficients

�0
6; �

0
6 ; �

0
8; �

0
8; �

2
8; �

0
10; �

0
10; �

2
10; �

2
10; �

4
10;

�0
12; �

0
12; �

0
12; �

0
12; �; �

2
12; �

2
12; �

4
12; �

4
12; �

6
12; �

6
12

in F2 such that one has

 .x0/D 1jx0;

 .x2/D t1jx0C 1jx2;

 .x4/D t2
1 jx0C 1jx4;

 .x6/D .t
3
1 C�

0
6v2/jx0C t2

1 jx2C t1jx4C 1jx6;

 .y6/D .t
3
1 C t2C �

0
6v2/jx0C t2

1 jx2C 1jy6;

 .y8/D .�
0
8t4

1 C t1t2C�
0
8v2t1/jx0C .t2C�

2
8v2/jx2C t2

1 jx4C t1jy6C 1jy8;

 .y10/D .�
0
10t5

1 C t2
1 t2C�

0
10v2t2

1 /jx0C .�
2
10t4

1 C�
2
10v2t1/jx2

C .t3
1 C t2C�

4
10v2/jx4C t2

1 jx6C t2
1 jy6C 1jy10;

 .y12/D .�
0
12t6

1 C t3
1 t2C �

0
12t2

2 C�
0
12v2t3

1 C �
0
12v2t2C �v

2
2/jx0

C .�2
12t5

1 C t2
1 t2C�

2
12v2t2

1 /jx2C .�
4
12t4

1 C t1t2C�
4
12v2t1/jx4

C .t2C�
6
12v2/jx6C .t

3
1 C �

6
12v2/jy6C t2

1 jy8C t1jy10C 1jy12:

The counitality condition of  

BP�Z
Š

**

 

��

BP�BP˝BP� BP�Z
�˝BP�Z

// BP�˝BP� BP�Z
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forces �0
6
D �0

6
D �2

8
D �4

10
D � D �6

12
D �6

12
D 0. After the change of basis

y8 y8C�
0
8v2x2; ;

y10 y10C�
0
10v2x4; ;

y12 y12C �
0
12v2y6C .�

0
12C �

0
12/v2x6;

we have

 .x0/D 1jx0;

 .x2/D t1jx0C 1jx2;

 .x4/D t2
1 jx0C 1jx4;

 .x6/D t3
1 jx0C t2

1 jx2C t1jx4C 1jx6;

 .y6/D .t
3
1 C t2/jx0C t2

1 jx2C 1jy6;

 .y8/D .�
0
8t4

1 C t1t2/jx0C t2jx2C t2
1 jx4C t1jy6C 1jy8;

 .y10/D .�
0
10t5

1C t2
1 t2/jx0C.�

2
10t4

1C�
2
10v2t1/jx2C.t

3
1C t2/jx4C t2

1 jx6C t2
1 jy6

C 1jy10;

 .y12/D .�
0
12t6

1 C t3
1 t2C �

0
12t2

2 /jx0C .�
2
12t5

1 C t2
1 t2C .�

0
8C�

0
12C�

2
12/v2t2

1 /jx2

C .�4
12t4

1 C t1t2C .�
0
10C�

4
12C�

0
12C �

0
12/v2t1/jx4C t2jx6

C t3
1 jy6C t2

1 jy8C t1jy10C 1jy12:

Now we exploit the coassociativity condition

BP�Z
 

//

 

��

BP�BP˝BP� BP�Z

�˝BP�Z

��

BP�BP˝BP� BP�Z
BP�BP˝ 

// BP�BP˝BP� BP�BP˝BP� BP�Z

Applying the coassociativity condition on y8 tells us nothing, while applying it on y10

tells us that
�2

10 D 0; �0
10 D �

2
10 D 1:

Applying it on y12 , we get

�0
8C�

0
12C�

2
12 D 0;

�0
10C�

4
12C�

0
12C �

0
12 D 0;

�2
12 D 0;

�4
12C�

0
12C 1D 0;

�0
8C�

0
12C �

0
12C 1D 0:

Setting aD �0
8

and b D �0
12
C 1 completes the proof.
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Remark 3.2 By sending vi 7! 0 and ti 7! �2
i , we obtain a functor

QW .BP�;BP�BP/–comodules! .F2; ˆA�/–comodules;

where ˆA� is the double of the dual Steenrod algebra. This functor sends BP�Z
to ˆA.1/� . Since A.1/� has four different A�–comodule structures, it follows that
ˆA.1/� has four different ˆA�–comodule structures. The four different BP�BP–
comodule structures on BP�Z are essentially lifts of the four different ˆA�–comodule
structures on ˆA.1/� .

Remark 3.3 Let M� D BP�=.2; v1/hg0;g2;g4;g6i be the BP�BP–comodule with
four generators with cooperations

 .g0/D 1jg0;

 .g2/D t1jg0C 1jg2;

 .g4/D t2
1 jg0C 1jg4;

 .g6/D t3
1 jg0C t2

1 jg2C t1jg4C 1jg6:

Then, if W DA1 ^C� , where A1 is any of the four 8–cell complexes whose coho-
mology is isomorphic to A.1/, the BP�BP–comodule BP�W is isomorphic to M� .

A straightforward calculation tells us:

Lemma 3.4 There is an exact sequence of BP�BP–comodules

0!M�
�
�! BP�Z

�
�!†6M�! 0

such that �.gi/D xi , �.xi/D 0 and �.yi/D†
6gi�6 .

4 The action of the small Morava stabilizer group on .E2/�Z

To compute the E2 –page of the homotopy fixed point spectral sequence

(4-1) E
s;t
2
DH s.S2I .E2/tZ/

Gal.F4=F2/) �t�sLK.2/Z;

we first need to understand the action of S2 D Aut.�2=F4/ on .E2/�Z , where �2 is
the height 2 Honda formal group law over F4 . Recall from (2-4) the left BP�–linear
map

��n
W BP�BP!Mapc.S2; .E2/�/:
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For X a finite spectrum, we deduce the action of S2 on .E2/�X from the knowledge
of the BP�BP–coaction map  BP

X
on BP�X via the diagram

(4-2)

BP�X
 BP

X
// BP�BP˝BP� BP�X

�
�n
˝BP�X

��

Map.S2; .E2/�/˝BP� BP�X

The main purpose of this section is to understand the action of S2 on .E2/�Z , for all
Z 2 zZ .

