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Towards the K(2)-local homotopy groups of Z

PRASIT BHATTACHARYA
PHILIP EGGER

Previously (Adv. Math. 360 (2020) art. id. 106895), we introduced a class Z of 2-local
finite spectra and showed that all spectra Z € Z admit a v, —self-map of periodicity 1.
The aim here is to compute the K(2)-local homotopy groups m«Lg2)Z of all
spectra Z € Z using a homotopy fixed point spectral sequence, and we give an almost
complete answer. The incompleteness lies in the fact that we are unable to eliminate
one family of d3—differentials and a few potential hidden 2—extensions, though we
conjecture that all these differentials and hidden extensions are trivial.

55N20, 55Q10, 55Q51

1 Introduction

We recently (see [6]) introduced the class of all finite 2—local type 2 spectra Z such
that there is an isomorphism

HyZ = AQ2)// E(Q2)

of A(2)-modules, where A4(2) is the subalgebra of the Steenrod algebra generated by
Sq', Sq® and Sq*. We denote this class by Z. Let K(n) denote the height n Morava
K—theory and k(n) its connective cover. Let tmf denote the connective spectrum
of topological modular forms. The two key features of z (see [6] for details) are as
follows:

e Every Z € Z admits a self-map v: £°Z — Z which induces multiplication
by v; on K(2)x—homology of Z,ie Z admits a v% —self-map.

e Every Z € Z satisfies tmf A Z ~ k(2).
The purpose of this paper is to compute the K(2)—local homotopy groups of any Z € Z.

It is difficult to overestimate the importance of K(n)-local computations in stable
homotopy theory. At every prime p, the homotopy groups of Lg(1)S 0 have been
known to capture the patterns in chromatic layer 1 of the stable homotopy groups
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of spheres (also known as the image of J) since work of Adams [1]. Likewise,
the chromatic fracture square, the chromatic convergence theorem of Ravenel [22,
Theorem 7.5.7], as well as the nilpotence and periodicity theorems of Hopkins and
Smith [13, Theorems 3 and 9], suggest that the K(n)-local homotopy groups of S°
or other finite spectra encapsulate information about the patterns in the n™ chromatic
layer of the stable homotopy groups of spheres.

However, our motivation to compute the K(2)-local homotopy groups of Z comes
from its relevance to the telescope conjecture due to Ravenel [20, Section 10]. One of
the various formulations of the telescope conjecture is as follows. Let X be a p—local
type n spectrum. By [13, Theorem 9], X admits a v,—self-map v: L' X — X, ie
a self-map such that K(n)xv is an isomorphism. Then the homotopy groups of the
telescope of X,

T(X):=hocolim(X 2> 77X 2> =72 x Y5 ..,
—_—

are the v, —inverted homotopy groups of X, ie 74T (X) = v, ! 74 X. Since K(n)s =
IF,,[U;H], the localization of a spectrum with respect to K(n) can be thought of as,
roughly speaking, another way of “inverting v,” in the homotopy groups of X. More-
over, there is always a natural map

Ll T(X)—>LK(,Z)X.

Telescope conjecture (Ravenel) For every type n spectrum X, the map t is a weak
equivalence.

It follows from the thick subcategory theorem [13, Theorem 7] that if the telescope
conjecture is true for one p-local type n finite spectrum then it is true for all p—local
type n finite spectra (see [22]). For chromatic height n = 1, the telescope conjecture was
proved by Miller [17, Theorem 4.11] using the mod p Moore spectrum M (1) when
p > 2, and by Mahowald [16, Theorem 1.0] using the bo-resolution [15, Theorem 2.4]
of the finite spectrum Y := M, (1) A Cn when p = 2. While the telescope conjecture
is true for n < 1 at every prime, it remains an open question for all other pairs (n, p).

We claim that in the case n = 2 and p = 2, the 2—-local type 2 spectra Z € Z are the
most appropriate ones to consider in our study of the telescope conjecture. Firstly, they
all admit a v; —self-map, whereas other type 2 spectra with known v, —periodicity, such
as M(1,4) and the A spectra, only admit vgz—self—maps, as shown, respectively, by
Behrens, Hill, Hopkins and Mahowald [5, Theorem 1.1] and by Bhattacharya, Egger
and Mahowald [7, Main Theorem]. Lower periodicity is desirable for computational

Algebraic € Geometric Topology, Volume 20 (2020)



Towards the K(2)—local homotopy groups of Z 1237

reasons. Moreover, the fact that tmf A Z ~ k(2) makes the E;—page of the tmf-based
Adams spectral sequence readily computable. Also, the Z € Z are in many ways
the “correct” height 2 analogue of Y (the spectrum used in the proof of the telescope
conjecture at chromatic height 1 at the prime 2). This is because Y is a type 1 spectrum
which satisfies properties analogous to Z; ie it admits a v% —self-map, as shown by
Davis and Mahowald [10, Theorem 1.2], and satisfies bo A Y =~ k(1). We will further
strengthen our claim by giving an almost complete computation of the K(2)—local
homotopy groups of any Z € Z, which is the “easier side” of the telescope conjecture
because of its computational accessibility.

We will use a homotopy fixed point spectral sequence
E;’t = H*(Gy: (E2):(-)) = mi—s Lx)(—).

of which (2-8) and (4-1) are consequences. This spectral sequence can be derived from
the work of Morava [18] and Devinatz and Hopkins [12]. We will give further details
in Section 2.

To compute the homotopy fixed point spectral sequence, we need to understand the
action of the big Morava stabilizer group G, = S, x Gal(F4/F;) on (E,)«Z, where
S, is the small Morava stabilizer group (see Section 2 for details). This action can be
understood by explicitly analyzing the BP«BP—comodule structure on BPyZ via the
map

¢: BP«BP — Hom (S,, (E»)«Z)

due to Devinatz and Hopkins [11]. The real hard work in this paper is to compute the
BP.BP—comodule structure on BP,Z and obtain the action of S, on (E,)«Z via
the map ¢. The group S, has a finite quaternion subgroup Qg (to be described in
Section 4) and the pivotal result of this paper is Theorem 4.5, where we prove that
there is an isomorphism

(E2)0Z = F4[Qs]

of modules over the group ring F4[Qg]. Part of the proof of Theorem 4.5 is a nontrivial
exercise in representation theory, which we have banished to Lemma A.1 in the appendix
in order to avoid distracting from the main mathematical issues at hand. Theorem 4.5
provides another point of comparison between Y and Z; note that G| = ZJ =
7./2 x 7, and it can easily be seen that

(E1)oY =T,[Z/2].
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Figure 1: The E,—page of (4-1) with possible differentials and hidden extensions.

In Section 5, we run the algebraic duality resolution spectral sequence, a convenient tool
to compute the group cohomology with coefficients in (£;)+«Z . Finally, in Section 6
we compute the E,—page of (4-1). We locate two possible families of v,—linear
ds—differentials and several possible hidden extensions. Using the inclusion S° < Z
of the bottom cell, we are able to eliminate one of the two v, —linear d;—differentials
and some of the possible hidden extensions.

Summary of results

In Figure 1, we summarize all possibilities for 7« L g(2)Z from the work in this paper.
Figure 1 is a part of the homotopy fixed point spectral sequence (4-1), where we
represent possible d3—differentials using dashed arrows and hidden extensions by
dotted lines. Any generator which is a multiple of a specific element ¢ in the E,—page
(to be discussed in Section 6) is displayed using a o, otherwise using a e. Since the
homotopy groups of Lk 2)Z are periodic with respect to multiplication by vé , which
has bidegree (s,¢ —s) = (0, 6), the different possible answers can be read off from the
portion 0 <t —s < 5.

In Beaudry, Behrens, Bhattacharya, Culver and Xu [4], the tmf-resolution for one
particular model of Z € Z is studied to compute its unlocalized homotopy groups.
This computation shows that the potential d3—differentials and hidden extensions as
indicated in Figure 1 are trivial, giving us a complete computation of the K(2)-local
homotopy groups of that particular spectrum Z. We expect the same thing to happen
for every spectrum Z € Z.

Conjecture 1 Forevery Z € Z, the K(2)—-local homotopy groups of Z are given by
JT*LK(Z)Z = Fz[vil:l] ® E(ay,as,as, Z),

where |a;| =i, |{| = —1 and |vy| = 6.
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The spectrum Z in the unpublished work mentioned above would be the first finite
2—local spectrum for which we have complete knowledge of its K(2)—local homotopy
groups. It can be built using iterated cofiber sequences of five different self-maps
(see [6]) starting from S°. Thus, one could work backwards from 7, L K(2)Z, using
Bockstein spectral sequences iteratively to get information about 7« L g(2)S 0,

Organization of the paper

The results in this paper are independent of the choice of Z € Z, and hence Z will
refer to an arbitrary spectrum Z € Z for the rest of the paper.

We devote Section 2 to recalling some fundamental results which connect the theory of
formal group laws to homotopy theory.

In Section 3 we compute the BP«BP—comodule structure of BP,Z .

In Section 4, we briefly recall some of the details of the height 2 Morava stabilizer
group S, and compute the action of S, on the generators of (E,)«Z.

