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Immersed cycles and the JSJ decomposition

SURAJ KRISHNA MEDA SATISH

We present an algorithm to construct the JSJ decomposition of one-ended hyperbolic
groups which are fundamental groups of graphs of free groups with cyclic edge groups.
Our algorithm runs in double exponential time and is the first algorithm on JSJ decom-
positions to have an explicit time bound. Our methods are combinatorial/geometric
and rely on analysing properties of immersed cycles in certain CAT(0) square com-
plexes.

20E06, 20E08, 20F65, 20F67

1 Introduction

In [34], Sela showed the existence of a canonical decomposition of a torsion-free one-
ended hyperbolic group over its infinite cyclic subgroups. This decomposition, which
Sela called a JSJ decomposition (see Definition 1.1), is a generalisation to group theory
of JSJ decompositions of 3—manifolds (due to Jaco and Shalen [20] and Johannson [21]).

We present an algorithm (Theorem 1.3) to construct the JSJ decomposition of the
fundamental group G of a graph of free groups with cyclic edge groups when G
is one-ended and hyperbolic. We develop this algorithm by first obtaining one such
algorithm in a special case (Theorem 1.4): when G is the fundamental group of a
compact nonpositively curved square complex called a tubular graph of graphs (which
we introduced in [37]).

A tubular graph of graphs (see Definition 2.8 for the precise definition) is a square
complex obtained by attaching finitely many tubes (a fube is a Cartesian product of the
unit interval and a circle) to a finite collection of finite graphs. Tubular graphs of graphs
are thus nonpositively curved VH-complexes (introduced by Wise in [40]) whose
vertical hyperplanes are circles (see Section 2). A typical example of the fundamental
group of a tubular graph of graphs is the amalgamated product of two free groups over
cyclic subgroups.

As an application of Theorem 1.4, we obtain an algorithm that takes a finite-rank free
group F and a finite family of cyclic subgroups I such that F is freely indecomposable
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relative to J{ as input and constructs the JSJ decomposition of F relative to H in
double exponential time (Theorem 13.3).

A consequence of our main result is a double-exponential time solution to the isomor-
phism problem for graphs of free groups with cyclic edge groups in the hyperbolic
case (Theorem 15.1). Recall that the isomorphism problem is the algorithmic problem
of deciding whether two finite presentations of groups present isomorphic groups; see
Dehn [14].

1.1 JSJ decompositions

We adopt the terminology of Sela [34]. Let G be a torsion-free hyperbolic group. A
hanging surface subgroup G’ of G is a subgroup isomorphic to the fundamental group
of a surface with boundary such that there exists a graph of groups decomposition of G
in which G’ is a vertex group whose incident edge groups are precisely the peripheral
subgroups of G'. A maximal hanging surface subgroup is a hanging surface subgroup
that is not properly contained in any hanging surface subgroup. A noncyclic vertex
group G’ of G is rigid if it is elliptic in every cyclic splitting of G. A subgroup is full
(in the sense of Bowditch [4]) if it is not properly contained as a finite-index subgroup
in any subgroup of G.

We can now define JSJ decompositions in the sense of Sela [34], as modified by
Bowditch [4]; see [4, Theorem 0.1 and Theorem 5.28].

Definition 1.1 (JSJ decomposition) Let G be a torsion-free hyperbolic group. A JSJ
splitting of G 1is a finite graph of groups decomposition of G where each edge group
is cyclic and each vertex group is full and of one of the following three types:

(1) acyclic subgroup,

(2) a maximal hanging surface subgroup, or

(3) arigid subgroup.
If a vertex v of type (1) has valence one, then the incident edge group does not surject
onto the vertex group G, . Moreover, exactly one endpoint of any edge is of type (1)

and the edge groups that connect to any vertex group of type (2) are precisely the
peripheral subgroups of that group.

Theorem 1.2 [34] Let G be a torsion-free one-ended hyperbolic group which is not
the fundamental group of a closed surface. Then a JSJ decomposition of G exists and
is unique.
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We are now ready to state our main result.

Theorem 1.3 (Theorem 14.1) There exists an algorithm of double exponential time
complexity that takes a graph of free groups with cyclic edge groups with one-ended
hyperbolic fundamental group G as input and returns the JSJ decomposition of G.

As mentioned earlier, the algorithm is a consequence of the theorem below, proving
which takes up a major part of the current article.

Theorem 1.4 (Theorem 12.44) There exists an algorithm of double exponential time
complexity that takes a tubular graph of graphs with one-ended hyperbolic fundamental
group G as input and returns a tubular graph of graphs whose graph of groups structure
is the JSJ decomposition of G.

Other authors have obtained algorithms to compute JSJ decompositions of groups under
different conditions. In [12], Dahmani and Guirardel give an algorithm to compute
JSJ decompositions of one-ended hyperbolic groups over maximal virtually cyclic sub-
groups with infinite centre. In [13], Dahmani and Touikan give an algorithm to compute
JSJ decompositions of torsion-free hyperbolic groups over its cyclic subgroups. In [2],
Barrett gives an algorithm to compute JSJ decompositions of one-ended hyperbolic
groups over virtually cyclic subgroups, while Cashen and Manning [7; 9] develop an
implementable algorithm to construct the relative JSJ of a free group relative to a family
of cyclic subgroups. We remark that the time complexity of these algorithms is not
known.

Our approach is combinatorial/geometric. We will now describe this approach briefly.
1.2 Coarse behaviour and Brady—Meier tubular graphs of graphs

Definition 1.5 A cube complex is Brady—Meier if all its vertex links are connected and
moreover each vertex link remains connected after removing any simplex in the link.

Theorem 1.6 (Brady and Meier [5]) The fundamental group of a finite connected
Brady—Meier nonpositively curved cube complex is one-ended.

Theorem 1.7 [37] There exists an algorithm of polynomial time complexity that
takes a tubular graph of graphs with one-ended fundamental group as input and returns
a Brady—Meier tubular graph of graphs with isomorphic fundamental group.
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Thanks to the above result, we work with Brady—Meier tubular graphs of graphs
throughout this article. Let X be a Brady—Meier tubular graph of graphs endowed with
its VI structure. Each vertical hyperplane of X is a circle (Proposition 2.9). If X
denotes the CAT(0) universal cover of X, then the vertical hyperplanes of X are lines.
Let G denote the fundamental group of X. Adopting the terminology of Scott and
Wall [33], X has a structure of a graph of spaces (see Section 2.2 for details), where
each vertex space is itself a graph. Similarly, X has a structure of a tree of spaces,
where each vertex space is a (vertical) tree.

In order to construct the JSJ decomposition of G, one has to first find cyclic subgroups
over which G splits. We address this issue using the Brady—Meier structure of X :

A geodesic line L of X separates Xif X \ L is not connected. Two separating
geodesic lines L1 and Ly of X cross if L1 meets two distinct components of X \ L,
and vice versa. An axis in X of an element g € G is a geodesic line in X that is
invariant under the action of the cyclic subgroup (g). Given g € G, an axis L of g
always exists in X ; see Bridson and Haefliger [6].

Suppose that G splits over (g) and that L is contained in a vertical tree of X . Then an
application of a result of Papasoglu [27] to the fact that Xisa Brady—Meier complex
implies that L separates X and L does not cross any of its translates (Lemma 6.3).
Conversely, if L is separating and does not cross any of its translates, then G splits
over a subgroup of the stabiliser of L (Proposition 6.10).

The properties of separation and crossing have local characterisations in the Brady—
Meier complex X . Denote by Ng(L) the set of all points in X at distance at most R
from a point of L.

Lemma 1.8 (Lemma 4.7) The line L separates X ifand only if it separates N L (L).
Proposition 1.9 (Proposition 5.2) Two separating lines L, and L, cross if and
only if

(1) LyN L, is nonempty and compact, and

(2) L, meets two components of N% (LiNnLy)\ L.
The quotient of L by (g) is an immersed circle C, which we call a cycle, in X. The
regular neighbourhood of C is the quotient of N 1 (L) by the action of (g). The fact

that L separates N 1 (L), along with a condition that is satisfied since G splits over (g)
(Definition 7.18), implies the following result:
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Lemma 1.10 (Lemma 7.24) C separates its regular neighbourhood and C does not
cross any of its translates in X.

We need another property to construct the JSJ decomposition. A cyclic subgroup over
which G splits is said to be universally elliptic if it is elliptic in the Bass—Serre tree of
any cyclic splitting of G ; see Guirardel and Levitt [16]. The edge groups of the JSJ
decomposition are universally elliptic.

Let L; (respectively L») be an axis of g; (respectively g») such that G splits over
(g1) and (g2). Then (g;) is elliptic in the Bass—Serre tree of the splitting over (g»)
only if L; and any translate of L, don’t cross (Lemma 8.1).

1.3 Repetitive cycles and JSJ splittings

In Section 9, we introduce an important notion, namely repetitivity, that bounds the
length of a cycle that induces a universally elliptic splitting. Let C denote a lift of a
cycle C in X.

Definition 1.11 (Definition 9.2; Lemma 9.4) A cycle C is k—repetitive if Cisa
separating line and there exists an edge e in X and elements g1,--.,8k € G such that

(1) each translate g,-é contains e,

(2) the distance between e and g;e is strictly less than the length of C, and

(3) any two squares s and s’ that contain e are either separated by all translates g; C
or by none of them.