We begin by briefly recalling some key facts about S2 that we need for the calculations
to follow. Let T be a formal variable that need not commute with W .F4/ and let

O2 WDW .F4/hT i=.T
2
� 2;T! �!�T /;

where ! is a root of x2CxC1 2 F2Œx�, and � is the Frobenius map on W .F4/. Note
that any element 
 2O2 can be written as a power series


 D

1X
nD0

anT n;

where the an are Teichmüller lifts of F�
4

or are zero. Then 
 corresponds to the power
series

xa0xC�2
xa1x2

C�2
� � � C�2

xanx2n

C�2
� � � 2 F4ŒŒx��;

where xan is the image of an under the quotient map W .F4/! F4 . In fact, this defines
an isomorphism from O2 to End.�2=F4/�F4ŒŒx�� and, consequently, S2 is isomorphic
to the group of units of O2 (see [21, Lemma A2.2.20]). Recall from Section 2 the map

z��n
W fVT!Mapc.S2; .E2/0/;

where �n is the height n Honda formal group law. To avoid cumbersome notation, let
us continue (from Section 2) to denote z��n

.Qtn/ simply by Qtn . From (2-6), we learn that
if


�1
D

X
n�0

�n

xanx2n

2 S2;

then

(4-3) Qtn.
 /� an mod .2;u1/:
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Also keep in mind that the Teichmüller lifts an satisfy the equation a4
nD an . Therefore

we have

(4-4) Qtn.�/
4
� Qtn.�/ mod .2;u1/:

We can also write every element of O2 as aC bT with a; b 2 W .F4/. Using the
isomorphism S2 ŠO�

2
, one defines a determinant map (see [2, Section 2.3])

detW S2! Z�2 ;

which sends aC bT 7! aa� � 2bb� . Composing this with the quotient map Z�
2
!

Z�
2
=f˙1g Š Z2 gives the norm map

(4-5) N W S2
det
�! Z�2 � Z2:

The kernel of the norm map N W S2 ! Z2 is called the norm one subgroup and is
denoted by S1

2
. In [2, Section 2.3], Beaudry described two elements ˛; � 2 S2 such

that det.˛/D�1 and det.�/D 3, two elements which generate Z�
2

topologically. In
particular, � defines an isomorphism S2 Š S1

2
ÌZ2 .

As we will see in this section, the most crucial part of the action of S2 on .E2/�Z is
the action of its finite subgroups, which we describe here, following [2; 9].

Proposition 4.1 Every maximal finite nonabelian subgroup of S2 is conjugate to a
group

G24 DQ8 ÌC3;

where Q8 is the quaternion group

Q8 D hi; j W i
4
D 1; i2 D j2; i3jD jii

and the generator x! of C3 acts by conjugation and permutes i, j and k D ij. More
precisely, we have the relations

(1) x! iD j x! ,

(2) x! jD k x! .

Notation 4.2 We denote the identity element of Q8 by 1. The order 2 element of Q8

is often denoted by �1; however, to avoid confusing it with an element of a ring, we
will denote it by y12Q8 . Similarly, we denote yiD y1i;yjD y1j;ykD y1k. The center of Q8 ,
which is an order 2 group generated by y1, will be denoted by Cy1 .
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The maximal finite subgroup G24 is unique up to conjugation as a subgroup of S2 ,
while as a subgroup of S1

2
, there are two conjugacy classes, G24 and G0

24
D�G24�

�1 .
The group S1

2
also has a cyclic subgroup

C6 D Cy1 �C3

generated by y1 and x! .

The identification of S2 with O�
2

endows S2 with a decreasing filtration

(4-6) F0=2S2 D S2;Fn=2S2 D f
 2 S2 W 
 � 1 mod T n
g:

One should note that

Fn=2S2=F.nC1/=2S2 Š

�
C3 if nD 0;

F4 if n� 0:

Notice from (4-3) that tn coacts trivially on BP�Z for n>2. Therefore, following (4-3),
we conclude that Fn=2S2 for n> 2 acts trivially on .E2/�Z . We list the generators
of the various filtration quotients of S2 in the following table:

associated graded generators

F0=2S2=F1=2S2 Š C3 x!

F1=2S2=F2=2S2 ŠQ8=Cy1 Š C2 �C2 i, j
F2=2S2=F3=2S2 Š Cy1 �C˛ y1, ˛

The subgroup
K D h˛;F3=2S2i

is known as the Poincaré duality subgroup of S2 , and it is known that

S2 ŠK ÌG24:

The subgroup S1
2

inherits the filtration of (4-6) via Fn=2S1
2
WD S1

2
\ Fn=2S2 . In

particular, we have

Fn=2S1
2=F.nC1/=2S1

2 Š

8<:
C3 if nD 0;

F4 if n� 0 and n odd, or nD 2;

F2 otherwise.

There is a corresponding Poincaré duality subgroup K1 which satisfies

S1
2 ŠK1 ÌG24:

Recall from (3-2) that

.E2/�Z Š .E2/�˝BP� BP�Z Š .E2/�=.2;u1/hx0;x2;x4;x6;y6;y8;y10;y12i:
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u Qt0u

xx0 xx0

xx2 Qt2
0
Qt1xx0C Qt0xx2

xx4 Qt1
0
Qt2
1
xx0C Qt

2
0
xx4

xx6 Qt3
1
xx0C Qt

2
0
Qt2
1
xx2C Qt0 Qt1xx4C xx6

xy6 .Qt3
1
C Qt2

0
Qt2/xx0C Qt

2
0
Qt2
1
xx2C xy6

xy8 .aQt2
0
Qt1C Qt0

Qt1 Qt2/xx0C Qt2xx2C Qt
2
1
xx4C Qt

2
0
Qt1 xy6C Qt0 xy8

xy10 .Qt0 Qt
2
1
C Qt2

1
Qt2/xx0C Qt1xx2C .Qt

2
0
Qt3
1
C Qt0 Qt2/xx4C Qt0 Qt

2
1
xx6C Qt0 Qt1 xy6C Qt

2
0
xy10

xy12 ..bC 1/Qt3
1
C Qt2

0
Qt3
1
Qt2C .aC b/Qt0 Qt

2
2
/xx0C Qt0 Qt

2
1
Qt2xx2

C.b Qt
0
Qt1C Qt1 Qt2/xx4C Qt

2
0
Qt2xx6C Qt

3
1
xy6C Qt

2
0
Qt2
1
xy8C Qt0 Qt1 xy10C xy12

Table 1: The action of S2 on .E2/�Z .