In Section 5, we compute the group cohomology with coefficients in (£;)+«Z using
the duality spectral sequence as well as a result of Henn, reported by Beaudry [3].

In Section 6, we analyze the homotopy fixed point spectral sequence for Z and eliminate
one of the two possible Fz[vzil]—linear families of d3—differentials and some of the
possible hidden extensions.

In the appendix, we include the representation theory exercise omitted from the proof
of Theorem 4.5.
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2 Formal group laws and homotopy theory

The theory of formal group laws was developed by number theorists and eventually
found by Lazard and Quillen to have deep relations with homotopy theory. We will
review these relations, primarily following Lubin and Tate [14] and Ravenel [21]. We
will conclude with a formula relating the action of the Morava stabilizer group on a
Morava module to the structure of a corresponding BPs«BP—comodule.

Definition 2.1 Let R be a Z(p)—algebra. A formal group law over R is a power
series F(x, y) € R[x, y] satisfying

e F(x,y)=F(,x),
e x = F(x,0),
* F(F(x,y),z)=F(x,F(y,2)).

When R is a graded Z,)—algebra we set |x| = |y| = —2 and we require that F(x, y)
be a homogeneous expression in degree —2.

Definition 2.2 Given formal group laws F and G over R, a homomorphism from F
to G is a power series f € R[x] such that f(0) =0 and

S(F(x.y) = G(f(x). f(»).

A homomorphism £ is an isomorphism if f”(0) is a unit in R, and an isomorphism f
is said to be strict if f’(0) = 1. A strict isomorphism from F to the additive formal
group law is called a logarithm of F.

Notation 2.3 We will often use the notation x 4+ y to denote F(x, y) and [1#]r(x)
to denote the n—fold sum x +F --- +F x. We will denote the set of formal group
laws over R by FGL(R), and the groupoid of formal group laws over R with strict
isomorphisms by (FGL(R), SI(R)). When R is torsion-free, then the image of F in
(R ® Q)[x, ¥] has a logarithm, which we will denote by logr € (R ® Q)[x].

Definition 2.4 Let R be a torsion-free Z,)—algebra and let F' be a formal group law
over R. Then F is called p—typical if its logarithm is

logp(x) = Z lixpi
i=0

with [p = 1.
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Now we recall the p—local analogue of the famous theorem of Lazard and Quillen
[19, Theorem 2]. All formal groups discussed will be assumed to be p—typical unless
otherwise stated.

The assignment of a Zp)—algebra R to the set FGL(R) is functorial, and we denote
this functor by
FGL(—): Zp)—algebra — Set.

Similarly, the functor which assigns a graded Z j,)—algebra R to the set of homoge-
neous formal group laws over R, of degree —2 is denoted by

FGL(—): Graded Z,)—algebra — Set.

Theorem 2.5 (Cartier, Lazard and Quillen) The covariant functor FGL(—) defined
on the category of 7 ) —algebras is represented by the Z ) —algebra

V=70 7a....]

ie FGL(R) =~ Homg, (17, R). The covariant functor FGL(—) defined on the category
of graded Z(p,)—algebras is represented by the graded Z.(,)—algebra

BPy = Z(plv1,v2,...]
with |v;| = 2(p’ — 1), ie FGL(R4) = Homg, , (BPx, R«), where Homz, , (BPx, Rx)
is the set of graded Z(,)—algebra maps from BPx to Rx.

Example 2.6 (Honda formal group law) Defining the ring homomorphism

1 ifi=n,
0 ifi#n,

gives the Honda formal group law T3, over [ pn . This formal group law satisfies

[PIr, (x) = x?".

A theorem of Lazard says that I}, is unique in that every formal group law of height »
over a separably closed field of characteristic p is isomorphic to I}, though this
isomorphism might not be strict.

Remark 2.7 The generators v; € V are defined by the property that

Fp o i
[Plry () = px +75, > " Tix?’,

i>1
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where F; is the universal p-typical formal group law over V. Similarly, the v; € BP
are defined by the property that

— — FBPs i
[p]]:BP* (X) = px + Fips Z vixP,
i>0
where Fpp, is the universal p—typical formal group law over BPy and |X| = —2. The

generators {v; : i > 0} and {v; : i > 0} are often called the Araki generators in the
literature.

Consider the functor
p: Z(py—algebra — Graded Z (,)—algebra

which sends R — R[u*!], where u is a formal variable in degree —2. If F is a formal
group law over R, then
F(X.7)=uFu”'X,u""y).

where |X| = || = —2, is a formal group law over R[u*!]. Mapping F + F defines
a natural transformation between the functors FGL(—) and FGL(—) o p. Since F 7 18
a formal group law over the graded ring V[uil], we obtain a map

(2-1) 6: BPy — V[ut"]

and it follows from comparing the p—series (see Remark 2.7) that 6(v;) = ul=p' v;.

We can also ask about how to represent groupoids of formal group laws. We can
do this in two ways, either by considering the groupoid of formal group laws with
isomorphisms, or the smaller groupoid of formal group laws with strict isomorphisms.

Lemma 2.8 Let F be a p—typical formal group law and let G be an arbitrary formal
group law over a Z,(,y—algebra R, and let f be an isomorphism from F to G. Then
G is p-typical if and only if

F
ST =) nx
i=0
where t; € R forevery i and ty € R*.

If we want f to be a strict isomorphism, then we must have zy = 1. In the context of
graded Z,)—algebras, f; is forced to be in degree 2( p' —1). Thus we can define a
Hopf algebroid (BPy, BP«BP) with

BP4BP = BP.[t1,15, ... |t;| = 2(p' = 1)].
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which represents the functor
(FGL(—), SI(—)): Graded Z(py—algebra — Groupoid

which assigns a graded Z,)—algebra R, to the groupoid of p—typical formal group
laws over R, with strict isomorphisms. Let nz,ng: BP«+ — BP+«BP denote the left
and the right units of the Hopf algebroid BP«BP. Note that the universal isomorphism
Sy Fp. = Fap, — NgFap, satisfies the formula

Fap i

_1 — —_ * —

STNE) =X 45, ) ux?,
i>1

where |X| = —2.

Similarly, one can consider the case where R is ungraded and f is an isomorphism
that need not be strict. Thus we define

VI =V[iE' iy, 0, ... |ii] = 0],
getting a Hopf algebroid (17, ﬁ"), which represents the functor
(FGL(-), I(-)): Z(p)—algebra — Groupoid

which assigns a Z,)—algebra R to the groupoid of p—typical formal group laws over R
with isomorphisms. In this case the universal isomorphism f": ’72]:17 =Fp— 77}}}—17

e =" i

i=0

satisfies the formula

Let us define _
Fp(x.7) =uFpw 'xu'y),
G (X, ) = loungFp (g 'u' X, 05 u™" ),
&) =toufw™'%),
where |X| = |y| = —2. It is easy to see that the triple (F 7 f , @) is an element of the

groupoid (FGL(W[uiI]), Sl(ﬁ[uil])). Hence the map 8 of (2-1) can be extended
to a left BP—linear map

(2-2) 6: BP+BP — VT[u™!].

Since

~ ~ 1. R i Fo i i

T ®=uf1G v %) = M(Z T ) = "Gy P u' P %P
i=0 i=0
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and

JH® =071,
we get that the map 6 in (2-2) satisfies
(2-3) 0(t) =ity P u' 7.

Now we briefly recall the notion of deformation, which arose in number theory and
has important implications for homotopy theory.

Definition 2.9 Let k& be a field of characteristic p > 0 and I" a formal group law
over k. A deformation of (k,I") to a complete local ring B with projection

7. B— B/m
is a pair (G,i) where G is a formal group law over B and
i:k— B/m
is a homomorphism satisfying i = 7 G.
A morphism from (G1,i{) — (G, i,) is defined only when i; = i;, in which case it

consists of an isomorphism
f: Gl —> G2

of formal group laws over B such that
f(x)=x modm.

Such morphisms are also called x—isomorphisms. Note that the set Defp(B) of
deformations of (k,I") to B with x—isomorphisms forms a groupoid. The work of
Lubin and Tate [14, Theorem 3.1] guarantees the existence of a universal deformation.
More precisely:

Theorem 2.10 (Lubin and Tate) Let I be a formal group law of finite height over
a field k of characteristic p > 0. Then there exists a complete local ring E(k,T")
with residue field k and a deformation (Fr,id) € Defr (E(k, ")) such that for every
(G, i) € Defr(B), there is a unique continuous' ring homomorphism 6: E(k,T) — B
and a unique *—isomorphism from (G,i) to (0Fr,i).

1A ring homomorphism of local ring is continuous if the image of the maximal ideal of the domain is
contained in the maximal ideal of the codomain.
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Remark 2.11 Tt is well known (see [14]) that if k is a perfect field and I" has height n,
then a choice of Fr determines an isomorphism

E(k, F) = W(k)[[ul, . ..,un_l]]

of complete local rings, where W (k) is the ring of Witt vectors on k.

The automorphism group Aut(I'/k) of T' acts on E(k,T") as follows (also see
[11, Section 1]). Let y € k[x] be an invertible power series. Choose an invertible
power series ¥ € E(k, T')[x] as a lift of y and define Fy over E(k,I') by

Fy(x, ) =7 (FrG ), 7(»)).