There are two important reasons for introducing the notion of repetitive cycles. The first
is that any cycle that is longer than a certain bound is k—repetitive (Proposition 9.9).
Here, the bound depends only on k and the number of squares of X. The second reason
is the following:

Proposition 1.12 (Proposition 10.1) Let C be a k-repetitive cycle with k > 3.
Suppose that 1 (C) is a maximal cyclic subgroup of G. Then there exists a separating
line L in X such that L and C coarsely cross.

This implies that 771 (C) conjugates into a hanging surface subgroup of the JSJ splitting
of G, by Bowditch [4, Proposition 5.30]. Hence, 71 (C) is not universally elliptic and
the length of a cycle which induces a universally elliptic cyclic subgroup is bounded.
This leads to the following result:
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Theorem 1.13 (Theorem 11.1) There exists an algorithm of double exponential
time complexity that takes a Brady—Meier tubular graph of graphs with hyperbolic
fundamental group G as input and returns a finite list of splitting cycles that contains
all universally elliptic subgroups of G up to commensurability.

We remark that a similar, but weaker, result is obtained by Cashen and Macura
[8, Proposition 4.11] using a similar idea: given a free group F and a finite family of
cyclic subgroups H, the authors obtain a bound depending on F' and J{ such that
if F' admits a cyclic splitting relative to J{, then there is a word of length less than the
bound over which F splits relative to J{.

1.4 Obtaining a JSJ complex

In Section 12, we modify the given tubular graph of graphs X to a tubular graph of
graphs Xjs; such that the fundamental group of the graph of spaces structure of Xjg; is
the JSJ decomposition of G.

The first step involves a modification of the initial tubular graph of graphs X by cutting
along the finite list of cycles supplied by Theorem 1.13. We do this cutting procedure
using the machinery of spaces with walls (due to Haglund and Paulin [17]). The
vertex set of X is a space with walls, with walls defined by its vertical and horizontal
hyperplanes. We enrich the wall set by adding lifts of cycles supplied by Theorem 1.13
(see Section 12.3). We then remove tubes which are attached to cyclic vertex graphs on
both sides. In Proposition 12.36, we show that each edge group of the JSJ decomposition
of G is a conjugate of an edge group of the underlying graph of groups of the new
tubular graph of graphs. Thus, an edge stabiliser of the Bass—Serre tree of the new
tubular graph of graphs is either an edge stabiliser of the JSJ tree or a cyclic subgroup
that conjugates into a maximal hanging surface subgroup of the JSJ splitting. It only
remains to identify the maximal surface subgroups that appear as vertex groups in the
JSJ decomposition. Once identified, removing tubes corresponding to edge stabilisers
which conjugate into maximal hanging surface subgroups gives the JSJ decomposition,
proving the main result (Theorem 1.4).

1.5 Identifying surfaces

We give a criterion to identify surfaces in the Brady—Meier setup. A vertex graph of a
tubular graph of graphs is a surface graph if the fundamental group of the graph is a sur-
face group whose peripheral subgroups are precisely the incident edge subgroups. Then:
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Lemma 1.14 (Lemma 12.42) A vertex graph of a Brady—Meier tubular graph of
graphs is a surface graph if and only if every edge of its double is contained in exactly
two squares.

‘We refer the reader to Definition 12.41 for the definition of a double.
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2 The setup

2.1 VH—-complexes
The notion of VH-complexes was first introduced in [40].

Definition 2.1 A square complex is a two-dimensional CW complex in which each
2—cell is attached to a combinatorial loop of length 4 and is isometric to the standard
Euclidean unit square /2 = [0, 1]2.

All our square complexes will be locally finite.

Definition 2.2 (vertex links) Let v € X be a vertex of a square complex. The link of v,
denoted by link(v), is a graph whose vertex set is {e | e is a half-edge incident to v}.
The number of edges between two vertices e and f is the number of squares of X in
which e and f are adjacent half-edges.

Definition 2.3 A square complex is nonpositively curved if the length of a closed path
in the link of any of its vertices is at least four.

By a result of Gromov [15], a simply connected nonpositively curved square complex
is CAT(0) in the metric sense.

Definition 2.4 [32] Let X be a square complex. A mid-edge of a square s in X is
an edge (after subdivision of s) running through the centre of s and parallel to two of
the edges of s. Declare two edges e and f to be equivalent if there exists a sequence
e=ej,...,en = f of edges such that e¢; and e; 4 are opposite edges of some square
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of X. Given an equivalence class [e] of edges, the hyperplane dual to e, denoted by h,,
is the collection of mid-edges which intersect edges in [e].

Definition 2.5 [40] A VH-complex is a square complex in which every 1—cell is
labelled as either vertical or horizontal in such a way that each 2—cell is attached to a
loop which alternates between horizontal and vertical 1—cells.

The labelling of the edges of a VIH—complex as horizontal and vertical induces a
labelling of the vertices in the link of any vertex as horizontal and vertical, thus making
the link a bipartite graph. Similarly, the hyperplanes of a VH—complex are also labelled
as vertical and horizontal, with a vertical hyperplane being dual to an equivalence class
of horizontal edges and a horizontal hyperplane being dual to an equivalence class of
vertical edges.

Remark 2.6 Since the link of any vertex of a VH—complex is bipartite, the length of
a closed path is even. Thus a VH—complex is nonpositively curved if there exists no
bigon in any vertex link.

2.2 Graphs of spaces

Graphs of groups are the basic objects of study in Bass—Serre theory [35]. They were
studied from a topological perspective in [33] by looking at graphs of spaces instead of
graphs of groups. We will adopt this point of view.

Definition 2.7 By a graph of spaces, we mean the following data: I" is a connected
graph, called the underlying graph. For each vertex s (respectively edge a) of T, there
is a topological space X (respectively X,). Further, whenever a is incident to s,
0a,s: Xa = Xj is a my—injective continuous map. The geometric realisation of the
above graph of spaces is the space X = (|_|S€F(0) Xs Ul era Xa x [0, 1])/~, where
(x,0) and (x, 1) are identified respectively with 04 s(x) and 94, (x). Here, s and s’
are the two endpoints of a.

Note that the universal cover of X has the structure of a tree of spaces, a graph of
spaces whose underlying graph is the Bass—Serre tree of the associated graph of groups
structure of X [33].

2.3 Tubular graphs of graphs

Definition 2.8 A tubular graph of graphs is a finite graph of spaces in which each
vertex space is a finite connected simplicial graph and each edge space is a simplicial
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graph homeomorphic to a circle. Further, the attaching maps are simplicial immersions.
We will always assume that the underlying graph is connected.

As a consequence of the definition, unless the underlying graph is trivial, no vertical
graph is a tree. We note that asking for each vertex graph to be simplicial is not a
serious restriction as every one-dimensional CW complex is a simplicial graph after
subdivision.

We remark that not all graphs of free groups with cyclic edge groups can be realised as
tubular graphs of graphs since we require both the images of each edge space to have
identical length. This can be achieved, however, if the underlying graph is a tree.

It is easy to see (compare with [40, Theorem 1.18]) that:

Proposition 2.9 The geometric realisation of a tubular graph of graphs is a finite (hence
compact), connected nonpositively curved VH—-complex whose vertical hyperplanes
are circles.

Indeed, the geometric realisation is VH, where vertical edges are the edges of vertex
graphs and horizontal edges are the edges induced by vertices of edge graphs. Note
that the squares are obtained from the “tubes” (edge graph times the unit interval, for
each edge graph). Then the link of any vertex of a vertex graph does not have bigons
because attaching maps of edge spaces are simplicial immersions.

Convention Throughout this article, we will use the same notation for a tubular graph
of graphs and the VH—complex which is its geometric realisation. X will always
denote a Brady—Meier tubular graph of graphs with fundamental group G, while X
will denote a vertex graph (a component of the vertical 1-skeleton) in X and X the
CAT(0) universal cover of X. Unless mentioned otherwise, we work with the CAT(0)
metric in X .

Definition 2.10 (thickness) For an edge e in X, the thickness of e is the number of
squares of X which contain e.

Observe that a horizontal edge of X always has thickness equal to two. Since X is
Brady—Meier, we have:

Lemma 2.11 [37] Every edge of X has thickness at least two.

Definition 2.12 (paths, lines) Recall that a path in a space Z is a continuous map
from a closed interval to Z.
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A combinatorial path (see [25] for instance) is a map of graphs p: P —I', where P isa
subdivided compact interval and I is a graph. Further, all our combinatorial paths will
be assumed to be immersions of graphs. P is always assumed to be oriented. When
there is no confusion about I', we will refer to p: P — I" as the path P. Unless men-
tioned to the contrary, a path between two vertices of X or X is a combinatorial path.

A segment is an embedded combinatorial path. Note that any compact graph home-
omorphic to an interval is the image of a segment. We will often refer to such graphs
as segments.

A cycle is an immersion of graphs ¢: C — I', where C is a subdivided circle. We will
often denote it by C.

A line is an isometric embedding R < X (with the CAT(0) metric), while a ray is an iso-
metric embedding of [0, 00). A combinatorial line is an isometric embedding of graphs
R — X', where R is the real line subdivided at integer intervals. We will only consider
combinatorial lines that are also lines in the CAT(0) metric (see Remark 2.15 below).

Since horizontal edges of X are of thickness two, vertical hyperplanes of X are lines.
Further:

Fact 2.13 The first cubical neighbourhood in X of a vertical hyperplane h, or the
set of all closed squares of X that meet h, is convex [32] and hence isometric to a
Euclidean strip [0, 1] x R with h =~ { %} x R. Thus maximal geodesics in such a strip
are of the form either {79} x R or geodesics from (0, x) to (1, y).

