Volume 20, issue 3 (2020)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 25
Issue 3, 1265–1915
Issue 2, 645–1264
Issue 1, 1–644

Volume 24, 9 issues

Volume 23, 9 issues

Volume 22, 8 issues

Volume 21, 7 issues

Volume 20, 7 issues

Volume 19, 7 issues

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the Journal
Editorial Board
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN 1472-2739 (online)
ISSN 1472-2747 (print)
Author Index
To Appear
 
Other MSP Journals
Model structures for $(\infty,n)$–categories on (pre)stratified simplicial sets and prestratified simplicial spaces

Viktoriya Ozornova and Martina Rovelli

Algebraic & Geometric Topology 20 (2020) 1543–1600
Bibliography
1 D Ara, Higher quasi-categories vs higher Rezk spaces, J. K–Theory 14 (2014) 701 MR3350089
2 D Ayala, J Francis, H L Tanaka, Local structures on stratified spaces, Adv. Math. 307 (2017) 903 MR3590534
3 C Barwick, On left and right model categories and left and right Bousfield localizations, Homology Homotopy Appl. 12 (2010) 245 MR2771591
4 C Barwick, C Schommer-Pries, On the unicity of the homotopy theory of higher categories, preprint (2011) arXiv:1112.0040
5 J E Bergner, C Rezk, Comparison of models for (,n)–categories, I, Geom. Topol. 17 (2013) 2163 MR3109865
6 J E Bergner, C Rezk, Reedy categories and the Θ–construction, Math. Z. 274 (2013) 499 MR3054341
7 J E Bergner, C Rezk, Comparison of models for (,n)–categories, II, preprint (2014) arXiv:1406.4182
8 D C Cisinski, Les préfaisceaux comme modèles des types d’homotopie, 308, Soc. Math. France (2006) MR2294028
9 D C Cisinski, I Moerdijk, Dendroidal Segal spaces and –operads, J. Topol. 6 (2013) 675 MR3100887
10 D Fuentes-Keuthan, M Kędziorek, M Rovelli, A model structure on prederivators for (,1)–categories, Theory Appl. Categ. 34 (2019) 1220 MR4039244
11 A Gagna, Y Harpaz, E Lanari, On the equivalence of all models for (,2)–categories, preprint (2019) arXiv:1911.01905
12 R Haugseng, On the equivalence between Θn–spaces and iterated Segal spaces, Proc. Amer. Math. Soc. 146 (2018) 1401 MR3754328
13 S Henry, Weak model categories in classical and constructive mathematics, preprint (2018) arXiv:1807.02650
14 P S Hirschhorn, Model categories and their localizations, 99, Amer. Math. Soc. (2003) MR1944041
15 T Johnson-Freyd, Is there an accepted definition of (,)–category ?, MathOverflow question (2018)
16 A Joyal, Notes on quasi-categories, preprint (2008)
17 A Joyal, M Tierney, Quasi-categories vs Segal spaces, from: "Categories in algebra, geometry and mathematical physics" (editors A Davydov, M Batanin, M Johnson, S Lack, A Neeman), Contemp. Math. 431, Amer. Math. Soc. (2007) 277 MR2342834
18 Y Lafont, F Métayer, K Worytkiewicz, A folk model structure on omega-cat, Adv. Math. 224 (2010) 1183 MR2628809
19 J Lurie, Higher topos theory, 170, Princeton Univ. Press (2009) MR2522659
20 J Lurie, (,2)–categories and the Goodwillie calculus, I, preprint (2009) arXiv:0905.0462
21 J Lurie, Higher algebra, book project (2018)
22 S MacLane, I Moerdijk, Topos theory, from: "Handbook of algebra, I" (editor M Hazewinkel), Handb. Algebr. 1, Elsevier (1996) 501 MR1421810
23 V Ozornova, M Rovelli, Nerves of 2–categories and 2–categorification of (,2)–categories, preprint (2019) arXiv:1902.05524
24 C Rezk, A model for the homotopy theory of homotopy theory, Trans. Amer. Math. Soc. 353 (2001) 973 MR1804411
25 C Rezk, A Cartesian presentation of weak n–categories, Geom. Topol. 14 (2010) 521 MR2578310
26 E Riehl, Complicial sets, an overture, from: "2016 MATRIX annals" (editors D R Wood, J de Gier, C E Praeger, T Tao), MATRIX Book Ser. 1, Springer (2018) 49 MR3792516
27 E Riehl, D Verity, Elements of –category theory, book project (2018)
28 R Steiner, Complicial structures in the nerves of omega-categories, Theory Appl. Categ. 28 (2013) 780 MR3104949
29 R Street, The algebra of oriented simplexes, J. Pure Appl. Algebra 49 (1987) 283 MR920944
30 R Street, Fillers for nerves, from: "Categorical algebra and its applications" (editor F Borceux), Lecture Notes in Math. 1348, Springer (1988) 337 MR975981
31 D Verity, Complicial sets characterising the simplicial nerves of strict ω–categories, 905, Amer. Math. Soc. (2008) MR2399898
32 D R B Verity, Weak complicial sets, I : Basic homotopy theory, Adv. Math. 219 (2008) 1081 MR2450607
33 D Verity, A complicial compendium, talk slides (2017)