Note that the lift ﬁy depends on the choice of lift 3. Since (f ,id) € Defr (E(k,T)),
the Lubin-Tate theorem gives us a unique homomorphism

¢y: E(k,T) — E(k,T)
and a unique *—isomorphism
y: ﬁy — 5,, Fr.

The composite

f Fr 25 F, 2 g, Fr
does not depend on the choice of ¥ and is an element of the groupoid

(FGL(E(k,T)), I(E(k,T))).
Therefore the classifying map for Fr,

or: V —> E(k,T),
can be extended to a left V —linear map
6r: VT — Map®(Aut(T'/ k), E(k,T)).

Let us simply denote 01 (7;)(y) by #;(y) for y € Aut(T'/ k). The elements 7; (y) satisfy
the equation

= i

i=0

One can also consider the graded formal group law T' over k[u*!]. Note that
Aut(I'/ k) = Aut(T'/ k[u*']) via the invertible map y(—) — uy(u~'—). One can
similarly define the graded universal deformation formal group law Fr over the
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graded ring E(k,T)[u™']. Let y € Aut(I'/k) act on E(k,T)[u*!] via the ring
homomorphism ¢,,: E(k, D)[ut!] — E(k,T)[u*!] such that

¢y (x) if x € E(k,T),

Py (x) = {fo(y)x if x=u.

Notice that
¢y Fr (X, 7) = lo()ugy Fr o)™ u™" %, i) "u™' )
and
Jy® =to()ufy @™'x)
is a strict isomorphism between Fr and oy Fr. Thus we have a left BP,—linear map
(2-4) Op: BP+BP — Map®(Aut(T'/ k), E(k, T)[u™']).
It can be easily checked that 6 is identical to the composite map
BP,BP -5 V1] L Mant (Aut(T/ k). E k. T)[u1)).
Let us denote the map 05 (#;)(—) simply by #;(—). It follows from (2-3) that
2-5) () = i)

for y € Aut(I'/ k). Also keep in mind that f, fits into the commutative diagram

FFLH;)/FF

{0

r — r
where the vertical squiggly arrows are reduction modulo m = (p, u1,...,uy—1). Thus,
for y~! = agx +ra;x? +r +a2x1’2 471 -+ € k[x], we have
(2-6) ti(y)=a; and ti(y)= aiao_pl u™P" mod m.

It follows from [21, Corollary 4.3.15] that, when I'" has height # and k <n,

k

2-7) (y1y2) = Z i ()ik—i(r2)?" mod m.
i=0

Now let’s focus on the Honda formal group law I}, over F,» and let F}, denote its
universal deformation. By Remark 2.11, we have

E(Fpn, Fn) = W(Fpn)ﬂul, ey Lln_1]],
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where W(IF,n) are the Witt vectors of I ,», which has an action of the small Morava
stabilizer group
Sy 1= Aut(I, /F pn).

Note that the map ¢, of Example 2.6 which defines the Honda formal group law
factors through I, . Therefore I}, has coefficients in IF,. Consequently, the big Morava
stabilizer group
Gy = Aut(I,/Fp) =S, x Gal(F pn /Fpp)
acts on E(F pn,I},). The Lubin-Tate universal formal group law F, over E(IFpn, I},)
is given by the ring homomorphism
u; if i <n,
0: V- EFp. Ty, T4l ifi=n,
0 ifi>n,
which means that

n—1

[plr, (x) = px +F, u1x? +F, - +F, un—1x?  +F, x7.

We also have a graded formal group law F, over the graded ring (Ey)«, defined as
(En)s == E(F pn, I,)[u®"], which is given by the ring homomorphism

uiul_l’l if i <n,
0: BPx — (En)«.  vi>ul™P"  ifi=n,
0 if i >n.
By the Landweber exact functor theorem,

(En)+(=) := (En)+ ®pp. BP+(-)

is a homology theory, thus it is represented by a spectrum Ej, known as Morava
E —theory. By a theorem of Hopkins and Miller, reported by Rezk [23], the action
of G, on (E,)« lifts to one on E, itself whose homotopy fixed point spectrum is

(En)"®" = Ly S°,
which gives us a homotopy fixed point spectral sequence
E;’t = Hs(Gn§ (En)t) = ”t—sLK(n)SO-

The E,—page of this spectral sequence can be found using a Lyndon—Hochschild—Serre
spectral sequence

H*' (Gal(F pn /Fp); H*>(Sp; (En)s)) = H' 72(Gp; (En)+).
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which as a consequence of Hilbert’s Theorem 90 reduces to
H (Gn’ (En)*) - H* (Sn, (En)*)Gal(]Fpn /]Fp)
Thus, the spectral sequence of interest to us is

(2-8) ES' = H5(Sui (En) )0 /F0) = 7, LS.

3 The BP.BP—comodule BP.Z

For every Z € Z, there is, by definition, an isomorphism

HiZ = (AQ2) | E(Q2)) = F2[&1, &1/ (6} . £5)

of A(2)x—comodules [6]. We will use this fact to determine the BPBP—-comodule
structure of BP«Z . One can use the Adams spectral sequence

EY' =Ext})(H*BP ® H*Z,F,) = BPi_;Z
to compute BP«Z as a BPx+—module. Note that

H*BP = AJ/E(Qo, 01.0Q>....),

where Q; are the Milnor primitives. By a change of rings, the E,—page of the above
Adams spectral sequence is isomorphic to

st s,t ~ S,t
(3-1) Ey' =Bxt;'(H*BP @ H*Z,F2) ~ Ext} 5 o,

Let g denote the generator of Hy.Z in degree 0. As an E(Qg, Q1, O,)—module,
AQ2))) E(Q>) is a direct sum of 8 copies of E(Qg, Q1), generated by the elements
in the set

G={g". 19" /)" 619" (9", ((1&9)". (1859 (€7619)").

Since H*Z = 4(3) A(2) ® E(0,)F2 and Q5 is in the center of A(2), Q5 acts trivially
on H*Z. Using the iterative formula

0i =S¢* Qi1+ Qi—15¢*,

one can inductively argue that Q; for i > 2 acts trivially on H*Z. Thus, we have
completely determined H* Z as amodule over E(Qyg, Q1,...) fromits A(2)-module
structure. Thus, as an £(Qg, O1,...)-module,

H*Z = E(Qo, Q1,--.) ®E(05,05,...) 9+

NHZFy).
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and therefore the E,—page of (3-1) is isomorphic to
E;’* = Fz[vz, V3, .. ] X Q*,

where v; has bidegree (s,7) = (1,]Q;|) = (1,2:*!1 —1). Due to sparseness, the Adams
spectral sequence (3-1) collapses at the E,—page. Hence, as a BPx—module,

(3-2) BP«Z = BPy/(2,v1)(X0, X2, X4, X6, V6. V8> V10: V12)>

where x; and y; are generators in degree i chosen in such a way that the map
BP.”Z — H.,Z sends

Xo> g XabE2g, xgrElg, xer> Elg,
2 262 4e2 62
y6'_>§2g’ YSHélgzga leHélézg, }’12'_>$1§2g-

This identification allows us to infer the BP.BP—comodule structure of BP,Z from
the A(2)«—comodule structure of HxZ via the diagram

BP.Z —— BP.BP ®pp, BPLZ

l l

H.Z —)W AQ2)« ® Hy Z
2
First notice that the coaction map

sends
g 1lg,

EemEllg+1lEe,
flemEllg+1lEe,
g EPlg+ETIET e +ETIE g + 1187 g,
(3-3) &g Elg+EIET g+ 11E g,
e~ EE e+ E +E)IE e + £ 18+ 1E ¢ + €78 g,
EEe o E8|g +E I g + £ 18 e + E1ET g + £ 1E g + 11E1ES g,
E0Esg > E0E5 g + (16 + E[OET g + (6783 + EDIET g +E7 163 ¢

+(E +EDIE g HENE g + 1151 g + 11E)E g
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The map
BP.BP — A

sends v; — 0 and t; — Zl.z, where ¢; is the image of & under the canonical anti-
automorphism of Ax. Moreover A(2)s = A«/(¢¥.85.¢3.84.¢s,...). Therefore 5,
along with the fact that (2, v;) C BP acts trivially on BP,Z, completely determines
the composite map

BP.Z > BP.BP ®gp, BP+Z — BP+BP/T, ®p, BP+Z,
where

Iz:(Uz,v3,...,l‘f,l‘zz,l3,l‘4,...)CBP*BP.