We next divide the set of lines in X into the following three types.

Definition 2.14 A vertical line is a combinatorial line contained in a vertical tree. A
tubular line is one that is parallel to a vertical hyperplane in the first cubical neighbour-
hood of the hyperplane. A transversal line is a line that hits at least two vertical trees.

Observe that a given line can be both vertical and tubular. We note that a tubular line
that is not vertical is disjoint from the vertical 1—skeleton and hits any horizontal edge
at most at one point, while a transversal line hits at least one vertical hyperplane (in
exactly one point).

Remark 2.15 As mentioned in the introduction, edge groups of the JSJ decomposition
are universally elliptic. By Lemma 8.4, transversal lines are not stabilised by universally
elliptic subgroups. Hence, only vertical and tubular lines play a role in the analysis
that follows.
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3 Regular neighbourhoods and regular spheres

Recall that a cell of a square complex is either a vertex, an edge or a square.

Definition 3.1 (cubical neighbourhoods) The first cubical neighbourhood Y +1 of
a subset Y of a square complex Z is a subcomplex of Z given by the union of all
cells of Z that meet the closure of Y. The n™ cubical neighbourhood Y " is defined
inductively as (Y +—=1D)+1,

Definition 3.2 (cubical subdivisions) The first cubical subdivision Z(1) of a square
complex Z is a square complex obtained by subdividing Z in the following way: Each
edge of Z is subdivided into two edges with the midpoint of the initial edge forming a
new vertex. Each square of Z is subdivided into four squares of equal area by taking
the centre of the square as a new vertex and taking four new edges between the centre
of the square and each of the midpoints of the edges of the square. The n" cubical
subdivision Z™ of Z is the first cubical subdivision of Z"~1).

We will now define an abstract neighbourhood for a combinatorial path in a square
complex. The path may not embed in the square complex, but it will embed in its
abstract neighbourhood. Fix a combinatorial path p from P to the 1-skeleton of a
square complex Z. Here the path may or may not be a cycle. We allow P to be a
combinatorial ray or a combinatorial line. We remind the reader that p is an immersion
of graphs. We will consider p as a map from P to the 1-skeleton of Z @) | the second
cubical subdivision of Z.

Definition 3.3 The regular neighbourhood N(P) of P in a square complex Z is a
square complex constructed as follows. Let ¢ be a cell of Z ) We take one copy of ¢
for each component of p~!(c) (see Figure 1). The adjacency of cells is given by the
adjacency of arcs of P, where each arc is a component of the preimage of a cell of Z @

P

~

l l
N(P) z

Figure 1: Two disjoint subpaths of P are mapped to the grey square.
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Since p restricted to each arc of the preimage of a cell of Z@ is an (isometric)
embedding, we observe:

Fact 3.4 There is a natural embedding of P in N(P) such that p factors through this

embedding:
P \ £ > Z

N(P)

Note that the map N(P) — Z is an immersion. In particular, if p is an embedding,
then N(P) embeds in Z, since p~!(c) of any cell ¢ contains a single component.

The reason for choosing the second cubical subdivision instead of the first in the
definition of N(P) is to make it easier to define certain operations (see Definition 3.7).

Definition 3.5 The regular sphere around P, denoted by dN(P), is the union of all
cells of N(P) that are disjoint from P.

Fact 3.6 The regular sphere around a vertex is isomorphic as graphs to the first
barycentric subdivision of the vertex link.

3.1 The regular sphere around an edge

The goal of this subsection is to show that the regular sphere around an edge of a square
complex can be built from the regular spheres around its endpoints.

Let Y be a subset of a simplicial graph I'. Recall that the star of Y , denoted by star(Y'),
is the subgraph of I' consisting of all vertices and edges of I that meet Y. The open
star of Y, denoted by stoar(Y), is the interior of star(Y).

Definition 3.7 [24] Let I} and I be graphs. Let v; € I7 and v, € I, be vertices
of equal valence, say k. Let ¢;: {1,...,k} — adj(v;) be a labelling of the vertices
adjacent to v;, for i = 1,2. Then the spliced graph T (y,,¢,)®(v,,¢,) [2 18 defined
as a quotient of I7 \ stoar(vl) U\ st%lr(vz), where ¢1(j) is glued to ¢,(j), for
1 <j <k. If vy # vy are vertices in I} as above, then we define the self-spliced
graph (v, 6,)PDw»,¢,) [1 as a quotient of Ty \ (stc:)ar(vl) U stoar(vz)), where ¢1(j) is
glued to ¢o(j), for 1 <j <k.
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IN(v)

stzlr(ea )

N (u)

Figure 2: Regular spheres around two adjacent vertices. The star of e, is
highlighted in green.

Recall that the dipole graph of order d is a multigraph consisting of two vertices
and d edges joining them.

Let e be an edge of a nonpositively curved square complex Z with endpoints u# and v.
We can now state the main result of this subsection.

Lemma 3.8 The regular sphere around e is homeomorphic to the spliced graph of
the regular spheres around u and v with the natural labelling induced by the squares
containing e.

Proof Let m be the midpoint of e. Then m is a vertex after a subdivision of the
square complex. Observe that N (m) is homeomorphic to a dipole graph of order d,
where d is the thickness of e. Let e, be the initial half-edge of e and ¢ its second
half. Then e, and e, meet dN(m) at distinct vertices of valence d, which we will
also call e, and ep respectively (see Figure 2). Thus dN(m) \ stoar(ea) U stcélr(eb) is a
disjoint union of d segments, one for each square that contains e.

Similarly, e, (respectively ep) meets N (u) (respectively dN(v)) at a vertex of va-
lence d ; see Figure 2. So dN(u) \ st%tr(ea) (respectively dN(v) \ St%ll'(eb)) is a graph
with d “hanging” edges: edges with one of their endpoints having valence one. We thus
see that IN(e) = (IN(u) \ stoar(ea) LUaN(v)\ st?ar(eb)) /~ with the natural gluing. O

3.2 The regular sphere around a combinatorial path

Henceforth, till the end of Section 3, Z is either X or X. Assume that P is not
a vertex. Let e be an edge in P. If P is not a cycle, then P is a concatenation of
paths P;, e and P;. If P is acycle, we denote the connected complement of é by P;.
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Lemma 3.9 The regular sphere around P is homeomorphic to a

(1) spliced graph of the regular spheres around Py and P, (with labelling induced
by the squares containing e) if P is not a cycle, and

(2) selt-spliced graph of the regular sphere around P, (with labelling induced by
the squares containing e) if P is a cycle.

The proof is analogous to the proof of Lemma 3.8.

3.3 Connected regular spheres

For the rest of the section, P will always be a noncyclic path. We recall that Z is either
X or X and P is either a compact interval, a combinatorial ray or a combinatorial line.

Recall that a point y of a topological space Y is said to be a cut point of Y if Y \ {y}
is not connected.

Lemma 3.10 The regular sphere around any vertex or the midpoint of any edge of Z
is connected and has no cut points if and only if Z is Brady—Meier. a

We now state the main result of the section.

Proposition 3.11 If P is compact, then the regular sphere around P is connected
and has no cut points.

The proof requires the following lemma. It was observed in [8], but without a proof.

Lemma 3.12 Let Il and I be connected graphs with no cut points. Suppose that T’
is the spliced graph 17 (y,,4,)® (v,4,) I2. Then I' has no cut points.

Proof First observe that I} \st?ar(vi) is connected by assumption. Let v € I". We will
show that v is not a cut point. Assume that v € I'}. The important case to consider is
of a point x # v € I'7. Since I7 \ {v} is connected, there exists a path from x to vy
in Iy disjoint from v. Let u be a vertex adjacent to vy on this path. Then u is glued
to a vertex of [, in I'. Thus there exists a path from x to I3 disjoint from v. a

Proof of Proposition 3.11 The proof is by induction on the length of P. If P isa
vertex, then the result is obviously true. Suppose that P is of length at least one. Let e
be an edge in P and P; and P, be subpaths such that P is the concatenation of Pj, e
and P,. By induction, the regular sphere around P; has no cut points. Lemmas 3.9
and 3.12 then give the result for P. a
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Lemma 3.13 The regular sphere around a combinatorial ray P of X is connected.

Proof Let v € ON(P). By Lemma 3.9, there exists p € P such that v € IN(p).
If po denotes the initial point of P, then P is a concatenation of the paths Py and P,
where P is the subpath of P from pg to p and P, is its complement. Since dN(P7)
has no cut points (by Proposition 3.11, there exists a path in dN(P;) from v to a
point vg in AN(po) disjoint from P, ), the result follows. o

Corollary 3.14 (rays don’t separate) A combinatorial ray of X does not separate X.
The following powerful result for X will be used repeatedly in later sections.

Lemma 3.15 (path-abundance lemma) Let P be a combinatorial geodesic in X and
x € X\ P. Then, given p € P, there exists a path « from x to p suchthata NP = {p}.

Proof First note that N(P) embeds in X, by Fact 3.4. Let y be a path from x to p.
Let y" be the maximal initial subpath of y such that y’ N P is empty. If y’ ends at p,
then declare y' = «.

Suppose not. Let p’ be the endpoint of y’. Then P is a concatenation Py -[p’, p]- P>.
By Proposition 3.11, the regular sphere around [p’, p] has no cut points. In particular,
IN([p’, p]) \ P; is connected. We recall that we denote the point at which P; meets
IN([p’, p]) also as P;.

