Volume 20, issue 3 (2020)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 25
Issue 6, 3145–3787
Issue 5, 2527–3144
Issue 4, 1917–2526
Issue 3, 1265–1915
Issue 2, 645–1264
Issue 1, 1–644

Volume 24, 9 issues

Volume 23, 9 issues

Volume 22, 8 issues

Volume 21, 7 issues

Volume 20, 7 issues

Volume 19, 7 issues

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
 
Subscriptions
 
ISSN (electronic): 1472-2739
ISSN (print): 1472-2747
 
Author index
To appear
 
Other MSP journals
Model structures for $(\infty,n)$–categories on (pre)stratified simplicial sets and prestratified simplicial spaces

Viktoriya Ozornova and Martina Rovelli

Algebraic & Geometric Topology 20 (2020) 1543–1600
Bibliography
1 D Ara, Higher quasi-categories vs higher Rezk spaces, J. K–Theory 14 (2014) 701 MR3350089
2 D Ayala, J Francis, H L Tanaka, Local structures on stratified spaces, Adv. Math. 307 (2017) 903 MR3590534
3 C Barwick, On left and right model categories and left and right Bousfield localizations, Homology Homotopy Appl. 12 (2010) 245 MR2771591
4 C Barwick, C Schommer-Pries, On the unicity of the homotopy theory of higher categories, preprint (2011) arXiv:1112.0040
5 J E Bergner, C Rezk, Comparison of models for (,n)–categories, I, Geom. Topol. 17 (2013) 2163 MR3109865
6 J E Bergner, C Rezk, Reedy categories and the Θ–construction, Math. Z. 274 (2013) 499 MR3054341
7 J E Bergner, C Rezk, Comparison of models for (,n)–categories, II, preprint (2014) arXiv:1406.4182
8 D C Cisinski, Les préfaisceaux comme modèles des types d’homotopie, 308, Soc. Math. France (2006) MR2294028
9 D C Cisinski, I Moerdijk, Dendroidal Segal spaces and –operads, J. Topol. 6 (2013) 675 MR3100887
10 D Fuentes-Keuthan, M Kędziorek, M Rovelli, A model structure on prederivators for (,1)–categories, Theory Appl. Categ. 34 (2019) 1220 MR4039244
11 A Gagna, Y Harpaz, E Lanari, On the equivalence of all models for (,2)–categories, preprint (2019) arXiv:1911.01905
12 R Haugseng, On the equivalence between Θn–spaces and iterated Segal spaces, Proc. Amer. Math. Soc. 146 (2018) 1401 MR3754328
13 S Henry, Weak model categories in classical and constructive mathematics, preprint (2018) arXiv:1807.02650
14 P S Hirschhorn, Model categories and their localizations, 99, Amer. Math. Soc. (2003) MR1944041
15 T Johnson-Freyd, Is there an accepted definition of (,)–category ?, MathOverflow question (2018)
16 A Joyal, Notes on quasi-categories, preprint (2008)
17 A Joyal, M Tierney, Quasi-categories vs Segal spaces, from: "Categories in algebra, geometry and mathematical physics" (editors A Davydov, M Batanin, M Johnson, S Lack, A Neeman), Contemp. Math. 431, Amer. Math. Soc. (2007) 277 MR2342834
18 Y Lafont, F Métayer, K Worytkiewicz, A folk model structure on omega-cat, Adv. Math. 224 (2010) 1183 MR2628809
19 J Lurie, Higher topos theory, 170, Princeton Univ. Press (2009) MR2522659
20 J Lurie, (,2)–categories and the Goodwillie calculus, I, preprint (2009) arXiv:0905.0462
21 J Lurie, Higher algebra, book project (2018)
22 S MacLane, I Moerdijk, Topos theory, from: "Handbook of algebra, I" (editor M Hazewinkel), Handb. Algebr. 1, Elsevier (1996) 501 MR1421810
23 V Ozornova, M Rovelli, Nerves of 2–categories and 2–categorification of (,2)–categories, preprint (2019) arXiv:1902.05524
24 C Rezk, A model for the homotopy theory of homotopy theory, Trans. Amer. Math. Soc. 353 (2001) 973 MR1804411
25 C Rezk, A Cartesian presentation of weak n–categories, Geom. Topol. 14 (2010) 521 MR2578310
26 E Riehl, Complicial sets, an overture, from: "2016 MATRIX annals" (editors D R Wood, J de Gier, C E Praeger, T Tao), MATRIX Book Ser. 1, Springer (2018) 49 MR3792516
27 E Riehl, D Verity, Elements of –category theory, book project (2018)
28 R Steiner, Complicial structures in the nerves of omega-categories, Theory Appl. Categ. 28 (2013) 780 MR3104949
29 R Street, The algebra of oriented simplexes, J. Pure Appl. Algebra 49 (1987) 283 MR920944
30 R Street, Fillers for nerves, from: "Categorical algebra and its applications" (editor F Borceux), Lecture Notes in Math. 1348, Springer (1988) 337 MR975981
31 D Verity, Complicial sets characterising the simplicial nerves of strict ω–categories, 905, Amer. Math. Soc. (2008) MR2399898
32 D R B Verity, Weak complicial sets, I : Basic homotopy theory, Adv. Math. 219 (2008) 1081 MR2450607
33 D Verity, A complicial compendium, talk slides (2017)