Note that all elements in the generating set {xg, X2, X4, X¢, V6, V8, V10, V12} of BPxZ
have internal degrees between 0 and 12, whereas [fj| > 12 and |vj| > 12 when
J = 3. Therefore, for j > 3, ¢; and v; do not appear in the expression for ¥ (x;)
and V¥ (i), though v, may be present. Using (3-3) and the fact that ¢ 12 =¢£ 12 and
¢ g = 522 +& 16 , we easily derive the coaction map ¥ on the generators of BP«Z modulo
(v2.1},13) € BP+BP. We get

¥ (xo) = 1]xo,
Y (x2) = t1|xo+ 1]x2,
Y (x4) = 17 X0+ 1]xs,
Y (xg) =15 |xo + 17 |x2 +11 x4 + 1] X6,
(3-4)
Y (ye) = (la+17)|x0+171x2+ 1| s,
V(ys) = tit2|Xo +ta2|x2 +17 x4 +11]y6+ 1] s,
¥ (y10) = t{ta|x0 + (1 +12) x4+ 17 X6 +17 6 + 1 y10,
Y (y12) =L |xo+ 10X+t |xs +1a|x6 + 17 | ve + 17 1 ys + 111 y10 + 1 y12-

Lemma 3.1 Forany Z € z , BP«Z has one of the four different BP+BP—comodule
structures given below:

¥ (xo) = 1|xo,
V(x2) = t1|x0 + 1]|x2,
¥(x4) = 17 x0 + 1] x4,
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¥ (xe) =1 X0 + 17 |x2 + 11|x4 + 1|x6.
¥ (ve) = (t2 + 1) |x0 + 17 X2 + 1] y6.
Y (ys) = (at} + t16)|xo + t2|x2 + 17 x4 + t1]y6 + 1] s,
Y (y10) = (17 + 17 02)|xo + 17 [x2 4+ (1] + 1) x4 + 17 1x6 + 17| y6 + 1] y10.
Y (y12) = (b + Dt} + 112 + (a + b)13)|xo + 1 12|x2 + (b1} + 1112) x4 + 2|6
+171v6 +111ys + 110 + 1y,

where a,b € IF,.

Proof For degree reasons, the congruences of (3-4) imply that there are coefficients

0 .0 017092 0 10 2 12 14
hes K Mg Ag. Ag, g Alos W10 ATos AT0s

0 0 20 .0 2 42 4 14 46 6
Wi2sVigsAasK1p, 0, s ATos s ATa  ATp KT

in IF, such that one has

¥ (x0) = 1|xo,
Y (x2) =t1|xo + 1]x2,
¥ (x4) = 17 |x0 + 1|x4,
Y (xe) = (] + Agua)lxo + 17 |x2 + 11 ]x4 + 1|6,
Y (y6) = (1 + 12 + kdv2)|xo + 17 X2 + 1] s,
Y (ys) = (ugty + tity + Aguaty)|xo + (2 + Agv2) X2 + 17 x4 + 11 ys + 1 ys.
¥ (y10) = (ufot] + 172+ Agvatd) X0 + (ietf +ATovatt)|x2
+ (&) + 12+ Afva)lxa + 17 x6 + 17 [y6 + 1 y10,
Y (12) = (U517 + 1712 + 1513 + 13,0217 + k50212 + 0037)|x0
(3,17 7t + AT vat]) [xa + (uh,t] + t1ta + AT ,0201) x4
+ (t2 + A0,v2) X6 + (1] +k5,02) |6 + 17 |vs + 11 y10 + 112

The counitality condition of ¥

BP.Z

‘|

BP.BP Qpp, BP+Z —— BPx ®pp, BP+Z
€®BP>|<Z

IR
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forces Ag = Kg = Aé = )L‘I‘O =0 = )L?Z = K162 = 0. After the change of basis

Vs v g+ Aqvaxs,
Y10 > V1o +Adgvaxa,,
Yi2 % Y12 + k026 + (A, + k7526,
we have
¥ (xo) = 1[xo,
¥ (x2) = t1]|x0 + 1[x2,
¥ (x4) =17 ]x0 + 1] x4,
Y (xg) = 17 |xo + 17 ]x2 + 11]x4 + 1]x,
¥ (ye) = (1] +12)|x0 + 17 |x2 + 1] y6.
Y (ys) = (uat] + t102)|xo + falxa + 17 x4 + 11| ys + 1]ps.
Y (r10) = (13o8] + 11 02) X0 + (1ot} + A gvatn) X2 + (6] +12) x4+ 17 |x6 +17 | ye
+ 1|10,
V(r12) = WOt 8 + 65t + v, x0 + (13,60 + 13t + A + A%, + A vatd) |,
+ (uist] +tita + Ay + AT, + A%, +kD))vaty) x4 + t2]x6
+17|ye + 7 1ys + t1lyio + 1yi2.

Now we exploit the coassociativity condition

BP.Z v BP+BP ®pp, BP+Z

wl lA@BP*Z

Applying the coassociativity condition on yg tells us nothing, while applying it on y1¢
tells us that
Mo=0. ulg=nip=1
Applying it on y1,, we get
Wi =0,
Wia iy +1=0.
1y +pdy + v, +1=0.

0,10 2
0 4 0 0
Ao+ AT+ A1+, =0,

Setting a = ,ug and b = ,u(l)z + 1 completes the proof. |
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Remark 3.2 By sending v; — 0 and #; — §l.2, we obtain a functor
Q: (BPy, BP+BP)—comodules — (IF,, ®A4,)—comodules,

where @A, is the double of the dual Steenrod algebra. This functor sends BPxZ
to ®A(1)«. Since A(1)x has four different 4.—comodule structures, it follows that
®A(1)« has four different ®A4,.—comodule structures. The four different BPBP—
comodule structures on BPy Z are essentially lifts of the four different ® A4, —comodule
structures on ®A(1)«.

Remark 3.3 Let M, = BP«/(2,v1)(g0, &2, &4, gs) be the BPxBP—comodule with
four generators with cooperations

¥ (g0) = 1|go, V(gsa) =170 + 1|ga,
Y(g2) =tlgo+1lg2.  V(ge) =t]lgo +1tilg2 +t1lga + 1gs.

Then, if W = A1 A Cv, where A; is any of the four 8—cell complexes whose coho-
mology is isomorphic to A(1), the BP,BP—comodule BP+W is isomorphic to M.

A straightforward calculation tells us:

Lemma 3.4 There is an exact sequence of BP«BP—comodules
0—> M, ->BP.Z - 3M,—0

such that 1(g;) = x;, t(x;) =0 and ©(y;) = X%g;_¢.

4 The action of the small Morava stabilizer group on (E»).Z

To compute the E,—page of the homotopy fixed point spectral sequence
(4-1) Ey' = H* (S5 (E2) )% = Ly Z.

we first need to understand the action of S, = Aut(I,/IF4) on (£;,)«Z, where I3 is
the height 2 Honda formal group law over [F4. Recall from (2-4) the left BP4—linear
map

ani BP.BP — Mapc(Sz, (Ez)*)
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For X a finite spectrum, we deduce the action of S, on (E£;)«X from the knowledge
of the BP,BP—coaction map WAI,;P on BPy« X via the diagram

¥ BP
BP+X —~ BP4BP ®pp, BP X
(4-2) lern ®BP. X

Map(S,, (E2)«) ®pp, BP+ X

The main purpose of this section is to understand the action of S, on (E;)«Z, for all
ZeZ.

We begin by briefly recalling some key facts about S, that we need for the calculations
to follow. Let 7" be a formal variable that need not commute with W ([F4) and let

Oy 1= W(ENT)/(T?* =2, Tw —°T),

where o is a root of x2 4+ x + 1 € F5[x], and o is the Frobenius map on W(F4). Note
that any element y € O, can be written as a power series

o
y = ZanT”,
n=0

where the @, are Teichmiiller lifts of IF,* or are zero. Then y corresponds to the power

series

p— — — n
aox +r, a1x2 4+t a,,x2 +1, - € Fyaflx],

where a, is the image of @, under the quotient map W(F4) — F4. In fact, this defines
an isomorphism from O, to End(I3/F4) C F4[x] and, consequently, S, is isomorphic
to the group of units of O, (see [21, Lemma A2.2.20]). Recall from Section 2 the map

51""3 VT — Map®(S2, (E2)o).

where I, is the height » Honda formal group law. To avoid cumbersome notation, let
us continue (from Section 2) to denote 6, (y) simply by 7. From (2-6), we learn that

if
19" n
)/_1 = Z anx’ € S,,
n=0
then
(4-3) tn(y) =a, mod (2,uy).
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Also keep in mind that the Teichmiiller lifts aj, satisfy the equation a} = aj,. Therefore
we have

(4-4) tn(=)* = 1,(—=) mod (2, uy).

We can also write every element of @, as a + bT with a,b € W(F4). Using the
isomorphism S, =~ O; , one defines a determinant map (see [2, Section 2.3])

det: S, — Z5,

which sends a +bT + aa® —2bb? . Composing this with the quotient map Z5 —
75 [{*1} = Z, gives the norm map

(4-5) N:S, &% 7% - 7,.

The kernel of the norm map N: S, — Z, is called the norm one subgroup and is
denoted by S;. In [2, Section 2.3], Beaudry described two elements o, 7 € S, such
that det(er) = —1 and det(r) = 3, two elements which generate Z7 topologically. In
particular, 7r defines an isomorphism Sy = S} xZ,.

As we will see in this section, the most crucial part of the action of S, on (E;)«Z is
the action of its finite subgroups, which we describe here, following [2; 9].