Denoting Yy’ NIN([p, p’]) by y’, we note that there exists a path 8 between y’ and P,
in ON([p, p’]) \ P1. Let h be a vertex adjacent to P, such that 8 meets /. Note that
h € ON(p) \ P». The required path « is a concatenation of y’, B and a path in N(p)
from h to p. a

4 Separating and coarsely separating lines

Recall that a subspace Y of a topological space Z separates two points z1 and zp
in Z if z; and z5 lie in different components of Z \ Y. A subspace Y separates
Y' C Z if Y separates two points of Y.

Definition 4.1 (separating lines) A separating line in X is a line that separates X.

Given a subspace Y of a metric space Z, recall that Ng(Y) denotes the set of points
in Z at distance at most R from Y.
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Definition 4.2 (coarsely separating lines [28]) A line L coarsely separates X if
there exists R > 0 such that

(1) NRg(L) separates X, and
(2) there exist components Y7 # Y, of X \ Ng(L) such that for any R’ > R,
Yi € Nr/(L).
Since a line is an embedding in X, the regular sphere around a combinatorial line
embeds in X, by Fact 3.4.
Let h be a vertical hyperplane. Note that h is a combinatorial line in the first cubical

subdivision of X .

Definition 4.3 The regular sphere around a nonvertical tubular line L at distance at
most % from a vertical hyperplane h in X is defined to be the regular sphere around h
in the first cubical subdivision of X .

Lemma 4.4 Let L be a combinatorial separating line in X and P C L be a combina-
torial subpath. Then L separates ON(P).

Proof Suppose the lemma is not true. Then note that N(P) \ L is connected. Let
X,y € X \ L. Fix p € P. By Lemma 3.15, there exist paths « from x to p and
from y to p suchthat e N L = BN L = {p}. Since IN(P) \ L is connected, there
exists a path in dN(P) \ L between o NdN(P) and B NIN(P). Thus x and y are
not separated by L for any x,y € X, a contradiction. a

4.1 Separating implies coarsely separating
Throughout this subsection, L refers to a vertical or a tubular line.

Definition 4.5 (half-spaces of a line) A half-space of L is the closure in X ofa
component of X \ L.

We warn the reader that there can be more than two half-spaces of a separating line in
general.

An easy consequence of Lemma 3.15 is the following result:
Lemma 4.6 Let Y be a half-space of L. Then L C Y. O
In fact, we can read the number of half-spaces of L off its regular sphere:

Lemma 4.7 There exists a natural map from the set of half-spaces of L to the set of
components of the regular sphere around L. Further, this map is bijective.
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Proof Observe that each component of dN(L) lies in a half-space of L. Let Y be a
half-space of L, and h1,hp € Y NdN(L). Then there exists a path between /&, and /p
in the component Y \ L. There also exists a path between &; and /s, through L, since
h; € AN(L). These two paths between &y and /5, bound a disk D, as X is simply
connected, and D NN (L) gives a path between i1 and A, in IN(L). The required
map is the one that sends a half-space Y of L to Y NaN(L). a

Corollary 4.8 Given an edge e in L, for each component K of dN(L), there exists
a square s containing e such that sNIN(L) C K.

Proof Let Y be the half-space of L corresponding to K, by Lemma 4.7. By
Lemma 4.6, Y meets e. Let m be the midpoint of e. By Lemma 3.15, there exists a
path between any point in the interior of Y to m that does not meet L \ {m}. Hence Y
contains a square s that contains e and is as required. o

Fact 4.9 It is easy to see that L is a separating line whenever it is tubular. Clearly,
if L is not vertical, then it separates the strip that contains it. Otherwise, any strip that
contains L induces a component (line) of the regular sphere around L.

Lemma 4.10 Let Y be a half-space of L. Then Y € Nr(L) for any R > 0.

Proof A hyperplane of a CAT(0) cube complex is, after subdivision, a CAT(0)
subcomplex [32]. Thus every hyperplane of X is a tree. But since each edge of X is
of thickness at least 2 (Lemma 2.11), every hyperplane is an unbounded tree. Observe
that if L meets a hyperplane h at exactly one point, then h has points at arbitrarily
large distances from L. It is easy to see that Y contains the interior of at least one
square s. Choose s such that s meets L. Then the horizontal hyperplane through s
meets L at a single point. |

Proposition 4.11 L coarsely separates X. |

4.2 Coarsely separating periodic lines

Definition 4.12 The translation length of an element g € G is the infimum of d(x, gx)
overall x € X. An axis of g € G in X isaline L in X such that gLCLand g
moves an element of L by its translation length. A line L in X is periodic if it is an
axis of some element of G.

Given g € G, an axis in X of g always exists (see [6, Theorem I1.6.8] for details).
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Lemma 4.13 Given a combinatorial periodic line L, either L is vertical or each
vertical subpath of L is compact.

Proof Let g € G be such that gL. C L. Suppose that a vertical component of L is
not compact, and hence contains a ray y. Let e be an edge of L adjacent to y. Then

1

either g or g7 sends e into y. Since G sends vertical edges to vertical edges, e is

vertical. Continuing this way, we conclude that L is vertical. a
The main result of this subsection is the following:

Proposition 4.14 A periodic coarsely separating combinatorial line L of X sepa-
rates X .

The proof uses the following lemma. Recall that h™! is the first cubical neighbourhood
of a hyperplane h.

Lemma 4.15 Let Y be a half-space of a periodic combinatorial line L such that L is
not contained in h*! for any vertical hyperplane h in Y. Then Y \ Lk s connected
for each k € N.

Proof of Proposition 4.14 If L is contained in h™! for some vertical hyperplane h,
then L is tubular and hence separating (Fact 4.9). So assume that L is not contained
in h™1 for any vertical hyperplane h. Suppose that L does not separate. Let ¥ = X be
the unique half-space of L. By Lemma 4.15, Y \ L*¥ is connected for all k, implying
that L does not coarsely separate. a

The proof of Lemma 4.15 requires some work. For the rest of the subsection, we fix a
periodic combinatorial line L and a half-space Y of L such that L is not contained
in h™! for any vertical hyperplane in Y.

Remark 4.16 By [18, Lemma 13.15], L1k is convex for any k.

Definition 4.17 A hyperplane h is fangent to a subcomplex Z of X if Z is disjoint
from h but meets h*!.

Fact 418 As L1K is convex, any element of LT*+1) s contained either in L1*
or in the first cubical neighbourhood of a hyperplane tangent to Ltk

Lemma 4.19 Given a vertical hyperplane h in Y and k € N, hn L1k is compact.
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Figure 3: The edges of L are in green: no edge at v meeting L+*~1 (left),
a horizontal edge at v in Ltk (middle) and a vertical edge at v in Ltk (right).

Proof Suppose there exists a vertical hyperplane h such that h N Lk is not compact.
Let T be the underlying Bass—Serre tree of the tree of spaces structure of X. By
Lemma 4.13, the image of L in T is either a point or a line. We first claim that L is
vertical. This follows from the fact that the image of h in 7 is a point and a ray of h
is at finite Hausdorff distance from a ray of L.

Let « be the path in T between the image of h and the image of L. Let h’ be the
unique vertical hyperplane tangent to L such that its image in 7 lies in «. Then it is
easy to see that h’*1 N L contains a ray. It then follows that L C h’+1 as both h’ and L
are periodic and G acts freely on X . This is a contradiction. |

We will denote by dL1¥ the set of all cells in LT disjoint from LT*—1

Lemma 4.20 Let v be a vertex in L% . Then exactly one of the following holds:

(1) One vertical and one horizontal edge incident to v lie in LTk,
(2) Two vertical edges (and no horizontal edge) incident to v lie in Ltk

(3) Finitely many horizontal edges (and no vertical edge) incident to v lie in Ltk

Proof Since v¢ LT®* =1 observe that at most one edge incident to v meets LT&* 1)
The three mutually exclusive cases to then consider are that of no edge incident to v
meeting LH&=1) 4 unique horizontal edge meeting LT&=1 ora unique vertical edge
meeting LT*=D (see Figure 3). a

Before proving Lemma 4.15, we will have to prove:

Lemma 4.21 Let h; and h, be hyperplanes in Y tangent to L% . Suppose that
h;rl N LYk and h;l N Lk intersect. Then h;rl NALTE+D and h;l NaLtk+D
lie in a component of JLT*+1)
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We will denote h;rl NLT* by o;.
Lemma 4.22 Suppose that o1 and o, are horizontal. Then o1 N oy is a singleton.

Proof Let v be a vertex in g1 Noy. If (1) or (2) of Lemma 4.20 holds at {v}, we are
done. If (3) holds, observe that any horizontal edge f in o7 is in the first cubical neigh-
bourhood of exactly two horizontal hyperplanes, h; and h, where h meets Ltk o

By Lemma 4.19, o; is compact whenever it is vertical. Thus, o1 N o, is always
compact.

Lemma 4.23 Let v be a terminal vertex in o1 N0y . Then either 01 Nop = {v} or v is
a terminal vertex of o1 or 0;.

Proof If 01 Moy contains an edge, then, by Lemma 4.22, o1 and o3 are both vertical.
Then either (1) or (2) of Lemma 4.20 holds at the terminal vertex v. If (1) holds, then v
is terminal in both o1 and o, . If (2) holds (see Figure 4), then it is easy to see that v
is terminal in one of the two segments. a

Proof of Lemma 4.21 Let v be a terminal vertex of o; No,. Let e; be the edge
incident to v such that the hyperplane h; passes through v. We have three cases given
by Lemma 4.20:

Case 1 Only one vertical edge f incident to v lies in ALk Since X is Brady—Meier,
there exists a path B in link(v) \ { f} between e; and e,. The projection
of B to 3{v}T1 hits the other endpoints of e; and e, which lie in dLT*+D).
Further, B and thus its projection are disjoint from L**. Hence the result.