For our purposes it is convenient to have all the generators in degree 0, so we define

xxi D ui=2xi ; xyi D ui=2yi

in order to have

.E2/�Z Š .E2/�=.2;u1/hxx0; xx2; xx4; xx6; xy6; xy8; xy10; xy12i:

By (4-2), the action of S2 can be expressed in terms of maps Qti W S2 ! E.F4; �2/,
which are related to the maps ti W S2!E.F4; �2/Œu

˙1� by (2-5). For instance, we have

 BP
Z .x2/D 1jx2C t1jx0 D 1jx2Cu�1 Qt�2

0
Qt1jx0;

so for 
 2 S2 we have


 .xx2/D 
 .ux2/D Qt0.
 /u.x2Cu�1 Qt0.
 /
�2 Qt1.
 /x0/D Qt0.
 /xx2C Qt0.
 /

�1 Qt1.
 /xx0:

By Lemma 3.1, if we suppress “
 ”, the action of S2 can be described as in Table 1
(thanks to (4-4), we can adopt the simplifications Qt4

i D
Qti for i D 1; 2 and Qt3

0
D 1).

Let M�D .E2/�˝BP�M� , where M� is the BP�BP–comodule introduced in Remark
3.3. Define

xgi D ui=2gi

to form a set of generators fxg0; xg2; xg4; xg6g of M0 . A consequence of Lemma 3.4 and
Table 1 is:
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Lemma 4.3 There is an exact sequence

(4-7) 0!M0
N�
�! .E2/0Z x�

�!M0! 0

of Q8 –modules, where N�.xgi/D xxi and x�.xyi/D xgi�6 .

We will use the exact sequence of (4-7) (compare with (A-2)) to understand the action
of Q8 on .E2/0Z . For this purpose we need the data of Qti.
 / modulo .2;u1/ for

 2Q8 . By definition of the Honda formal group law �2 , we have Œ2��2

.x/D x4 and
it follows that

Œ�1��2
.x/D

X
n�0

�2

x4n

:

Indeed, one has

xC�2

X
n�0

�2

x4n

D xC�2
xC�2

X
n�1

�2

x4n

D x4
C�2

X
n�1

�2

x4n

D � � � D 0:

Following (2-6) and using the fact that Œ�1��2
.x/ is its own inverse, we have

Qtn.y1/D

�
1 if n is even;
0 if n is odd;

modulo .2;u1/. Further, i and j can be chosen so that, modulo .2;u1/, one has

� Qt0.
 /D 1 for all 
 2Q8 ,

� Qt1.i/D Qt1.yi/D 1, Qt1.j/D Qt1.yj/D ! and Qt1.k/D Qt1.yk/D !2 .

Lemma 4.4 There is an isomorphism M0 Š F4ŒQ8=Cy1� of left F4ŒQ8�–modules.

Proof Since N�.xgi/D xxi , one can read the action of Q8 off Table 1. With respect to
the ordered basis B D fxg0; xg2; xg4; xg6g of M0 , we have

.i/B D .yi/B D

2664
1 1 1 1

0 1 0 1

0 0 1 1

0 0 0 1

3775 ; .j/B D .yj/B D

2664
1 ! !2 1

0 1 0 !2

0 0 1 !

0 0 0 1

3775 ;

.k/B D .yk/B D

2664
1 !2 ! 1

0 1 0 !

0 0 1 !2

0 0 0 1

3775 :
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Consider the basis C D fv0; v1; v2; v3g of M0 , where

QD

2664
1 0 0 1

0 1 1 1

0 ! !2 1

0 0 0 1

3775
is the change of basis matrix from B! C . It can be readily checked that

.i/C DQ�1.i/BQD

2664
1 1 0 0

0 1 0 0

0 0 1 1

0 0 0 1

3775 ; .j/C DQ�1.j/BQD

2664
1 0 1 0

0 1 0 1

0 0 1 0

0 0 0 1

3775 ;

.k/C DQ�1.k/BQD

2664
1 1 1 1

0 1 0 1

0 0 1 1

0 0 0 1

3775 :
The last three matrices are equal to those representing the same transformations in the
basis B4 of F4ŒQ8=Cy1� given in (A-3), and thus we conclude that M0 and F4ŒQ8=Cy1�

are isomorphic as F4ŒQ8�–modules.

Theorem 4.5 There is an isomorphism

.E2/0Z Š F4ŒQ8�

of F4ŒQ8�–modules.

Proof Let B , C and Q be as in the proof of Lemma 4.4. Let

BZ D fxx0; xx2; xx4; xx6; xy6; xy8; xy10; xy12g

be the usual ordered basis of .E2/0Z and let CZ D fc0; c1; c2; c3; c
0
0
; c0

1
; c0

2
; c0

3
g be an-

other basis of .E2/0Z , where zQD
�

Q
0
�

Q

�
is a change of basis matrix from BZ ! CZ .

By Lemma 4.3, in the exact sequence (4-7), we have N�.vi/D ci and x�.c0i/D vi . From
Table 1, we know that

.y1/BZ
D

�
I M

0 I

�
;

where

M D

2664
1 0 0 aC b

0 1 0 0

0 0 1 0

0 0 0 1

3775 :
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Then
.y1/CZ

D zQ�1.y1/B8
zQD

�
I Q�1MQ

0 I

�
D

�
I M

0 I

�
:

The remainder of the proof that .E2/0Z Š V8.F4/ will continue in Lemma A.1.

Because Q8 acts trivially on u we get the following corollary:

Corollary 4.6 There is an isomorphism

.E2/�Z Š F4Œu
˙1�ŒQ8�

of graded Q8 –modules.

Theorem 4.7 There is an isomorphism

.E2/0Z Š F4ŒG24�˝F4ŒC3� F4

of F4ŒG24�–modules.

Proof Note that x! 2 G24 � S2 corresponds to the power series !x 2 Aut.�n=F4/,
where ! 2 F�

4
. Keep in mind that Qt0.x!/ D !�1 D !2 by (4-3). Note that in

F4ŒG24�˝F4ŒC3� F4 , we have the relations

x! i˝ 1D j x!˝ 1D j˝ 1; x! j˝ 1D j x!˝ 1D k˝ 1:

To establish the result, we must check that the same relations hold with the F4ŒQ8�–
module generator of .E2/�Z , which is xy12 . From Table 1, we observe that this is
indeed the case, ie

.x! i/ � xy12 D j � xy12; .x! j/ � xy12 D k � xy12:

Corollary 4.8 There is an isomorphism

.E2/�Z Š F4ŒG24�˝F4ŒC3� F4Œu
˙1�

of F4ŒG24�–modules.

Lemma 4.9 The element ˛�1� 2 S2 acts trivially on the generators of .E2/�Z .