Proposition 4.1 Every maximal finite nonabelian subgroup of S, is conjugate to a
group
Gag = Qs % C3,

where Qg is the quaternion group
0s = (i,j:i* =1,i* =2, i¥j =ji)

and the generator @ of Cj3 acts by conjugation and permutes i, j and k = ij. More
precisely, we have the relations

1) wi=jo,

2) wj=ko.
Notation 4.2 We denote the identity element of Qg by 1. The order 2 element of Qg
is often denoted by —1; however, to avoid confusing it with an element of a ring, we

will denote it by le Qg . Similarly, we denote = ii,T: ij, k = 1k. The center of Os,
which is an order 2 group generated by 1, will be denoted by G5.
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The maximal finite subgroup G,4 is unique up to conjugation as a subgroup of S;,

while as a subgroup of Sé, there are two conjugacy classes, G4 and G, = TGy,

The group Sé also has a cyclic subgroup

C6 = C’i X C3
generated by 1 and @.

The identification of S, with O3 endows S, with a decreasing filtration
(4-6) F0/2SZ=82,Fn/2§2={)/6821)/5 1 mod Tn}

One should note that
C3 if n =0,
F, if n>0.

Notice from (4-3) that ¢, coacts trivially on BP«Z for n > 2. Therefore, following (4-3),

Fu/2S2/ Fug1))2S2 = {

we conclude that F,/»S; for n > 2 acts trivially on (E3)«Z. We list the generators
of the various filtration quotients of S, in the following table:

associated graded generators
Fo/2S2/F1/2S2 = C3 ®
Fi/2S2/ Fy)2Sy = Q5/Cy = Cy x Gy i,
F2/2§2/F3/282§CIXC0¢ 1«

The subgroup
K = (a, F3/5S,)

is known as the Poincaré duality subgroup of S,, and it is known that
Sy = K xGpy.

The subgroup S; inherits the filtration of (4-6) via F), /ZS; = S; N Fy/2S;. In
particular, we have
C; itn=0,
Fu/2Sy/Fin+1)/2Sy = {Fy if n>0 and n odd, or n =2,
IF, otherwise.

There is a corresponding Poincaré duality subgroup K! which satisfies

Sé = Kl X Gag.
Recall from (3-2) that

(E2)+Z = (E2)« ®pp, BP+Z = (E3)«/(2,u1){xX0, X2, X4, X6, V6. V8> Y10: V12)-
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u fou
Xo Xo
X i311X0 + loX2
X4 fa12X0 + 12 X4
Xg t Xo + lztzxz + fof1 X4 + X6
V6 (t1 + ZO 215)Xo + ZO tl X2 + Ve
Vs (algty + Iyl112)Xo + HXy + 11 X4 + 1511 V6 + 0 s
Vio (fof? 4+ 1302)Xo + 11Xy + (217 + fol2) X4 + Tol X6 + fol1 Ve + I3 V10
Yiz (b4 V)i + 2535 + (a+ b)igi3)Xo + loi 12X
+(biyh + 1112)X4 + 1312X6 + 1; V6 + 1311 Vs + Tol1 V10 + V12

Table 1: The action of S; on (E3)«Z

For our purposes it is convenient to have all the generators in degree 0, so we define

= i/2 = i/2
Xi=uxi. Fi=u?y

in order to have
(E2)sZ = (E2)«/(2,u1){X0, X2, X4, X6, V6, V8- V105 V12)-

By (4-2), the action of S, can be expressed in terms of maps 7;: S, — E(F4, %),
which are related to the maps #;: S, — E (Fy4, I>)[u®!] by (2-5). For instance, we have

W EBP (x2) = 1xy +11]x0 = 1|x2 + u™ iy 211 |xo,
so for y € S, we have
y(%2) = y(uxy) = fo(y)u(xa +u~io(y) 211 (¥)x0) = lo(y) X2 + fo(¥) ™11 () o.

By Lemma 3.1, if we suppress “y”, the action of S; can be described as in Table 1
(thanks to (4-4), we can adopt the simplifications 7} =7; for i = 1,2 and 73 = 1).

Let My = (E»)« ®pp, My, where M, is the BP«BP—comodule introduced in Remark
3.3. Define

gi=u'l?g
to form a set of generators {go, g2, g4, g6} of My. A consequence of Lemma 3.4 and
Table 1 is:
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Lemma 4.3 There is an exact sequence

(4-7) 0— My - (E2)oZ <> My — 0

of Qg—modules, where 1(g;) = X; and T(y;) = gi—¢-

We will use the exact sequence of (4-7) (compare with (A-2)) to understand the action

of Qg on (E;)oZ. For this purpose we need the data of 7;(y) modulo (2,u;) for
y € Qg. By definition of the Honda formal group law I3, we have [2]r,(x) = x* and

it follows that r
2 n
[Flne) =) " x*

n=0
Indeed, one has
FZ n FZ n 1—‘2 n
4 4 4 4
X—I-FZZ X =X+r‘2x+r‘22 X7 =x"+n, x* =--=0.
n>0 n>1 n>1

Following (2-6) and using the fact that [—1]r, (x) is its own inverse, we have

1 if n is even,

(1) =
n() {0 if n is odd,

modulo (2, u7). Further, i and j can be chosen so that, modulo (2, u#1), one has

e fy(y)=1 forall y € Qg,
e 1) =0G)=1,10G)=41() = and 71 (k) =7 (k) = 2.

Lemma 4.4 There is an isomorphism My == F4[Qg/ (3] of left F4[Qg]-modules.

Proof Since i(g;) = X;, one can read the action of Qg off Table 1. With respect to
the ordered basis B = {5, g2, g4, g6} of My, we have

1111 l w w? 1
~ 0101 . ~ 01 0 w?
()s= ()= 0011l ()s=0)s= 00 1 o |
0001 00 0 1

1l w2 0w 1

~ 01 0 w

We=@®5=| 0 o | o

0 0 0 1
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Consider the basis C = {vg, v1, v2, v3} of M, where

0 0

1

w2

0

oo o =
o 8 =
e e )

is the change of basis matrix from B — C. It can be readily checked that

1100 1010
0100 0101
0001 0001
1111
0101
— -1 —
0001

The last three matrices are equal to those representing the same transformations in the
basis B4 of [F4[Qg/ (3] given in (A-3), and thus we conclude that My and F4[Qs/ G5l
are isomorphic as [F4[Qg]-modules. |

Theorem 4.5 There is an isomorphism

(E2)0Z =T4[Qs]
of 4[Qg]-modules.

Proof Let B, C and Q be as in the proof of Lemma 4.4. Let

Bz = {X0.X2,X4, X6, V6. V8- Y10, V12}

be the usual ordered basis of (E3)oZ and let Cz = {co. 1. ¢2,¢3.¢q. €], €5, 3} be an-
other basis of (E3)oZ, where O = (g 5) is a change of basis matrix from Bz — Cz.

By Lemma 4.3, in the exact sequence (4-7), we have i(v;) = ¢; and 7(c}) = v;. From
Table 1, we know that

e =] g |

where

b

oo O —
oo - o
o - o o
- o o +
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Then ~ R 7 Q_lMQ I M
(De, =0 (1)BSQ:[O 7 ]=[O I]

The remainder of the proof that (E,)gZ = Vg(F4) will continue in Lemma A.1. O
Because Qg acts trivially on u# we get the following corollary:

Corollary 4.6 There is an isomorphism

(E2)+Z = Falu™"] Q5]
of graded Qg—modules.

Theorem 4.7 There is an isomorphism

(E2)0Z = F4[G24] ®F,(c;31 Fa
of F4[G24]-modules.

Proof Note that w € G4 C S, corresponds to the power series wx € Aut(I},/Fy),
where w € ]FI. Keep in mind that 7o(@) = ol = w? by (4-3). Note that in
F4[G24] ®F,[c5] Fa, we have the relations

wiRl=jwR1=j®1, 0jRl=jw®1=kRI1.
To establish the result, we must check that the same relations hold with the F4[Qg]-

module generator of (E;)«Z, which is y1,. From Table 1, we observe that this is
indeed the case, ie

(@i)-y12 =] Y12, (@) Y12 =k V12 i
Corollary 4.8 There is an isomorphism

(E2)«Z = F4[G4] ®F,[cy) Falu™"]
of F4[G24]-modules.

Lemma 4.9 The element o' € S, acts trivially on the generators of (E3)«Z .

Proof By definition of o and 7 [2, Section 2.3], # = o mod F3/,S,. Therefore,
o~z e Fy /252 . The result follows from the fact that #, coacts trivially on BP«Z (ie
the BPy«BP—comodule structure of BPy«Z does not contain any terms involving ¢, ) for
n=>3. O
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Further note that
fol@)=1, fi(@)=0 and fH(a)=w mod(2,u;).
A direct inspection of Table 1 shows that « acts nontrivially on (E,)«Z, in fact we

have:

Corollary 4.10 The fixed point modules (E;)«Z€1 and (E;)+Z% both equal
Fa[u™"1{Xo. X2, X4, X6}

Corollary 4.11 The subgroup F;/,S, acts trivially on (E2)x A

Proof We know that F3,,S; acts trivially as #, coacts trivially on BPxZ for n > 3.
Furthermore, F,/,S,/F3/5S; is generated by the image of 1 and «, both of which
act trivially on (E,)«Z 1. |

5 The duality resolution spectral sequence for Z

Now that we have complete knowledge of the action of S; on (E,)«Z, we are all set
to calculate the group cohomology H*(S); (E;)«Z), which is the key step to finding
the E,—page of the descent spectral sequence (4-1). We will use the duality resolution
spectral sequence, a convenient tool to calculate the E,—page. The duality resolution
spectral sequence comes from the duality resolution, which is a finite ZzﬂS;]]—module
resolution of Z, . First we fix some notation.