Case 2 Two vertical edges fi and f» incident to v lie in dL1*¥. By Lemma 4.23,
either o1, say, is horizontal or v is terminal in o7. Thus one of the edges,
say f»,doesnotliein o1. Let B be a path in link(v)\{ f1} between e and e, .
Since f> does not lie in oy, the path B and its projection to d{v} ™! are disjoint
from oy. If f, does not lie in o, or B is disjoint from f>, then we are done
as the projection of 8 gives the required path in dL+T &+ 1f not, then we
repeat the procedure at v/, the other endpoint of f>. We continue until the
path no longer meets the compact o,. Hence the result.

Case 3 Only horizontal edges incident to v lie in ALtk Let f be the vertical edge
incident to v and contained in LTX. Let B be a path between e; and e,
in link(v) \ {f}. Then B is disjoint from LT¥ and so is its projection
to 0{v}tL. a
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Figure 4: The edge e; passes through the vertical hyperplane h; .
We are now ready to prove Lemma 4.15.

Proof of Lemma 4.15 The proof is by induction. Note that ¥ \ L1¥ is connected
whenever ¥ N dL1K is connected. Since Y is a half-space of L, ¥ N IN(L) is
connected, by Lemma 4.7. Thus ¥ NdLT! is connected.

Assume that ¥ NJL ¥ is connected for some k. We will now show that ¥ NgL+*+1
is connected. Indeed, LT&+1D is contained in the union of L% and the first cubical
neighbourhoods of hyperplanes tangent to Lk, by Fact 4.18. Thus, given two vertices
u and o’ in ¥ NILTE+D  there exist hyperplanes h and h’ tangent to Ltk such
that u € h™! and v’ € Wt!. Let 0 = ht!' N L% and o/ = W1 n LTk, By the
induction assumption, there exists a path between ¢ and o’ in ALtk . This implies
that there exists a finite sequence of tangent hyperplanes h = hy,...,h, = h’ such
that if o; = h;L U'NL** then o; N 0;+1 is nonempty. Lemma 4.21 then implies that
u and v’ lie in a component of dL**1. Hence the result. O

5 A crossing criterion for lines

Definition 5.1 (crossing of lines) Let L and L’ be two separating lines of X. We
say that L crosses L' if L € Y’ for any half-space Y’ of L’. Two separating lines
L and L’ don’t cross if neither L crosses L’ nor L’ crosses L.

Note that two disjoint lines don’t cross. Thus a vertical line and a tubular line that is
not vertical never cross. We will see later that in fact, no vertical line crosses a tubular
line. Two intersecting lines may or may not cross. The main goal of this section is to
obtain the following criterion for the crossing of two lines.
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Proposition 5.2 (crossing criterion) Let L and L’ be two separating combinatorial
lines in X . Then L crosses L' if and only if

(1) LNL'= P is nonempty and compact, and
(2) L'NON(P) separates L NON(P).

Throughout this section, L and L’ are two separating combinatorial lines and P denotes
their intersection. The following three lemmas are consequences of the Brady—Meier
property of X and the path-abundance lemma (Lemma 3.15), and we omit the proofs.

Lemma 5.3 If P is either empty or noncompact, then L and L' don’t cross. O

Lemma 5.4 (crossing is symmetric) L is contained in a half-space of L’ if and only
if L' is contained in a half-space of L. O

Lemma 5.5 L and L’ don’t cross if and only if for each half-space Y of L, there
exists a half-space Y' of L’ such that either Y C Y’ or Y’ C Y, and similarly for
each half-space Y’ of L', there exists a half-space Y of L such that either Y C Y’
orY' CY. a

Before we go to the proof of Proposition 5.2, we will collect a couple of results
about graphs without cut points as N (P) has no cut points whenever P is compact
(Proposition 3.11).

5.1 Graphs with no cut points

We fix a connected graph I in this subsection such that I" has no cut points. We further
assume that I contains at least one edge. A cut pair is a pair of points that separates I

We now draw the attention of the reader to certain similarities between cut pairs in I’
and separating lines in X . If {a, b} is a cut pair, then a half-space of {a, b} is the
closure of a component of I' \ {a, b}. The first result is analogous to Lemma 4.6.

Lemma 5.6 Let Y be a half-space of a cut pair {a,b}. Then {a,b} CY.

Proof Since " is connected, at least one of the two, say a, is contained in Y. If b is
not contained in Y, then a is a cut point as a separates Y from b. a

The second result is analogous to Lemma 5.4.
Lemma 5.7 [7, Lemma 2.3(1)] Let {a,b} and {da’,b’} be cut pairs in . Then
{a’, b’} separates {a,b} if and only if {a,b} separates {a’,b'}.
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Corollary 5.8 [7, Lemma 2.3(3)] Let {a,b} and {a’, b’} be cut pairs in T. If there
exist at least three half-spaces of {a,b}, then {a’, b’} is not separated by {a,b}.

5.2 The criterion

Proof of Proposition 5.2 By Lemma 4.4, both L and L’ separate IN(P). Suppose
that P is compact and L' N ON(P) separates L N dN(P). Then, by Corollary 5.8,
L' separates dN(P) into exactly two components. This implies that L’ has exactly
two half-spaces as each half-space of L’ meets P, by Lemma 4.6. This in turn implies
that different components of dN(P)\ L’ are contained in different half-spaces of L.
Hence L crosses L.

For the converse, note that if P is not compact then L and L’ don’t cross, by Lemma 5.3.
Similarly, if L’ N dN(P) does not separate L N dN(P), then clearly, L lies in a half-
space of L' O

6 Cyclic splittings and separating lines

Definition 6.1 A group G splits over a subgroup H if G decomposes as a nontrivial
free product with amalgamation over H or as an HNN extension over H. In the
sequel, a decomposition of G either as a free product with amalgamation or as an HNN
extension (over H ) will be called a basic splitting of G (over H).

Proposition 6.2 [35] G splits over H if and only if G acts without edge inversions
on an unbounded tree T such that H is the stabiliser of some edge of T and there
exists no proper G—invariant subtree of T.

As a consequence of Proposition 4.14, we have the following application of a result of
Papasoglu:

Lemma 6.3 [27] Let H be a cyclic subgroup over which G splits. Suppose that a
vertical line L is an axis of H. Then L is a separating line that does not cross any of
its translates.

Lemma 6.4 Let L be a periodic line that separates X and does not cross any of
its translates. Then there exists an unbounded G—tree Ty, and a vertex in T;, whose
stabiliser is the stabiliser of L. Further, there exists no proper G—invariant subtree
of Tt,.
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The construction of such a dual tree when L has exactly two half-spaces and is
disjoint from all its translates is standard. In that case, the dual tree is bipartite and is
constructed as follows: Each component of X \|_| gecG &L defines a black vertex while
each translate of L defines a white vertex. The adjacency is given by containment: a
white vertex is adjacent to a black vertex if it is contained in the closure of the black
vertex.

In our case, L may not be disjoint from its translates and may have more than two
half-spaces. This necessitates a more careful treatment, but the underlying idea is still
the same. Our construction, in fact, coincides with the above standard construction
when L is disjoint from its translates and has only two half-spaces.

We start with an observation that will be used in the proof.

Lemma 6.5 Let Ly and L, be separating lines that don’t cross. Given half-spaces Y
of Ly and Y of L, such that (Y1 \ L) N (Y2 \ L») is nonempty, then either L1 is
contained in Y, or L, is contained in Y7 .

Proof Since L and L, don’t cross, there exist half-spaces Yl’ of L1 and Y2’ of L,
such that L1 CY, and L, C Y/, by definition. We claim that either Y{ =Y; or Y, =Y.
Suppose not. Since L C Y, the separating line L; is disjoint from X \Y; D Y5\ L.
Thus Y> \ L is contained in a half-space Y|" of L;. But the fact that L, is contained
in Y| implies Y;" =Y/, and hence Y5\ L» is disjoint from Y7 \ Ly, a contradiction. O

The required tree 77, will be the CAT(0) cube complex dual to a space with walls.
Recall that:

Definition 6.6 [17] A wall on a nonempty set Z is a partition of Z into two subsets.
Z is a space with walls if Z is endowed with a collection of walls such that any two
points of Z are separated by finitely many walls.

Remark 6.7 The two subsets that define a wall are known as half-spaces in the litera-
ture. Note that we have already used this terminology for separating lines. Separating
lines in X do define walls, as we will show below. We will refer to a half-space
associated to a wall as a half-space of the space with walls.

We quickly recall some terminology of spaces with walls before going to the proof of
Lemma 6.4. We refer the reader to [26] for further details.
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Definition 6.8 Let Z be a space with walls. An ultrafilter on Z is a nonempty
collection w of half-spaces of Z that satisfy the following conditions:

(1) Acw and A C B imply that B € w, and

(2) exactly one of A and A€ is contained in w.

Lemma 6.9 Let w be an ultrafilter on Z and A, B € w. Then A and B are not
disjoint. a

For a z € Z, the principal ultrafilter o, is defined to be the set of half-spaces of Z
that contain z. An ultrafilter w of Z is said to be almost principal if for some (and
therefore for any) z € Z, the symmetric difference between w and o is finite.