Proof By definition of ˛ and � [2, Section 2.3], � � ˛ mod F3=2S2 . Therefore,
˛�1� 2 F3=2S2 . The result follows from the fact that tn coacts trivially on BP�Z (ie
the BP�BP–comodule structure of BP�Z does not contain any terms involving tn ) for
n� 3.
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Further note that

Qt0.˛/� 1; Qt1.˛/� 0 and Qt2.˛/� ! mod .2;u1/:

A direct inspection of Table 1 shows that ˛ acts nontrivially on .E2/�Z , in fact we
have:

Corollary 4.10 The fixed point modules .E2/�Z
Cy1 and .E2/�Z

C˛ both equal
F4Œu

˙1�fxx0; xx2; xx4; xx6g.

Corollary 4.11 The subgroup F2=2S2 acts trivially on .E2/�Z
Cy1 .

Proof We know that F3=2S2 acts trivially as tn coacts trivially on BP�Z for n� 3.
Furthermore, F2=2S2=F3=2S2 is generated by the image of y1 and ˛ , both of which
act trivially on .E2/�Z

Cy1 .

5 The duality resolution spectral sequence for Z

Now that we have complete knowledge of the action of S1
2

on .E2/�Z , we are all set
to calculate the group cohomology H�.S1

2
I .E2/�Z/, which is the key step to finding

the E2 –page of the descent spectral sequence (4-1). We will use the duality resolution
spectral sequence, a convenient tool to calculate the E2 –page. The duality resolution
spectral sequence comes from the duality resolution, which is a finite Z2ŒŒS

1
2
��–module

resolution of Z2 . First we fix some notation.

Notation 5.1 Throughout this section, we will let

� S2 WD F1=2S2 ,

� S1
2
WD F1=2S1

2
, and

� IS1
2 be the augmentation ideal of the group ring Z2ŒŒS

1
2
��.

Note that every element in IS1
2 can be written as an infinite sum of elements of the form

ag.1�g/, where 1 denotes the neutral element of S2 , g 2 S1
2

and ag 2 Z2ŒŒS
1
2
��.

Theorem 5.2 (Goerss, Henn, Mahowald and Rezk; Beaudry [3]) Let Z2 be the
trivial Z2ŒŒS

1
2
��–module. There is an exact sequence of complete left Z2ŒŒS

1
2
��–modules

0! C3
@3
�! C2

@2
�! C1

@1
�! C0

�
�! Z2! 0;

where C0 Š Z2ŒŒS
1
2
=G24��, C3 Š Z2ŒŒS

1
2
=G0

24
�� and C1 Š C2 Š Z2ŒŒS

1
2
=C6��. Let e be

the unit in Z2ŒŒS
1
2
�� and ep be the resulting generator in Cp . The map @p can be chosen
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to satisfy

� @1.e1/D .e�˛/ � e0 ,

� @2.e2/� .eC˛/ � e1 mod .2; .IS1
2/

2/,

� @3.e3/D �.eC i C j C k/.e�˛�1/��1 � e2 .

Let F0 D G24 , F1 D F2 D C6 and F3 D G0
24

. For a profinite Z2ŒŒS
1
2
��–module M,

there is a first quadrant spectral sequence

E
p;q
1
D ExtZ2ŒŒS

1
2
��.Cp;M /ŠH q.FpIM /)H pCq.S1

2IM /

with differentials dr W E
p;q
1
!E

pCr;q�rC1
1

.

Since the map BP� ! .E2/� sends v2 7! u�3 , we will denote u�3 by v2 . Let us
now recall Shapiro’s lemma, an important result in group cohomology, which will be
used throughout the rest of this section.

Lemma 5.3 (Shapiro’s lemma) Let G be a finite group, H �G be a subgroup and
let M be a ZŒH �–module. Then, for every n, we have

H n.GICoIndG
H .M //DH n.H IM /;

where CoIndG
H .M /D HomZŒH �.ZŒG�;M /.

Remark 5.4 If H �G is a subgroup of finite index, then

CoIndG
H .M /Š IndG

H .M / WD ZŒG�˝ZŒH �M:

In all instances in which we invoke Shapiro’s lemma, G will be a finite group, hence
one need not distinguish between G

H
.M / and IndG

H .M / for any normal subgroup H

of G.

Corollary 4.8 along with Shapiro’s lemma implies that

H p.G24I .E2/�Z/ŠH p.C3IF4Œu
˙1�/:

The generator x! of C3 acts nontrivially on u (see Table 1), but fixes u3 , so that

(5-1) H p.G24I .E2/�Z/D

�
F4Œu

˙3� if p D 0;

0 if p ¤ 0:

Lemma 5.5 Let G0
24
D �G24�

�1 in S1
2

. Then we have

H q.G024IE�Z/ŠH q.G24IE�Z/Š F4Œv
˙1
2 �:
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Proof Notice that G0
24
\G24�Cy1 . Also keep in mind that ��˛ mod F3=2S1

2
. There-

fore, by Corollary 4.10, � acts trivially on .E2/0ZCy1 . Let Q0
8
D �Q8�

�1 � G0
24

,
i0 D � i��1 and j0 D � j��1 . Thus we have

G024 ŠQ08 ÌC3:

Note that

i0 � i and j0 � j mod F2=2S1
2

because � 2 F2=2S1
2

. Therefore, the actions of i0 and j0 on .E2/0ZCy1 are exactly the
same as that of i and j, respectively. It follows that

.E2/0ZCy1 Š F4ŒQ
0
8=Cy1�

as an F4ŒQ
0
8
�–module. Applying the arguments of Theorem 4.5 to this case, one sees

.E2/0Z Š F4ŒQ
0
8�

as an F4ŒQ
0
8
�–module, and the result follows.

Now we shall focus on computing H q.C6I .E2/�Z/. Take Cy1 to be the center of Q8

and consider C6 D Cy1 �C3 . While Cy1 fixes all the xxi in addition to fixing u, the
group C3 does not fix the xxi ; however, it does fix the xi . This observation will be
crucial for the computation that follows. Because Cy1 is the 2–Sylow subgroup of C6 ,
we have

H q.C6I .E2/�Z/ŠH q.Cy1IF4Œu
˙1�ŒQ8�/

C3 :

Because .E2/�Z Š F4Œu
˙1�ŒQ8� is a free F4ŒCy1�–module we have

(5-2) H q.Cy1IF4Œu
˙1�ŒQ8�/

C3 Š ..E2/�Z
Cy1/C3

Š F4Œu
˙1�Œxx0; xx2; xx4; xx6�

C3

Š F4Œu
˙3�Œx0;x2;x4;x6�

concentrated at q D 0. Essentially deriving from Table 1, we list the actions of i, j
and ij on the generators x0 x2 x4 and x6 , which will come in handy later on:

(5-3)

x x0 x2 x4 x6

i�x x0 u�1x0Cx2 u�2x0Cx4 u�3x0Cu�2x2Cu�1x4Cx6

j�x x0 !u�1x0Cx2 !2u�2x0Cx4 u�3x0C!
2u�2x2C!u�1x4Cx6

ij�x x0 !2u�1x0Cx2 !u�2x0Cx4 u�3x0C!u�2x2C!
2u�1x4Cx6
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To summarize (5-1) and (5-2), as well as to establish notation, we rewrite the E1 –page
of the duality resolution spectral sequence for Z as

E
p;q
1
D

8̂̂̂̂
<̂̂
ˆ̂̂̂:

F4Œv
˙1
2
�hx0;0i if p D 0 and q D 0;

F4Œv
˙1
2
�hx1;0;x1;2;x1;4;x1;6i if p D 1 and q D 0;

F4Œv
˙1
2
�hx2;0;x2;2;x2;4;x2;6i if p D 2 and q D 0;

F4Œv
˙1
2
�hx3;0i if p D 3 and q D 0;

0 otherwise,

where the internal grading of xi;j is j. To compute the differentials in this spectral
sequence, we need the following result:

Theorem 5.6 For every Z 2 zZ , H�.S1
2
I .E2/�Z/ is isomorphic to

H�.K1
IF2/˝F4Œu

˙1�

as an F4Œu
˙1�–module.

Proof We begin with the calculation of H�.F2=2S1
2
I .E2/�Z/. Since

F2=2S1
2 ŠK1

�Cy1;

we have a Lyndon–Hochschild–Serre spectral sequence

(5-4) E
p;q
2
DH p.K1

IH q.Cy1I .E2/�Z//)H pCq.F2=2S1
2I .E2/�Z/:

Since H q.Cy1I .E2/�Z/Š ..E2/�Z/
Cy1 (concentrated at q D 0) and K1 acts trivially

on ..E2/�Z/
Cy1 by Corollary 4.11, the spectral sequence (5-4) collapses and we have

H�.F2=2S1
2I .E2/�Z/ŠH�.K1

IF2/˝ .E2/�Z
Cy1 :

Note that

.E2/�Z
Cy1 Š F4Œu

˙1�hxx0; xx2; xx4; xx6i Š F4Œu
˙1�ŒQ8=Cy1�:

Now we run yet another Lyndon–Hochschild–Serre spectral sequence,

(5-5) E
p;q
2
DH p.Q8=Cy1IH

q.F2=2S1
2I .E2/�Z//)H pCq.S1

2 I .E2/�Z/;

to compute H�.S1
2
I .E2/�Z/. Notice that

E
p;q
2
DH p.Q8=Cy1IH

q.F2=2S1
2I .E2/�Z//

DH p.Q8=Cy1IH
q.K1

IF2/˝ .E2/�Z
Cy1/

DH p.Q8=Cy1IH
q.K1

IF2/˝F4Œu
˙1�ŒQ8=Cy1�/
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D

�
H q.K1IF2/˝F4Œu

˙1� if p D 0;

0 if p ¤ 0;

by Shapiro’s Lemma 5.3. Thus the spectral sequence (5-5) collapses at the E2 –page
and we get

H�.S1
2 I .E2/�Z/DH�.K1

IF2/˝F4Œu
˙1�:

We get a complete description of H�.S1
2
I .E2/�Z/ from Theorem 5.6 and the following

result of Goerss and Henn (see [2, Theorem 2.5.13]):

(5-6) H�.K1
IF2/Š F2Œy0;y1;y2�=.y

2
0 ;y

2
1 Cy0y1;y

2
2 Cy0y2/:

Our next goal is to make use of the formulas in Theorem 5.2 to calculate the d1 –
differentials of the duality resolution spectral sequence for Z . Moving forward, there
are two things that are handy to keep in mind:

� Z admits a v1
2

–self-map [6]; therefore, differentials in the duality resolution
spectral sequence for Z will be v1

2
–linear.

� The d1 –differentials preserve the internal grading.

Lemma 5.7 The differentials d1W E
0;0
1
!E

1;0
1

and d1W E
2;0
1
!E

3;0
1

are zero, while
the differential d1W E

1;0
1
!E

2;0
1

is the v2 –linear map given by

F4Œv
˙1
2 �hx1;0;x1;2;x1;4;x1;6i ! F4Œv

˙1
2 �hx2;0;x2;2;x2;4;x2;6i;

x1;0;x1;2;x1;4 7! 0;

x1;6 7! �v2x2;0;

where � 2 F�
4

. The duality resolution spectral sequence for Z collapses at the E2 –
page.

Proof It follows from Theorem 5.2 that the differential d1W E
0;0
1
!E

1;0
1

is given by

d1.x/D .1�˛/ �x;

which is zero because ˛ fixes x0;0 (this follows from Table 1; also see Corollary 4.10).
Likewise, the differential d1W E

2;0
1
!E

3;0
1

is given by

d1.x/D �.1C iC jC k/.1�˛�1/��1
�x;

which is zero because by Corollary 4.10 and the fact that ˛ � � mod F3=2S1
2

, both ˛
and � fix all the x1;i . The differential d1W E

1;0
1
!E

2;0
1

is given by

d1.x/D‚ �x D .1C˛C E/ �x;
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where E 2 .IS1
2/

2 . Because ˛ fixes all the x1;j , this simplifies to

d1.x/D E �x:

The element E is a possibly infinite sum of the form

E D
X

ag;h.1�g/.1� h/

for ag;h 2 Z2ŒŒS
1
2
�� and g; h 2 S1

2
. In particular, thanks to Table 1 and (2-7), we know

that

.1�g/.1� h/ �x0 D 0; .1�g/.1� h/ �x4 D 0;

.1�g/.1� h/ �x2 D 0; .1�g/.1� h/ �x6 D .Qt1.h/Qt1.g/
2
C Qt1.h/

2 Qt1.g//x0;

and it follows that

d1.x1;0/D d1.x1;2/D d1.x1;4/D 0;

while d1.x1;6/ is a multiple of x2;0 . We know that d1 is not identically zero, because

H 1.S1
2I .E2/�Z/ŠH 1.S1

2 I .E2/�Z/
C3

has rank at most 3. Since differentials preserve internal grading,

E �x1;6 D �v2x2;0;

where � 2 F�
4

, is forced. Since E
p;q
1
D 0 for q ¤ 0, the duality resolution spectral

sequence for Z collapses at the E2 –page.