Notation 5.1 Throughout this section, we will let
e S5y:=F12S,,
o Szl = Fl/zSé,and
. IS; be the augmentation ideal of the group ring Z 2|[S21]].
Note that every element in IS% can be written as an infinite sum of elements of the form

ag(1—g), where 1 denotes the neutral element of S,, g € Szl and ag € Z2|[S21]].

Theorem 5.2 (Goerss, Henn, Mahowald and Rezk; Beaudry [3]) Let Z, be the
trivial Z 2[[8;]]—module. There is an exact sequence of complete left 7. 2[[8;]]—modules

0— ¢ 254 2 M 4 <52, 0,
where 6y = ZzﬂS;/sz], €3 = Zz[[S%/Géé‘_]] and 61 = 6, =~ ZZIISé/CGIl Let e be

the unit in Zz[[S%]] and e), be the resulting generator in 6, . The map 0, can be chosen
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to satisfy
e di(er) =(e—0a)-eq,
© d2(e2) = (e +a)-e; mod (2, (IS)%),
o O3(e3)=m(e+i+j+k)e—a Ha . e,.

Let Fo = Ga4, Fy = F, = Cg and F3 = G/, . For a profinite Zz[[S;]]—module M,
there is a first quadrant spectral sequence

EPT =Extz,g17(6p. M) = H(Fp: M) = HPT(S): M)

with differentials d,: EP? — EPTP47"HL

3

Since the map BPy — (E;)« sends v, — u~>, we will denote u~> by v,. Let us

now recall Shapiro’s lemma, an important result in group cohomology, which will be
used throughout the rest of this section.

Lemma 5.3 (Shapiro’s lemma) Let G be a finite group, H C G be a subgroup and
let M be a Z[H]-module. Then, for every n, we have

H"(G;Colnd$, (M)) = H"(H; M),
where CoInde (M) = Homgz[;1(Z[G], M).
Remark 5.4 If H C G is a subgroup of finite index, then
Colnd% (M) = Ind% (M) := Z[G] @z M.
In all instances in which we invoke Shapiro’s lemma, G will be a finite group, hence
one need not distinguish between g(M ) and Indg (M) for any normal subgroup H
of G.
Corollary 4.8 along with Shapiro’s lemma implies that
HP(Ga4:(E2)+ Z) = HP(Cy: Fa[uT']).
The generator @ of Cz acts nontrivially on u (see Table 1), but fixes u3, so that
Fau®3] if p =0,
0 if p#0.

Lemma 5.5 Let G, = 271G~V in S;. Then we have

(5-1 H?(Gy4: (E2)+Z) = {

HY(Gly; ExZ) = HY(Goy; ExZ) = Fy[vi!].
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Proof Notice that G; 4N G24 D (. Alsokeep in mind that 7 =« mod F3, Sé . There-
fore, by Corollary 4.10, 7 acts trivially on (E,)oZ 7. Let Qy =nQsn ' C Gy,
" =miz~! and j = wjm~!. Thus we have

Ghy = 0 % Cs.
Note that

-/

=i and | =j mosz/zSé

because 7 € F) /285. Therefore, the actions of ' and j on (E,)oZ%1 are exactly the
same as that of i and j, respectively. It follows that

(E2)0Z 1 = F4[Q%/ C3)

as an F4[Qg]—module. Applying the arguments of Theorem 4.5 to this case, one sees

(E2)0Z = F4[Qg]

as an [F4[Qg]-module, and the result follows. a

Now we shall focus on computing H?(Cs; (E2)«Z). Take Cj to be the center of Qg
and consider Cg = (5 x C3. While (3 fixes all the X; in addition to fixing u, the
group C3 does not fix the X;; however, it does fix the x;. This observation will be
crucial for the computation that follows. Because C3 is the 2—Sylow subgroup of Cs,
we have

H(Coi (E2)+Z) = H(Cy: Fa[u™'[Qs]) .
Because (E;)«Z = F4[ut'][Qs] is a free F4[C3]-module we have
(5-2) HI(Cq:Fau™'[Qs) = (E2)xZ2)S
= Fyfu™'[%o, X2, 4, %]
= Fu[u™3]x0, X2, X4. X6]

concentrated at ¢ = 0. Essentially deriving from Table 1, we list the actions of i, ]
and ij on the generators xog X, X4 and xg, which will come in handy later on:

X X0 X2 X4 X6

(5.3) ix | xo ulxod+xy uTxg+xg u 3 xo+u"2xy+u" x4+ x6
x| xo oulxg+xy 0 u xo+xs uxo+0 uT x, +ou" x4+ x6

ij-x | xo @*u xo+x2 wu xg+xs u 3 xo+wu xs+w?u" x4+ x6
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To summarize (5-1) and (5-2), as well as to establish notation, we rewrite the E;—page
of the duality resolution spectral sequence for Z as

Fa[vE1(x0,0) if p=0 and ¢ =0,
Fa[vE!)(x1,0,x1,2, X1,4.X16) if p=1 and ¢ =0,

EPT = JFa[vF'(x2,0.x2,2.%2,4.X2,6) if p=2 and ¢ =0,
F4[U§E1 (x3,0) if p=3and ¢ =0,
0 otherwise,

where the internal grading of x; ; is j. To compute the differentials in this spectral
sequence, we need the following result:
Theorem 5.6 Forevery Z € Z, H* (Szl; (E»)«Z) is isomorphic to

H*(K';Fy) @ Fylut!]

as an F4[u®']-module.

Proof We begin with the calculation of H*(Fz/le; (E»)«Z). Since
Fy)5S, =~ K' x C,

we have a Lyndon—Hochschild—Serre spectral sequence

54 EPT=HP(K' HY(Cyi(E2)«Z)) = HPT(Fy 285 (E2)+ Z).

Since H(Cy; (E2)+Z) 2= ((E2)«Z)T (concentrated at ¢ = 0) and K acts trivially
on ((E,)+Z)¢1 by Corollary 4.11, the spectral sequence (5-4) collapses and we have

H*(F228y; (E2)+ Z) = H*(K';F2) ® (E2)» Z1,
Note that

(E2)Z“1 2 Fy[u")(Xo. X2, X4. X6) 2= Fa[u™'[Qs/ C3l.
Now we run yet another Lyndon—-Hochschild—Serre spectral sequence,
(55)  Ey?=HP(Qs/Cqi H(Fy28;: (E2)s Z)) = HI (8,1 (E2)x2).
to compute H* (Szl; (E»)«Z). Notice that
EJ? = HP(Qg/Cy; HI(F1/2S3; (E2)+Z))
= H?(Qs/Cy: HI(K'1F2) ® (E2)x Z)
= H?(Qs/Cy: HI(K':F5) @ Falu™][Qs/ C5)
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_ {Hq(K1§F2) @ F4fu®!] if p=0,
o if p#0,

by Shapiro’s Lemma 5.3. Thus the spectral sequence (5-5) collapses at the E,—page
and we get
H*(S3:(E3)+Z) = H*(K':F2) @ F4lu™]. O

We get a complete description of H*(S.; (E;)«Z) from Theorem 5.6 and the following
result of Goerss and Henn (see [2, Theorem 2.5.13]):

(5-6) H*(K';Fy) = Fa[yo. y1. 121/ (V5. 1 + Yor1. ¥3 + Yor2).

Our next goal is to make use of the formulas in Theorem 5.2 to calculate the d;—
differentials of the duality resolution spectral sequence for Z. Moving forward, there
are two things that are handy to keep in mind:

e 7 admits a v% —self-map [6]; therefore, differentials in the duality resolution
spectral sequence for Z will be v% —linear.

¢ The d;—differentials preserve the internal grading.

Lemma 5.7 The differentials d: E?’O — Ell’0 and dy: Ef’o — Ef’o are zero, while

the differential d: Ell’0 — E12’0 is the v, —linear map given by

+ +
Falvy '1x1,0, 1,2, X1,4. X1,6) = Fa[v3 ' [(x2,0, X2,2, X2,4. X2,6),
X1,0,X1,2,X1,4 = 0,
x1,6'—>)»U2X2,0,

where A € IF,C. The duality resolution spectral sequence for Z collapses at the E;—
page.