Proof of Lemma 6.4 Let Z; = X \ UgeG gL. Then each half-space Y of gL
defines a wall {Y N Zy,Y° N Z}, which we will denote as {Y, Y°}. It is easy to
see that Zj is a space with walls. By [26, Theorem 4.1], there exists a connected
graph Ty, whose vertices are the principal and almost principal ultrafilters of Z . Two
vertices are adjacent if the cardinality of their symmetric difference is two. 77, is then
the 1-skeleton of a unique CAT(0) cube complex (see [32, Section 3], for instance).

We claim that 77, is a tree. If not, then it is the 1-skeleton of a cube complex of
dimension at least 2. Thus there exists a cycle (wy, wy, w3, wyq) of length 4 in 77,.
Since w; and w, are adjacent, there exists a wall {Y, Y} of Zy such that Y € w,
and Y ¢ € w,. Similarly, there exists a wall {¥Y’, Y’} such that Y’ € w1 and Y’ € wy4.
Note that Y’ € wp, Y € wq and Y€, Y'¢ € w3, by definition. We will show below that
this is not possible. Assume that ¥ and Y’ are half-spaces of the lines gL and g’L. By
Lemma 6.9, Y and Y’ are not disjoint. This implies that either gL C Y’ or g'L C Y,
by Lemma 6.5. Assume the former. Either Y C Y/ or not. If Y C Y, then no ultrafilter
can contain both Y and Y’ and hence w4 cannot exist. On the other hand, if ¥ € Y,
then g’L meets Y in its interior and hence Y’ C Y. This then implies that no ultrafilter
can contain both Y and Y’ and hence w3 cannot exist. This proves the claim.

There exists a natural action of G on 77,. An element g € G sends an ultrafilter w to
an ultrafilter gow where gw is the set of half-spaces gY of Zy, where ¥ € w.

We claim that there exists an ultrafilter whose stabiliser is the stabiliser of L. Let
Y1, ..., Y, bethe set of half-spaces of L, and let wy, be the set of half-spaces of Z; con-
sisting of Y, ..., Y,y and all half-spaces (of proper translates of L) which contain L.
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Note that wy, is an ultrafilter. (If n = 2, then wy \ {Y1} and wr, \ {Y>} are ultrafilters
and hence wy, is a vertex of 77, after subdivision.) We claim that w7, is almost principal.
Indeed, choose y; € Y1 N Zy. Then oy, =1{Y1,Y5,.... Y/} U{Y | y1 € Y}. There
exist at most finitely many lines g1L, ..., g L that separate y; from L in X. Except
for the half-spaces of these lines, a half-space contains y; if and only if it contains L.
Hence o0y, A wy is finite. It is straightforward to check that stab(L) = stab(wy ).

Lemma 4.10 implies that 77 is unbounded because a vertex at maximal distance
from wy, will contain a half-space that does not contain a translate of L in its interior.

There is no proper G—invariant subtree of 77,. Now 77, is spanned as a tree by the
principal ultrafilters of Zj , by [26, Proposition 4.8]. It thus suffices to prove that no
subtree spanned by a proper subset of the set of principal ultrafilters is G—invariant.
Choose y; € Y; N Z, such that there exists a path « from y; to L with & C Z1,. Then
observe that any principal ultrafilter oy, is a translate of oy, , for some i. Thus, if a
proper subtree is G—invariant, then it has to miss at least one oy, , say oy, . But this is
not possible as the interior of Y7 contains at least one translate of L, by Lemma4.10. O

Proposition 6.10 Let H be a cyclic subgroup of G and L an axis of H in X.
Suppose that L is a separating line that does not cross any of its translates and that H
is equal to the stabiliser of a proper subset of the set of half-spaces of L. Then G splits
over H.

Proof Let 77, be the dual tree of L obtained from Lemma 6.4. Let Y7, ..., Y, be the
half-spaces of L and w; be the vertex adjacent to wy, such that w; A wp, ={Y;, Y }.
Let T be the quotient simplicial graph of T, obtained by first identifying for each h € H
and i €{1,...,n}, vertices w; and hw;, and then extending equivariantly. It is easy
to check that 7' is a tree that satisfies the conditions of Proposition 6.2 for H. |

A cyclic subgroup H of G that satisfies the hypothesis of Proposition 6.10 is a

geometric splitting subgroup.

Proposition 6.11 Let H be a cyclic subgroup of G over which G splits. If H has a
vertical axis in X then there exists a geometric splitting subgroup H’ commensurable
with H.

Proof Let L be an axis of H satisfying Lemma 6.3. Observe that H is contained
in the stabiliser of L, which is a cyclic subgroup. Choose a half-space Y of L and
let H' be the largest subgroup of the stabiliser of L that preserves Y. Then, by
Proposition 6.10, H' is as required. a
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7 Vertical cycles and cyclic splittings

In this section, we will examine splittings induced by vertical lines in X . Recall that a
cycle (Definition 2.12) is an immersion of graphs ¢: C — I', where C is a subdivided
circle. From now on, throughout the text, unless mentioned otherwise, I" will be a
vertex graph X of X and so C is a vertical cycle.

Remark 7.1 The map ¢ is mj—injective. Indeed, 71 (C) injects into 71 (X;) [36]
and 1 (X;) injects into the fundamental group of X in the graph of groups setup [35].

Fact7.2 Alinein X is periodic and vertical if and only if it is a lift of a vertical cycle
in X.

By abuse of notation, we will often refer to the lift 5 : C — X as the line C. Since
the projection of the regular neighbourhood of a path onto the path is a deformation
retraction, we have:

Lemma 7.3 IN(C) = IN(C)/m1(C). O

Definition 7.4 A cyclic path is an immersed combinatorial path p: P — X such
that the initial and terminal vertices of P have the same image while the initial and
terminal edges of P have distinct images.

A cyclic path P induces a quotient cycle ¢p: Cp — X, where Cp is the quotient
of P obtained by gluing the initial and terminal vertices and defining ¢p ([x]) := p(x).

Definition 7.5 (fundamental domain of a cycle) Let ¢: C — X be a cycle. A cyclic
path pc: Pc — X, with induced quotient cycle Cp.. is said to be a fundamental
domain of C if the following diagram commutes:

Cpci)c

~ v
¢PC XS ¢

Remark 7.6 It is easy to see that for the action of 71(C) on C,alift Pc of Pc isa
fundamental domain of C in the usual sense.

Definition 7.7 Let Pc be a fundamental domain of a cycle C. Let u and v be
the initial and terminal vertices of P¢c and a and b the initial and terminal edges.
Let b, be the vertex of dN(u) that meets b and a, the vertex of dN(v) that meets a.
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The orthogonal sphere around Pc , denoted by don N(Pc), is defined as the closure
of IN(Pc) \ ({by}1? U {ay}12), where {b,} T2 (respectively {a,}T?) denotes the
second cubical neighbourhood in AN (Pc) of b, (respectively ay).

Let C be a lift of C and ﬁc cC of Pc . Then note that:

Fact 7.8 The natural map given by Pc = Pc < C induces an embedding of graphs
dorth N(Pc) < IN(Pc) \ C C ON(C) as a deformation retract. Further, don N(Pc)
is connected if and only if dN(P¢)\ C is connected.

It thus follows from Lemma 7.3 that:

Lemma 7.9 The regular sphere around a cycle C is isomorphic to the quotient of
the orthogonal sphere around a fundamental domain Pc of C with the natural gluing
induced by 1(C).

Let pc: Pc — Xs, and let ¢’ be an edge in Pc . By Corollary 4.8, we have:

Lemma 7.10 Let K be a component of dounN(Pc). Then there exists a square s
in N(P¢) that meets ¢’ and s N do;n N(Pc) C K. O

Definition 7.11 A cycle C is a UC-separating (universal cover separating) cycle if C
is a separating line. C is strongly UC-separating if dN(C) is not connected.

By Lemma 4.4, we have:
Lemma 7.12 If C is a UC-separating cycle, then 0o N(Pc) is not connected.
Lemma 7.13 C is strongly UC-separating if and only if the following two conditions
are satisfied:

(1) C is a UC-separating cycle, and

(2) m1(C) does not act transitively on the set of half-spaces of C.
Proof Recall that IN(C) =~ 8N(5)/n1 (C) (Lemma 7.3). A component of dN(C)
lifts to a component of dN (5 ). So, if dN(C) is connected, then either ON (6 ) is
itself connected or every component of dN (5 ) projects onto IN(C). So 71(C) acts

transitively on the components of IN(C) and therefore on the components of X \ C
(Lemma 4.7). The converse is clear. O
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Definition 7.14 A cycle ¢’: C' — Xy is an n’* power of the cycle ¢: C — Xj if
there exists an n—fold covering map v: C’ — C such that the following diagram
commutes:

Lemma 7.15 Let N be such that the thickness of any edge of X is at most N. Given

a UC-separating cycle C, there exists n < N such that the regular sphere around an n"

power of C is not connected.

Proof By Corollary 4.8, the number of half-spaces of C is at most N. Thus there
exists a subgroup H of index at most N of 7r1(C) that does not act transitively on the
set of half-spaces of C. The required cycle C’ is the quotient of C by H. |

Definition 7.16 Let pc: Pc — X be a fundamental domain of a cycle C. A subcycle
of C is the quotient cycle of a cyclic path pc|p: P — X5 with P C Pc.

Observe that if C’ is an n'™ power of C, then C is a subcycle of C’. We will often
use this fact.