Remark 5.8 Since H p.S1
2
I .E2/�Z/ŠH p.S1

2
I .E2/�Z/

C3 and

H p.S1
2 I .E2/�Z/ŠH�.K1

IF2/˝F4Œu
˙1�

by Theorem 5.6, it suffices to understand the action of C3 on H p.K1IF2/. This action
is given by

(5-7) x! �y0 D y0; x! �y1 D y1Cy2; x! �y2 D y1

and can be deduced from [2, Section 2.5]. Despite the fact that the isomorphism
of Theorem 5.6 is not an isomorphism of C3 –modules, with careful bookkeeping,
the action of C3 on H�.S1

2
I .E2/�Z/ can nonetheless be deduced from the actions

of C3 on H�.K1IF2/ and F4Œu
˙1�. Therefore, knowledge of (5-6) and (5-7) lets us

completely calculate H p.S1
2
I .E2/�Z/ without resorting to the duality resolution.
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However, most existing K.2/–local computations are done using the duality resolution
spectral sequence, which is why we chose this method, providing a better basis for
comparison with previous work.

Corollary 5.9 The homotopy fixed point spectral sequence

E
s;t
2
DH s.S1

2I .E2/tZ/) �t�s.E
hS1

2 ^Z/

with dr W E
s;t
r !E

sCr;tCr�1
r has E2 –page

E
s;�
2
DH s.S1

2I .E2/�Z/Š

8̂̂̂<̂
ˆ̂:

F4Œv
˙1
2
�hx0;0i if s D 0;

F4Œv
˙1
2
�hx1;0;x1;2;x1;4i if s D 1;

F4Œv
˙1
2
�hx2;2;x2;4;x2;6i if s D 2;

F4Œv
˙1
2
�hx3;0i if s D 3;

or in graphical form (in Adams’ grading) with each � denoting a copy of F4Œv
˙1
2
�:

�1 1 3
0

2

4

�

� � �

� � �

�

The spectral sequence collapses at the E2 –page due to sparseness.

Remark 5.10 According to recent work of Goerss and Bobkova [8], there is a topo-
logical version of the duality resolution, which gives a resolution of the K.2/–local
sphere. The topological duality resolution can be used to compute ��.E

hS1
2

2
^Z/

directly. However, for Z , the algebraic and the topological duality spectral sequences
are isomorphic and the computations remain identical as the relevant spectral sequences
simply collapse.

6 The K.2/–local homotopy groups of Z

The K.2/–local homotopy groups of Z can be computed using the homotopy fixed
point spectral sequence

E
s;t
2
DH s.S2I .E2/tZ/

Gal.F4=F2/) �t�sLK.2/Z

given in (4-1), where Gal.F4=F2/ merely plays the role of “changing the coefficient
field from F4 to F2 ”.
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Recall the norm map (4-5), N W S2!Z2 , whose kernel is S1
2

. By choosing an element

 2 S2 such that N.
 / is a topological generator of Z2 , one can produce a map
Z2! Aut.S1

2
/ which sends 1 2 Z2 to the conjugation automorphism by 
 , which

gives an isomorphism
S2 Š S1

2 ÌZ2:

In [2; 3], 
 is chosen to be � . However, one can also choose 
 D ˛�1� . We choose

 D ˛�1� to get the isomorphism S2 Š S1

2
ÌZ2 . Note that ˛�1� 2 F4=2S2 and

therefore it acts trivially on .E2/�Z . Consequently, we have:

Lemma 6.1 The action of 
 on H�.S1
2
I .E2/�Z/ is trivial.

We postpone the proof of Lemma 6.1 until the end of this section, so that we can focus
on its immediate consequences. Lemma 6.1 simplifies the calculation of the E2 –page
of the Lyndon–Hochschild–Serre spectral sequence

E
p;q
2
DH p.Z2IH

q.S1
2I .E2/�Z//ŠE.�/˝H�.S1

2I .E2/�Z/

)H pCq.S2I .E2/�Z/;

which collapses due to sparseness. Therefore,

H�.S2I .E2/�Z/
Gal.F4=F2/ Š ŒE.�/˝H�.S1

2I .E2/�Z/�
Gal.F4=F2/;

where � has bidegree .s; t/D .1; 0/. More precisely, as an F2Œv
˙1
2
�–module,

H s.S2I .E2/�Z/
Gal.F4=F2/

Š

8̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂:

F2Œv
˙1
2
�hx0;0i if s D 0;

F2Œv
˙1
2
�h�x0;0;x1;0;x1;2;x1;4i if s D 1;

F2Œv
˙1
2
�hx2;2;x2;4;x2;6; �x1;0; �x1;2; �x1;4i if s D 2;

F2Œv
˙1
2
�hx3;0; �x2;2; �x2;4; �x2;6i if s D 3;

F2Œv
˙1
2
�h�x3;0i if s D 4;

0 if s > 4:

In Figure 2, we draw the E2 –page of (4-1). We denote by ı the generators that are
multiples of � , and all others by �.

It is clear that (4-1) collapses at the E4 –page. The only possibilities are two sets of
v2 –linear d3 –differentials

� d3.x0;0/D v
�1
2
�x2;6 , and

� d3.x1;4/D v2�x3;0 .
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�8 �6 �4 �2 0 2 4 6 8 10

0

2

4

x0;0 v2x0;0

x1;0

ı�x0;0
x1;2 x1;4

ı

ı ı ı ı

x2;2

ı

x2;4

ı

x2;6

ı ı ı ı

ı ı
x3;0

ı
ı ı

ı
ı ı

ı

ı ıv2�x3;0 ı

Figure 2: The E2 –page of (4-1).

The v2 –linearity of differentials follows from the fact that Z admits a v1
2

–self-map [6].
However, the generator x0;0 cannot support a differential for the following reason:

The inclusion of the bottom �0W S
0 ,!Z induces a nontrivial map K.2/–homology.

Therefore, �0 induces a nontrivial element in N� 2 �0LK.2/Z which is represented
by x0;0 in the E2 –page of (4-1). Therefore, x0;0 is a permanent cycle.

From the calculation of the classical Adams spectral sequence in [6],

Exts;t
A
.H�Z;F2/) ��Z;

we see that �0Z Š Z=2. In particular, this means Œ�0� is the generator of �0Z and
2Œ�0� D 0. Since the map �W Z ! LK.2/Z sends Œ�0� 7! N�, it must be the case that
2N�D 0. Therefore there is no hidden extension supported by x0;0 .