Proof Tt follows from Theorem 5.2 that the differential dy: E ?’0 — FE 11 0 is given by
di(x) =1—-a)-x,

which is zero because « fixes xg o (this follows from Table 1; also see Corollary 4.10).
Likewise, the differential dy: E 12’0 — FE 13’0 is given by

dix)=nQ+i+j+k@A—a Hr ! x,

which is zero because by Corollary 4.10 and the fact that « = 7 mod F3 /zSé , both «
and 7 fix all the x; ;. The differential d;: Ell’0 — Ef’o is given by

di(x)=0-x=(14+a+¢&)-x,
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where £ € (IS;)z. Because « fixes all the xy ;, this simplifies to
di(x)=E&-x.
The element £ is a possibly infinite sum of the form
E=) agh(l-g)(1—h)

for ag j € Zz[[Szl]] and g, h € S21 . In particular, thanks to Table 1 and (2-7), we know
that

(1-g)A—-h)-xog=0, (1-g)(L—-h)-x4=0,
(1-g)A=h)-x2=0. 1-g)(Ad—h)-x6 = ([1(Wi1(g)* +11(h)*11(g))xo.
and it follows that
di(x1,0) =di(x1,2) =di(x1,4) =0,

while d;(x1,6) is a multiple of x5 o. We know that d; is not identically zero, because
H'(S3:(E2)«Z) = H'(S3: (E2)+ 2)
has rank at most 3. Since differentials preserve internal grading,
£+ X1,6 = Av2X2,0,

where A € F°, is forced. Since E f’ 1 = 0 for ¢ # 0, the duality resolution spectral
sequence for Z collapses at the E,—page. O
Remark 5.8 Since HP(S1;(E2)«Z) =~ HP(S); (E2)«Z)¢3 and

HP(Sy: (Ey)«Z) = H*(K':Fp) @ Fy[u™']

by Theorem 5.6, it suffices to understand the action of C3 on H?(K!;[F,). This action
is given by

(5-7) ®-yo=Yo, W-y1=y1r+ys, @Y=

and can be deduced from [2, Section 2.5]. Despite the fact that the isomorphism
of Theorem 5.6 is not an isomorphism of C3;—-modules, with careful bookkeeping,
the action of C3 on H*(S);(E,)«Z) can nonetheless be deduced from the actions
of C3 on H*(K';TF,) and F4[u*!]. Therefore, knowledge of (5-6) and (5-7) lets us
completely calculate H?(S); (E,)«Z) without resorting to the duality resolution.
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However, most existing K(2)-local computations are done using the duality resolution
spectral sequence, which is why we chose this method, providing a better basis for
comparison with previous work.

Corollary 5.9 The homotopy fixed point spectral sequence
1
EY' = H (S} (E2)i Z) = mi—s(E"S2 £ 2)

with dy: ES" — EST7T71 has E,—page

I[“4[”;1](?%,0) if s =0,
I v:tl X1,0,X1,2, X ifs=1,
ES* = B3(S): (Ep)ez) = | o0 [0 iz xia) Hifs =
IE‘4[‘)2 I(x2,2,Xx2,4,x2,6) 1if s =2,

(

Falv3F!(x3,0) if s =3,

or in graphical form (in Adams’ grading) with each & denoting a copy of IF4[v2i1]:

The spectral sequence collapses at the E,—page due to sparseness.

Remark 5.10 According to recent work of Goerss and Bobkova [8], there is a topo-
logical version of the duality resolution, which gives a resolution of the K (2)]—local
sphere. The topological duality resolution can be used to compute 7« (E ;’ 52 ANZ)
directly. However, for Z, the algebraic and the topological duality spectral sequences
are isomorphic and the computations remain identical as the relevant spectral sequences
simply collapse.

6 The K(2)-local homotopy groups of Z

The K(2)—local homotopy groups of Z can be computed using the homotopy fixed
point spectral sequence

E5' = H*(S3; (E2), Z)F /™) =y Lg ) Z

given in (4-1), where Gal(IF4/F,) merely plays the role of “changing the coefficient
field from Fy4 to IF,”.
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Recall the norm map (4-5), N: S, — Z,, whose kernel is S; . By choosing an element
y € S, such that N(y) is a topological generator of Z,, one can produce a map
Zy — Aut(Sé) which sends 1 € Z;, to the conjugation automorphism by y, which
gives an isomorphism

Sy =Sy xZ,.

In [2; 3], y is chosen to be 7. However, one can also choose y = a~ 1. We choose
y = a~ !z to get the isomorphism S, = S; X Z,. Note that a =17 € F4/5S, and
therefore it acts trivially on (E;)«~Z . Consequently, we have:

Lemma 6.1 The action of y on H*(S); (E,;)«Z) is trivial.

We postpone the proof of Lemma 6.1 until the end of this section, so that we can focus
on its immediate consequences. Lemma 6.1 simplifies the calculation of the £, —page
of the Lyndon—Hochschild-Serre spectral sequence

EDT = HP(Zy: H1(S): (E2)« Z)) = E(0) ® H*(S: (E2)+Z)
= HPT(Sy;(E)«2Z),

which collapses due to sparseness. Therefore,
H*(S2: (E2)x Z) T/ = [E(0) ® H*(S}: (E2) Z)| ™/,
where ¢ has bidegree (s,¢) = (1,0). More precisely, as an Fz[vzil]—module,

H (S3: (E), Z) T /1)

Fa[v3{x0,0) if s =0,
Fa[vF1{x0,0. X1,0. X1,2. X1,4) if s =1,
N FalvF{x2,2. X2,4. X2,6. {X1,0, {X1,2. EX1,4)  if 5 =2,
— | FaloF (x3,0, $x2,2. $X2,4. £X2,6) if s =3,
FaoF!](£x3,0) if s =4,
0 if 5 >4.

In Figure 2, we draw the E,—page of (4-1). We denote by o the generators that are
multiples of ¢, and all others by e.

It is clear that (4-1) collapses at the E4—page. The only possibilities are two sets of
v, —linear d;—differentials

o d3(x0,0) =V, '{x2,6, and

* d3(x1,4) =v20x3.
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4 Q v28X3,0 9 2
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Figure 2: The E,-page of (4-1).

The v, -linearity of differentials follows from the fact that Z admits a v% —self-map [6].
However, the generator xo o cannot support a differential for the following reason:

The inclusion of the bottom t: S® < Z induces a nontrivial map K(2)-homology.
Therefore, 1o induces a nontrivial element in ¢ € 7oL g(2)Z which is represented
by x¢,0 in the E,—page of (4-1). Therefore, xg o is a permanent cycle.

From the calculation of the classical Adams spectral sequence in [6],
Ext] (H*Z,F,) = n4Z.

we see that moZ = Z /2. In particular, this means [t¢] is the generator of 7yZ and
2[to] = 0. Since the map n: Z — Lg2)Z sends [io] —> 1, it must be the case that
2t = 0. Therefore there is no hidden extension supported by xg ¢.

Moreover it is well known that E isaclassin n_1 Lg(2)S 0 Let 2 denote the repre-
sentative of ¢ in the F,—page of the descent spectral sequence (2-8),

ES' = H5(Sy; (E2)) S F/F) = ) 1 ge(2)S°.

A straightforward analysis of the map of descent spectral sequences from (2-8) to (4-1)
induced by ¢y shows that { - xg 0 = {x¢,0, Which is a nonzero permanent cycle
representing § -t € m_1 Lg2)Z . Since 2t = 0, it follows that

2C-0)=¢-21=0,

ruling out another possible v, —periodic family of hidden extensions. There are other
possibilities of hidden extensions depicted in Figure 1, which we currently cannot
rule out, though low-dimensional computations lead us to believe that there exists a
particular spectrum Z for which all differentials and possible hidden extensions are
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zero. Furthermore, as stated in Conjecture 1, we expect that this will be the case for
every spectrum Z € Z.

Proof of Lemma 6.1 Notice that FZ/ZS; =F;/2S,N S; is a normal subgroup of S,
and
S2/F2/2S; & Gas/ Cy X L ().

From our work in Theorem 5.6, we see that
(6-1) H*(SY: (E2)u Z) = (H* (Fy)5S): (E3)w2)@8/C1) S
= H*(F3/2Sy: (E2)« )%/ .
Also note that G,4/C;3 is a normal subgroup of S,/ F, /ZS;. Therefore, y acts on

H*(F, /281; (E3)«Z)924/C1 and the isomorphism in (6-1) commutes with the action
of y. Therefore, it suffices to prove that y acts trivially on H™*(F,/, »SI(EL)« 7).

Since F), /281 ~ K1 x C; and y acts trivially on (3, we have a sequence of natural

y —equivariant maps

H*(K'; (E2)«Z %) = H*(Fy2S3/ C3i (E2)« Z8) > H*(Fp28y: (E2)x ZY)
— H*(Fy5S}: (E2)« Z),

where the first map is induced by the quotient map and the second map is simply

inclusion of the coefficients. Note that the composite is an isomorphism. Since K!
acts trivially on (E,)+Z <7, the isomorphism

H*(K'1 (E2)«ZT) = H* (K'1F2) ® (E2)+ 2
is y —equivariant. Since y acts trivially on (E,)«Z and H*(K';F,) (see Lemmas 4.9
and 6.2), the result follows. O

Lemma 6.2 The action of y on H*(K';TF,) is trivial.