Definition 7.17 A UC-separating cycle C has a self-crossing if C and a translate
Cross.
Definition 7.18 A cycle C is a splitting cycle if the following conditions are satisfied:
(1) C is strongly UC-separating,
(2) m1(C) equals the stabiliser of a proper subset of the set of half-spaces of C,and

(3) C has no self-crossings.

Remark 7.19 By Proposition 6.10, G splits over 71 (C) whenever C is a splitting
cycle.

We will now examine when C can have self-crossings. We start with the following.

Lemma 7.20 Let L; and L, be vertical lines of X stabilised by Hy and H; re-
spectively. Let n; be the translation length of a generator of H;. If the length of
P =LiNL,isatleast LCM(ny,n3), then P = L;.
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Recall that L; is an axis of H;. Hence a generator of H; translates every point of L;
by n; (see [6, Theorem I1.6.8(i)]). Since any element of H; takes vertices to vertices, n;
is indeed an integer.

Proof Suppose that P contains a segment of length LCM(n1,n,) = k. Let v be a
terminal point of P. Choose generators h1 € Hy and hy € Hy such that h; (v) € P.
Since the length of P is at least k, hf/ni(v) € P and hence hllc/”' (v) = hg/nz(v).
As G acts freely on X, hlf/"' = h’;/nz and hence L1 = L,. |

Corollary 7.21 If L, is a translate of a periodic vertical line L1, then either L, = L
or P embeds in L1/Hy, where H is the stabiliser of L.

In particular, for a cycle C, if g- C # C,then P = g: C NC embeds in C.

Definition 7.22 A segment P < C is said to be a component of self-intersection of C
if there exists a translate gé # C such that the projection to C of cn g(~? is equal
to P. We say that there is a self-crossing of C at P if there exists a g € G such that
C ﬂgé =P and C and gé Cross.

Fact7.23 Let P C C be a segment so that a lift of P in C is isomorphic to P (and
hence also denoted by P ). Then IN(P)NIN(C) =~ dIN(P)\ C . In other words, there
is a self-crossing at P only if ¢C meets different components of IN(P)NIN(C), by
Proposition 5.2.

Lemma 7.24 A splitting cycle is strongly UC-separating and has no self-crossing at
any component of self-intersection. a

Also, splitting cycles capture all “vertical” splittings up to commensurability:

Lemma 7.25 Let H be a cyclic subgroup over which G splits with a vertical axis.
Then there exists a splitting cycle C such that w1 (C) is commensurable with a conju-
gate of H.

Proof By Proposition 6.11, H is commensurable with a geometric splitting sub-
group H’. Let L be a vertical axis for H. The required splitting cycle is obtained by
taking the quotient of L by H'. O

As an immediate consequence, we have:

Lemma 7.26 Given a UC-separating cycle C with no self-crossings, there exists a
splitting cycle C’ such that 1 (C) and 71 (C’) are commensurable. a
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8 Universally elliptic splittings
Recall that a subgroup H of G is elliptic in a G-tree T if H fixes a pointin 7.

Lemma 8.1 (elliptic splittings) Let H; and H, be cyclic subgroups over which G
splits. Let L; be an axis of H; in X.H 1 is elliptic in the Bass—Serre tree of the basic
splitting over H if and only if L1 and gL, don’t cross for any translate gL, of L.

Proof Note that if L; and gL, don’t cross for any g, then L; is contained in a
half-space of gL, for each g. Thus, for x € L1 \ Lj, the stabiliser of g, in the
dual tree Ty, (Lemma 6.4) of L, contains H1 and hence H; is elliptic in 77,. The
Bass—Serre tree T, of the basic splitting over H> is obtained from 77, by a sequence
of G—equivariant gluings of edges of 77,,. Thus H1 remains elliptic in 75. Conversely,
if there exists g such that L; and gL, cross, then g~! Hyg is hyperbolic in the dual
tree 77, and hence in 75. O

Remark 8.2 Since G is one-ended, H is elliptic in the Bass—Serre tree of the basic
splitting over H> if and only if H> is elliptic in the Bass—Serre tree of the basic splitting
over Hy; see [29, Theorem 2.1].

Definition 8.3 [16] A cyclic splitting of G over the subgroup H is universally
elliptic if H is elliptic in the Bass—Serre tree of any cyclic splitting of G. We then
say that H is a universally elliptic subgroup. Analogously, a splitting cycle C is
universally elliptic if 71 (C) is universally elliptic.

A splitting induced by a transversal line can never be universally elliptic:

Lemma 8.4 Let H be a cyclic subgroup over which G splits. Suppose that an axis
of H is transversal in X . Then H is not universally elliptic.

Proof Let L be a transversal axis of H. By definition, there exists a vertical hyper-
plane h such that L Nh is a singleton. Since h separates X and is either equal to or
disjoint from its translates, it induces a splitting of G. Let 7" be the Bass—Serre tree of
the splitting. Let e be the edge stabilised by the stabiliser of h. Note that the image
of e under H then spans a line of 7. Hence, H is not elliptic in 7. O

Splittings induced by vertical lines need more careful treatment. They may or may not
cross other vertical or transversal lines which induce splittings. We present below one
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sufficient condition for a splitting induced by a vertical line (cycle) to be universally
elliptic.

Proposition 8.5 Let L be a line that separates X into at least three half-spaces. Then
a subgroup of the stabiliser of L is universally elliptic.

Proof Let L’ be a separating line such that L and L’ meet at a compact segment P.
Since dN(P) \ L has at least three components, by Corollary 5.8, L’ N dN(P) lies in
a component of dN(P)\ L. Hence, L and L’ don’t cross. In particular, L does not
cross any of its translates. Let H be a maximal subgroup of the stabiliser of L that
preserves a half-space of L. Then, by Proposition 6.10, G splits over H and H is
universally elliptic. |

9 Repetitive cycles

Definition 9.1 Let p: P — X be a combinatorial path. Let e be an edge in X and ¢’
an edge in p~!(e). Denote also by e’ the image of ¢’ in N(P). Given a square s in X
containing e, denote by s’ (Figure 5) the union of all squares meeting ¢’ in N(P)
whose image in X is contained in s. Then the preimage of s around e’ in AN(P) is
defined as the segment s' N IN(P).

Recall that the orthogonal sphere of any fundamental domain P¢ of a UC-separating
cycle C contains at least two components (Lemma 7.12). By Lemma 7.10, for each
component K of don N(Pc) and each edge ¢’ in Pc with image e in X, there exists
a square s containing e such that the preimage of s around ¢’ lies in K.

Definition 9.2 (repetitive cycles) Let C be a UC-separating vertical cycle. C is a
k—repetitive cycle if there exists a vertical edge e in X and a fundamental domain P¢
of C such that

(1) atleast k distinct edges ey, ..., e, of Pc are mapped to e, and

(2) for each square s containing e, there exists a component K of donN(Pc) such
that for each i € {1,...,k}, the preimage of s around e; in dN(Pc) liesin K.

Intuitively, if C is k-repetitive, then the squares at e do not “mix” in the components
of dorin N(Pc). In other words, the notion of repetitiveness not only requires the cycle
“repeat” itself along some edges (condition (1)) but also ensures that the partitions
induced by the cycle on the set of squares containing e; coincide. Note that the
definition depends on the choice of a fundamental domain, as illustrated in Figure 6.
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Figure 5: A preimage of a square in the regular sphere.

Fact 9.3 A k-repetitive cycle is k’-repetitive for 1 <k’ <k.

The following property of lifts of repetitive cycles will be crucial for the rest of the

article. In fact, this is the only property of repetitive cycles that we will use.

Lemma 9.4 Let C be a k—repetitive cycle. Then there exists an edge € in X and

distinct elements g1, ..., gx € G such that

(1) foreachi €{l,...,k}, the translate gig contains é,

(2) foreachi e€{l,...,k}, the translation length of g; is strictly less than the length

of C, and

(3) any two squares s and §' that contain ¢ are either separated by all translates g; C

fori €{l,...,k} or by none of them.

/

S2
s /
3 €3 S3
X
/ /
S3 s1 s2 e |s,
s1 et s/1
aorth N(PC)

sy le1] |s1
/
S3 €3 53
/
S2 € 52
/
aorthjv(P(j)

Figure 6: C is 3-repetitive with the fundamental domain Pc but not with
the fundamental domain P(.. The red and blue curves represent ON(C).
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Proof Let C be k-repetitive with fundamental domain Pc so that there exist
edges ej,...,e; in Pc that satisfy the conditions of Definition 9.2. Let PccC
denote a lift of Pc in X . Denote e1 in PC by e. Since the edges ¢é; in Pc all have
the same image e in X, there exist 1 = gy, ..., g¢ such that g;é; = é. Then, clearly,
foreach i € {1,..., k}, the translation length of g; is strictly less than the length of C
and gia contains €.

Let § and §' be two squares that contain €. Then the squares g, 1(3) and g 1@y in Pc
are lifts of squares s; and s; in Pc. Let D and D’ be components of donN(Pc)
such that the preimage s; of s around e; meets D and the preimage s} of s’ around e;
meets D’. By definition, the corresponding preimage s; meets D and s; meets D’
for all i. Now § =3; and & = §] lie in different half-spaces of g1C = C if and
only if D, D’ C dN(C) (since dorn N(Pc) < IN(C), by Fact 7.8) meet different
half-spaces of C. Also, § and & lie in different components of g,-é if and only if
$i = g7 'S and §! = ¢! lie in different half-spaces of C if and only if D and D’
induce different half-spaces of C. a

As a consequence, we have the following useful result when at least two of the translates
in the above lemma are not equal. Let k > 2 and assume that C is a k—repetitive cycle.
Let g1,...,8% € G be as in Lemma 9.4.