Moreover it is well known that z� is a class in ��1LK.2/S
0 . Let y� denote the repre-

sentative of z� in the E2 –page of the descent spectral sequence (2-8),

E
s;t
2
DH s.S2I .E2/t /

Gal.F4=F2/) �t�sLK.2/S
0:

A straightforward analysis of the map of descent spectral sequences from (2-8) to (4-1)
induced by �0 shows that y� � x0;0 D �x0;0 , which is a nonzero permanent cycle
representing z� � N� 2 ��1LK.2/Z . Since 2N�D 0, it follows that

2.z� � N�/D z� � 2N�D 0;

ruling out another possible v2 –periodic family of hidden extensions. There are other
possibilities of hidden extensions depicted in Figure 1, which we currently cannot
rule out, though low-dimensional computations lead us to believe that there exists a
particular spectrum Z for which all differentials and possible hidden extensions are

Algebraic & Geometric Topology, Volume 20 (2020)



1270 Prasit Bhattacharya and Philip Egger

zero. Furthermore, as stated in Conjecture 1, we expect that this will be the case for
every spectrum Z 2 zZ .

Proof of Lemma 6.1 Notice that F2=2S1
2
DF2=2S2\S1

2
is a normal subgroup of S2

and
S2=F2=2S1

2 ŠG24=Cy1 �Z2h
 i:

From our work in Theorem 5.6, we see that

(6-1) H�.S1
2I .E2/�Z/Š

�
H�.F2=2S1

2I .E2/�Z/
Q8=Cy1

�C3

ŠH�.F2=2S1
2I .E2/�Z/

G24=Cy1 :

Also note that G24=Cy1 is a normal subgroup of S2=F2=2S1
2

. Therefore, 
 acts on
H�.F2=2S1

2
I .E2/�Z/

G24=Cy1 and the isomorphism in (6-1) commutes with the action
of 
 . Therefore, it suffices to prove that 
 acts trivially on H�.F2=2S1

2
I .E2/�Z/.

Since F2=2S1
2
ŠK1 �Cy1 and 
 acts trivially on Cy1 , we have a sequence of natural


 –equivariant maps

H�.K1
I .E2/�Z

Cy1/ŠH�.F2=2S1
2=Cy1I .E2/�Z

Cy1/!H�.F2=2S1
2I .E2/�Z

Cy1/

!H�.F2=2S1
2I .E2/�Z/;

where the first map is induced by the quotient map and the second map is simply
inclusion of the coefficients. Note that the composite is an isomorphism. Since K1

acts trivially on .E2/�Z
Cy1 , the isomorphism

H�.K1
I .E2/�Z

Cy1/ŠH�.K1
IF2/˝ .E2/�Z

Cy1

is 
 –equivariant. Since 
 acts trivially on .E2/�Z and H�.K1IF2/ (see Lemmas 4.9
and 6.2), the result follows.

Lemma 6.2 The action of 
 on H�.K1IF2/ is trivial.

Proof Since H�.K1IF2/ is a ring, it is enough to show that 
 acts trivially on
the generators (see (5-6)) y0;y1;y2 2 H 1.K1IF2/. A fundamental fact of group
cohomology says that

H 1.K1
IF2/Š Hom.K1=ŒK1;K1�.K1/2;F2/;

where ŒK1;K1� denotes the commutator subgroup. It can be deduced from Section 2.5
of [2] that for every element g 2K1 , its conjugate 
�1g
 belongs to the same coset
as g , ie 
�1g
 2 gŒK1;K1�.K1/2 . Hence the result holds.
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Appendix A regularity criterion for a representation of Q8

The quaternionic group Q8 is an order 8 group which can be presented as

(A-1) Q8 D hi; j W i
4
D 1; i2 D j2; i3jD jii:

We will denote the neutral element of Q8 by 1. Often in the literature, ij is denoted
by k and i2 by �1. This is justified as �12Q8 is central and its square is 1. However,
�1 also denotes the additive inverse of 1 in a ring, and potentially can cause confusion
while working with group rings. Therefore we will instead denote �1 by y1 2Q8 and
yiD y1i, yjD y1j and ykD y1k. With this notation, the relations in Q8 can be rewritten as

� ijD k, jkD i and kiD j,
� i2 D j2 D k2 D y1,
� .y1/2 D 1, and
� jiDyk, kjDyi and ikDyj.

The quotient of the central subgroup of order 2 generated by y1 is the Klein four group
C2 �C2 . In other words we have an exact sequence of groups

1! C2
�
�!Q8

q
�! C2 �C2! 1:

We will denote the images of i; j 2Q8 by i; j 2 C2 �C2 .

Let F be an arbitrary field and let V4.F/ denote the 4–dimensional representation
of Q8 induced by the regular representation of C2 �C2 via the quotient map q . Let
V8.F/ denote the regular representation of Q8 . When char F D 2, it is easy to see that
there is an exact sequence of F ŒQ8�–modules

0! V4.F/
t
�! V8.F/

r
�! V4.F/! 0:

More explicitly, let �4 and �8 be the generators of V4.F/ and V8.F/ as F ŒQ8�–modules
and define

r.g � �8/D q.g/ � �4; t.h � �4/D h � �8Cy1h � �8

for h;g 2Q8 .

The purpose of this appendix is to give a necessary and sufficient condition on an
8–dimensional representation V over a field F with char F D 2 which fits in the exact
sequence

(A-2) 0! V4.F/
Qt
�! V zr

�! V4.F/! 0;

under which it is isomorphic to V8.F/. When char F¤2, the problem is straightforward.
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Any V which satisfies (A-2) is isomorphic to V4.F/ ˚ V4.F/, including V8.F/,
the regular representation of Q8 . This is because, when char F −jQ8j and W is a
subrepresentation of V , one can define a complement subrepresentation W 0 such
that V ŠW ˚W 0 (Maschke’s theorem). In our case, let W D img Qt and W 0 be its
complement. Since (A-2) is an exact sequence, it follows that

W ŠW 0 Š V4.F/:

We will soon see that V8.F/© V4.F/˚V4.F/ when char F D 2.

For any g 2G, let eg 2 F ŒG� denote the element such that

g0eg D eg0g

for every g0 2 G. The collection feg W g 2 Gg forms a basis for F ŒG�. For our
convenience, we consider the ordered basis

(A-3) B4 D fv1 D e1C eiC ejC ek; v2 D e1C ej; v3 D e1C ei; v4 D e1g

of V4.F/. Note that

.i/B4
D

2664
1 1 0 0

0 1 0 0

0 0 1 1

0 0 0 1

3775 ; .j/B4
D

2664
1 0 1 0

0 1 0 1

0 0 1 0

0 0 0 1

3775 ; .k/B4
D

2664
1 1 1 1

0 1 0 1

0 0 1 1

0 0 0 1

3775 :
Thus any vector space isomorphic to the regular representation of C2 �C2 admits a
basis B such that

.i/B D .i/B4
; .j/B D .j/B4

; .k/B D .k/B4
:

The main result in this appendix is the following:

Lemma A.1 Let F be a field with char F D 2. Suppose we have an exact sequence
of F ŒQ8�–modules