Proof Since H*(K';F,) is a ring, it is enough to show that y acts trivially on
the generators (see (5-6)) o, y1, V2 € H'(K';[F,). A fundamental fact of group
cohomology says that

H'(K';F;) =~ Hom(K'/[K', K1)(K")2,F,).

where [K!, K] denotes the commutator subgroup. It can be deduced from Section 2.5
of [2] that for every element g € K, its conjugate ¥ ~!gy belongs to the same coset
as g, ie y gy € g[K!, K!](K1)2. Hence the result holds. O
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Appendix A regularity criterion for a representation of Qg

The quaternionic group Qg is an order 8 group which can be presented as

(A-1) Og = (i.j:i* =11 =2, P =ji).

We will denote the neutral element of Qg by 1. Often in the literature, ij is denoted
by k and i by —1. This is justified as —1 € Qy is central and its square is 1. However,
—1 also denotes the additive inverse of 1 in a ring, and potentially can cause confusion

while working with group rings. Therefore we will instead denote —1 by 1e Qg and
i=1i,j=1j and k = 1k. With this notation, the relations in Qg can be rewritten as

e ij=k, jk=iand ki=],

e 2=pP=Kk2=1,

e 1O)2=1,and

e ji=k, kj=iandik=].
The quotient of the central subgroup of order 2 generated by 1 is the Klein four group
C, x Cy. In other words we have an exact sequence of groups

1—>C2;>Q8L>C2XC2—>1.

We will denote the images of i,j € Qg by i,j€ C, x C;.

Let F be an arbitrary field and let V4(IF) denote the 4—dimensional representation
of Qg induced by the regular representation of C, x C, via the quotient map ¢. Let
Vg (IF) denote the regular representation of Og. When charF = 2, it is easy to see that
there is an exact sequence of F[Qg]-modules

0 — V4(F) - Vg(F) 2> V4(F) — 0.

More explicitly, let ¢4 and tg be the generators of V4(IF) and Vg(F) as F[Qg]-modules
and define

r(gts) =q(g) ta, t(h-tg)=h-1g+1h-13
for h, g € QOg.

The purpose of this appendix is to give a necessary and sufficient condition on an
8—dimensional representation V' over a field I with char F = 2 which fits in the exact
sequence

(A-2) 0— V4(F) L5 vV 75 v, (F) — 0,

under which it is isomorphic to Vg(IF). When char F # 2, the problem is straightforward.
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Any V which satisfies (A-2) is isomorphic to V4(IF) & V4(F), including Vg(F),
the regular representation of Qg. This is because, when charF }|Qg| and W is a
subrepresentation of V, one can define a complement subrepresentation W’ such
that V = W @ W’ (Maschke’s theorem). In our case, let W =img7 and W' be its
complement. Since (A-2) is an exact sequence, it follows that

W = W' = Vy4(F).
We will soon see that Vg(IF) 2£ V4(IF) & V4(F) when charF = 2.
For any g € G, let eg € F[G] denote the element such that
g'eg =cgryg

for every g’ € G. The collection {e, : g € G} forms a basis for F[G]. For our
convenience, we consider the ordered basis

(A-3) By={vi=e1+e+ej+ex vy =e1+e,v3=e1+e,v4=ce1}
of V4(IF). Note that
(i)B4 =

’ 0)84 = ’ (k)84 =

o = O O
—_—— O O

10 1
01 0
10 1
01 0

oS O O =
O O = =
oS O O =
oS O = O
oS O O =
O O = -
—_ = = =

Thus any vector space isomorphic to the regular representation of C, x C, admits a
basis B such that

()5 = ()54, ()5 = (84> (K5 = (K)By-

The main result in this appendix is the following:

Lemma A.1 Let F be a field with charF = 2. Suppose we have an exact sequence
of F[Qg]-modules

(A-4) 0— Vs 45 Vg L5V, — 0,

where V4 is a representation of Qg induced from the regular representation of Cy X C,.
Let B = {v1,v,, v3, v4} be a basis of V, such that

1100 1010 1111
. 0100 _ 0101 0101
Ds=1 0011 D5=|og010| ®s=|g011
0001 0001 0001
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Then, for any basis C = {cy.c3,c3,¢c4,¢],¢5. 5. ¢y} of Vg with the property that
1(v;) = ¢; and 7(c}) = v;, we have

1 (fl:)c = (I(;‘ ]I\Z)’ where

oo o0
S O 0 ]
o0 oR
o Y &

fora,b,c,d €T, and

(2) if ¢ # 0 then Vg is isomorphic to the regular representation of Qg.

Proof It follows from (A-4) that

: (s X } : [ (s Y ]
i)e = i and = :
(e [ 0 (s (e 0 ()
for some 4 x 4 matrices X and Y. Let x;; and y;; denote the (i, /)" entry of X
and Y, respectively. Since the choice of ¢] is only unique modulo img {, we may apply
a change of basis matrix of the form

Iy P
P= .
[0 14]

Y13 0 x4 0
X11 X12+y13 x13 0
1 Y12 0 14
X31 X32+ Vi1 X33 X34

In particular, if we choose

P=

we see that
o s X N pt1 (s Y
P(i)e P! = C . P@eP'= N
| 0 ()5 0 (s
where _
0 0 0 0
¥ | Y X11+X12 X23 X13+ X24
0 0 0 0
| X41 X371+ X42 X43 X33+ X34
and
0 0 0 0
7= X314+ Y21 X32+ Y11+ Y22 X11+X33+ Y23 X2+ X34+ Y13+ V24
Y31 V32 Y11+ )33 Y12+ V34
Va1 Yao X311 V43 X32 + Y11 + Vasa
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Thus, without loss of generality we may assume that

0O 0 0 O O O o0 o
X = X21 X22 X23 X42 and YV = Y21 V22 )23 V24
O 0 0 O V31 V32 V33 V43
X41 X42 X43 X44 Va1 Va2 V43 V44

Now we use the relations (A-1) to get further restrictions on X and Y. While (i)(‘jt =
(J)é = I is trivially satisfied, (i)(% = (j)é is true if and only if

DeX +X()e = (Y +Y()c.

Thus we get a linear system with free variables y»3, Va4, V32, V33, V34> Va2, V43
and y44, and we get

O o0 o0 o0 0 0 0 0
Y = Y42 V32 V33 V34 and Y = Va3 Ya3 + Yaa Y23 Vo4
0 0 0 O Ya2 V32 V33 V34
0 0 yar yi2 0 Va2 Va3 Vas

Consequently, (i)c = (16‘ ]I‘;I ), where

Y42 V32 V33 V34

0 ys2 0 33
M =

0 0 yar y32

0 0 0 ya

Now, the linear system generated by the relation
DeGe = DeGeb)e
has free variables y33, )34, Y43 and y44, and basic variables

V23 = Y33+ Va3, V24 = Y34+ Vaa, V32 =33+ Y43+ Vaa, Y42 = V43.

Let a = y33, b = y34, ¢ = Y43 and d = y33 + Y43 + y44. Interms of a, b, ¢ and d,

we have
0000 0 o 0 0
cdab cc+dat+cat+b+c+d

A' X: Y:

(A-5) 0000 |’ c d a b ’
00¢cd 0 ¢ c a+c+d
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(A-6) M =

oo o0
o o0 X
o0 o9
o L] &

Recall that our change of basis matrix was of the form

I, P
P =
[0 14]’
and thus P~! = P and we have
~ Is M
-1 _ | 14
Per=[ 4]

as charF = 2. This proves (1).
For (2), we need to find a vector v such that
{gv:g € Os}
spans Vg. We choose T=¢, =[0 0000 0 0 11" in the basis C. Let
A=[7 et (T Ot ()cv (et KT ()T |-

Using (A-5) and (A-6) we see that

0b 0a+bd 0 b+d a+b+c+d 0
0Oa ba+ba+b+c+d b+d a+c 0
0dO0c+d b b+d a+b+c+d a+b
A= 0cdc+d a+c+d a+d a+c a
000 O 0 0 1 1
000 O 1 1 1 1
001 1 0 0 1 1
REREN 1 1 1 1]

By a tedious but straightforward calculation, we find

det A = c*,

completing the proof of (2). |

Remark A.2 When charF = 2, the representations V4(IF) & V4(IF) and Vg (IF) are
not isomorphic. Without loss of generality we may assume ¢ =1 and a =b=d =0.
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Suppose there were an isomorphism between V4 (IF) & V4(IF) and Vg(IF). Then there
would exist a invertible matrix P such that

Ds, 0 1 4
p[ B 0 T-cer

Note that (1) B4 18 simply the identity matrix, while (1)c is not. It follows easily that
any matrix which satisfies the above condition is not invertible, whence a contradiction.

Remark A.3 We are unaware of any classification theorem for §—dimensional repre-
sentations of Qg over fields of characteristic 2. We suspect that the question of how
many isomorphism classes of V' satisfy (A-2) can be resolved. A possible guess might
be that there are overall four isomorphism classes:

e ¢ #0 (when V = Vg(IF)),

c=0and d #0,

¢c=0,d=0and a #0,

e ¢=0,a=0,d=0and b#0, and

e a=b=c=d=0 (when V = V4(IF) ® V4(IF)).

Since this is irrelevant to the purpose of the paper, we leave this question to the interested
reader to verify.
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