(A-4) 0! V4
Qt
�! V8

zr
�! V4! 0;

where V4 is a representation of Q8 induced from the regular representation of C2�C2 .
Let B D fv1; v2; v3; v4g be a basis of V4 such that

.i/B D

2664
1 1 0 0

0 1 0 0

0 0 1 1

0 0 0 1

3775 ; .j/B D

2664
1 0 1 0

0 1 0 1

0 0 1 0

0 0 0 1

3775 ; .k/B D

2664
1 1 1 1

0 1 0 1

0 0 1 1

0 0 0 1

3775 :
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Then, for any basis C D fc1; c2; c3; c4; c
0
1
; c0

2
; c0

3
; c0

4
g of V8 with the property that

Qt.vi/D ci and zr.c0i/D vi , we have

(1) .y1/C D
�

I4

0
M
I4

�
, where

M D

2664
c d a b

0 c 0 a

0 0 c d

0 0 0 c

3775
for a; b; c; d 2 F, and

(2) if c ¤ 0 then V8 is isomorphic to the regular representation of Q8 .

Proof It follows from (A-4) that

.i/C D

�
.i/B X

0 .i/B

�
and .j/C D

�
.j/B Y

0 .j/B

�
for some 4� 4 matrices X and Y . Let xij and yij denote the .i; j /th entry of X

and Y , respectively. Since the choice of c0i is only unique modulo img Qt , we may apply
a change of basis matrix of the form

P D

�
I4 P

0 I4

�
:

In particular, if we choose

P D

2664
y13 0 x14 0

x11 x12Cy13 x13 0

y11 y12 0 y14

x31 x32Cy11 x33 x34

3775 ;
we see that

P .i/CP�1
D

�
.i/B zX

0 .i/B

�
; P .j/CP�1

D

�
.j/B zY

0 .j/B

�
;

where

zX D

2664
0 0 0 0

x21 x11Cx12 x23 x13Cx24

0 0 0 0

x41 x31Cx42 x43 x33Cx34

3775
and

zY D

2664
0 0 0 0

x31Cy21 x32Cy11Cy22 x11Cx33Cy23 x12Cx34Cy13Cy24

y31 y32 y11Cy33 y12Cy34

y41 y42 x31Cy43 x32Cy11Cy44

3775 :

Algebraic & Geometric Topology, Volume 20 (2020)



1274 Prasit Bhattacharya and Philip Egger

Thus, without loss of generality we may assume that

X D

2664
0 0 0 0

x21 x22 x23 x42

0 0 0 0

x41 x42 x43 x44

3775 and Y D

2664
0 0 0 0

y21 y22 y23 y24

y31 y32 y33 y43

y41 y42 y43 y44

3775 :
Now we use the relations (A-1) to get further restrictions on X and Y . While .i/4C D
.j/4C D I8 is trivially satisfied, .i/2C D .j/

2
C is true if and only if

.i/CX CX.i/C D .j/CY CY .j/C :

Thus we get a linear system with free variables y23 , y24 , y32 , y33 , y34 , y42 , y43

and y44 , and we get

X D

2664
0 0 0 0

y42 y32 y33 y34

0 0 0 0

0 0 y42 y32

3775 and Y D

2664
0 0 0 0

y43 y43Cy44 y23 y24

y42 y32 y33 y34

0 y42 y43 y44

3775 :
Consequently, .y1/C D

�
I4

0
M
I4

�
, where

M D

2664
y42 y32 y33 y34

0 y42 0 y33

0 0 y42 y32

0 0 0 y42

3775 :
Now, the linear system generated by the relation

.i/C.j/C D .y1/C.j/C.i/C

has free variables y33 , y34 , y43 and y44 , and basic variables

y23 D y33Cy43; y24 D y34Cy44; y32 D y33Cy43Cy44; y42 D y43:

Let aD y33 , bD y34 , c D y43 and d D y33Cy43Cy44 . In terms of a, b , c and d ,
we have

X D

2664
0 0 0 0

c d a b

0 0 0 0

0 0 c d

3775 ; Y D

2664
0 0 0 0

c cC d aC c aC bC cC d

c d a b

0 c c aC cC d

3775 ;(A-5)
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M D

2664
c d a b

0 c 0 a

0 0 c d

0 0 0 c

3775 :(A-6)

Recall that our change of basis matrix was of the form

P D

�
I4 P

0 I4

�
;

and thus P�1 D P and we have

P�1.y1/CP D

�
I4 M

0 I4

�
as char F D 2. This proves (1).

For (2), we need to find a vector xv such that

fgxv W g 2Q8g

spans V8 . We choose xv D c0
4
D
�

0 0 0 0 0 0 0 1
�T

in the basis C . Let

AD
�
xv .y1/Cxv .i/Cxv .yi/Cxv .j/Cxv .yj/Cxv .k/Cxv .yk/Cxv

�
:

Using (A-5) and (A-6) we see that

AD

2666666666664

0 b 0 aC b 0 bC d aC bC cC d 0

0 a b aC b aC bC cC d bC d aC c 0

0 d 0 cC d b bC d aC bC cC d aC b

0 c d cC d aC cC d aC d aC c a

0 0 0 0 0 0 1 1

0 0 0 0 1 1 1 1

0 0 1 1 0 0 1 1

1 1 1 1 1 1 1 1

3777777777775
:

By a tedious but straightforward calculation, we find

det AD c4;

completing the proof of (2).

Remark A.2 When char F D 2, the representations V4.F/˚V4.F/ and V8.F/ are
not isomorphic. Without loss of generality we may assume c D 1 and aD b D d D 0.
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Suppose there were an isomorphism between V4.F/˚V4.F/ and V8.F/. Then there
would exist a invertible matrix P such that

P

�
.y1/B4

0

0 .y1/B4

�
D .y1/CP:

Note that .y1/B4
is simply the identity matrix, while .y1/C is not. It follows easily that

any matrix which satisfies the above condition is not invertible, whence a contradiction.

Remark A.3 We are unaware of any classification theorem for 8–dimensional repre-
sentations of Q8 over fields of characteristic 2. We suspect that the question of how
many isomorphism classes of V satisfy (A-2) can be resolved. A possible guess might
be that there are overall four isomorphism classes:

� c ¤ 0 (when V Š V8.F/),

� c D 0 and d ¤ 0,

� c D 0, d D 0 and a¤ 0,

� c D 0, aD 0, d D 0 and b ¤ 0, and

� aD b D c D d D 0 (when V Š V4.F/˚V4.F/).

Since this is irrelevant to the purpose of the paper, we leave this question to the interested
reader to verify.
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