Lemma 9.5 Suppose that at least two translates gié and g jé are distinct. Then C
separates X into exactly two half-spaces.

We will need the following result on graphs with no cut points to prove the lemma.

Lemma 9.6 Let ' be a graph with no cut points. Let {a,b} and {a’, b’} be cut pairs.
Suppose there exist points hy,hy,h3 € T'\ {a,b,a’, b’} that are pairwise separated
by {a, b} and also pairwise separated by {a’,b’}. Then {a,b} = {a’,b’}.

Compare with [4, Lemma 3.8].

Proof By Corollary 5.8, {a,b} lies in a half-space Y’ of {a’,b’} and Lemma 5.7
implies that {a’, b’} lies in a half-space Y of {a,b}. Let Y',Y{,...,Y, be the half-
spaces of {a’,b'}. If {a,b} # {a’,b’}, then Y U---UY, lies in the half-space Y
of {a, b} that contains {a’, b’}. This is a contradiction as at most one %; lies in Y'. O

Proof of Lemma 9.5 After a reordering if necessary, we assume C = g15 and gzé
are distinct. By Lemma 4.7, it suffices to show that N (C') has exactly two components.
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By Corollary 7.21, the segment S = Cn gzé is compact. Suppose that C has at
least three half-spaces. Then both dN(S) \ C and ON(S) \ 2>C have at least three
components, by Lemma 3.15. This means that there exist three squares 3, §' and §”
containing & that meet different components of both dN(S)\ C and IN(S)\ g2C, by
Corollary 4.8 (as any pair of squares at ¢ are either separated by both lines or by none,
by Lemma 9.4). Lemma 9.6 then implies that dN(S) N C = IN(S)N gzé, which is a
contradiction. O

Definition 9.7 A vertical cycle ¢: C — X, is maximal if it is not a nontrivial power
of any cycle.

Note that any cycle which induces a maximal cyclic subgroup has to be maximal,
justifying the name.

Corollary 9.8 A lift in X of a maximal k—repetitive cycle separates X into exactly
two half-spaces whenever k > 2.

Proof When C is maximal, the element g, that moves é; to €; in ﬁc does not
preserve C. This is because the translation length of g5 is strictly less than the
translation length of the generator of 71(C). If g, € stab(C), then (gz) and 71 (C)
are contained in a common cyclic subgroup and hence 71(C) = stab(C), contradicting
the fact that C is maximal. Hence ng # C. Lemma 9.5 then gives the result. O

We will end the section with a crucial result that bounds the length of nonrepetitive
UC-separating cycles. Let £ denote the number of vertical edges of X and F denote
the number of squares of X.

Proposition 9.9 (long cycles are repetitive) Let C be a vertical UC-separating cycle
with length at least E(k — 1)2FF+1/2 11 Then C is k-repetitive.

Proof The key ingredient in the proof is the pigeonhole principle. We apply it twice to
show that C satisfies both the conditions of Definition 9.2. We give the details below.

Fix a fundamental domain Pc of C. Since there are E vertical edges in X, by the
pigeonhole principle, there exists an edge e in X such that n oriented edges ey, ..., e,
of C are mapped to e, with n > (k — 1)2FF+D/2 1 1

Let A < F be the thickness of e. Note that the number of components . of don N(Pc)
is at most A, by Lemma 7.10. We would like to show that there exist k edges
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out of eq,...,e, for which the conditions of Definition 9.2 are satisfied. Denote
by A(A, i) the number of ways in which the squares sy,...,s) containing e can
be partitioned into exactly p nonempty subsets. If n > (k —1)A(A, w), then, by the
pigeonhole principle, k edges which satisfy the conditions of Definition 9.2 exist. Since
n>(k—1)2FF+D/2 L 1 and A < F, it is enough to show that A(A, ) < 22A+D/2
Note that if =1, then A(A, ) =1 for any A. Also, since no subset of the partition
of the squares can be empty, any subset can contain at most A — u + 1 squares. Hence

A—p+1 1
AGw =Y (F)A(/\—r,,u—l).

r=1

Observe A(Aa, ) > A(A1, 1) whenever Ap > A1 > u. Thus A(A, p) <22A+D/2 4

10 3-repetitive cycles and crossings

The main result of the section is the following.

Proposition 10.1 Let C be a maximal UC-separating vertical cycle that is 3-repetitive.
Then there exists a periodic separating line L' in X such that L' and C cross.

If C has self-crossings, then, by definition, C and a translate cross, and there is
nothing to show. The nontrivial part is to show that one such line exists even when C
has no self-crossings. Henceforth, till the end of this section, C refers to a maximal
3—repetitive cycle C with no self-crossings.

The key idea behind the proof is the following. By Corollary 9.8, C separates X into
exactly two half-spaces. Further, by Lemma 9.4, since C is 3-repetitive, there exists
an edge in X along which three translates of C meet. We will show that one of these
translates separates the other two. The periodic line L” will then be constructed by
ensuring that it meets both the separated translates outside the central translate. This
implies that L’ crosses the central translate of C.We give details below.

10.1 Lifts of C

Fix a fundamental domain P¢c of C and edges e;, e> and e3 with image e in X
satisfying the conditions of Definition 9.2. Let d be the thickness of ¢. Denote also
by e a lift of the edge e in a vertex graph X of X such that for 1 <i <3, there exist
L; = gié that satisfy the conclusions of Lemma 9.4. Thus L, L, and L3 contain e
and if .¥ = {sy,...,s4} is the set of squares containing e, then:
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Lemma 10.2 There exists a partition ALl B of . such that two squares s and s’
in & liein A (or B) if and only if for each i € {1, 2, 3}, they lie in a single half-space
of L;. O

By Corollary 9.8, we have:
Lemma 10.3 Each L; separates X into exactly two half-spaces. a

Fix asquare s€ A C .. For 1 <i <3, let Y; be the half-space of L; that contains s.
Let Y; be its complementary half-space. A set-theoretic consequence of Lemma 10.2
is that the half-spaces of L;, L, and L3 are nested. Namely:

Lemma 10.4 Fori,j €{1,2,3},eitherY; CY; orY; CY;.

Proof We will prove the lemma for Y; and Y,. Observe that neither Y1 C Y5 nor
Y> C Y1, as otherwise a square in B lies in Y, or a square in A lies in Y:. Thus, by
Lemma 5.5, either Y1 C Y, or Y» C Y;. |

After a reordering if necessary, assume that Y; C Y» C Y3. We then have:

Lemma 10.5 L; and L3 lie in complementary half-spaces of L.

Proof First, L1 CY, as Yy CY,. Similarly, Y3 C Y, (as Yo C Y3)implies L3 CY,. O

(l:y

Ly

L,

Figure 7: L’ crosses L, if it meets Ly and L3 outside L,.
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10.2 The main result

Fix orientations on Ly, L, and L3 such that they agree on e. As L N L, is bounded,
we can choose an element /1 in the stabiliser of L such that

(1) hy(Y1) =Y; (and thus i, (Y;) = Y1), and

(2) hi(e) liesin Ly \ Lo before e in the orientation of L.
Recall that & acts by translation on L. Similarly, choose an element /3 in the
stabiliser of L3 such that

(1) h3(Y3) =Y3,and

(2) hs(e) liesin L3\ L after e in the orientation of L3.

Let L’ be the axis of ' = h3 -hl_1 in the vertical tree X that contains e. By definition,
L' is periodic. Observe that:

Lemma 10.6 L’ contains hy(e) and, therefore, h3(e) = h'(h1(e)).

Proof Suppose that /1(e) does not belong to L. Let hy(u) be the initial vertex
of hi(e) and hq(v) the final vertex. Let o be the geodesic from /1 (u) to L’. Then
d(hy(u), " - hi(u)) = 24(a) + |’|, where £() is the length of o and || is the
translation length of /4’ (see [35, Proposition 24 in Section 1.6.4]). We also have
d(h1(v),h' - hi(v)) = d(hy(u),h’ - hi(u)) — 2. But since h’'-hy(u) = h3z(u) and
h' -h1(v) = hi(v) are adjacent, d(h1(v), h3(v)) = d(hy(u), h3(u)), which is a con-
tradiction. Hence /1 (e) lies in L. a

h3(m)

03

01
hy(m)

L,

Figure 8: The segments 07 and 03.
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Lemma 10.7 L’ is a separating line.

Proof Let C’ be the cycle obtained by taking the quotient of L’ by the action of (A').
We will show that C’ is strongly UC-separating. This will prove that L’ is separating
(see Lemma 7.13).

Let m be the midpoint of e. Subdivide X so that m, h; (m) and h3(m) are vertices
of L' Let o be the geodesic segment from /1 (m) to h3(m). Since h'-hy(m) = h3(m)
and h’ sends every element in the interior of o outside o, the segment ¢ is a funda-
mental domain for 4’ acting on L’ and hence a fundamental domain of C’. We will
first show that L’ separates dN (o). Note that:

(1) o =o01-e-03, where o7 is the segment (see Figure 8) in L from /;(m) to the
initial vertex of e and o3 is the segment in L3 from the final vertex of e to h3(m).

(2) By Lemma 3.9, dN(0) = dN(o1) @ dN(02), with labelling induced by the
squares containing e.

(3) ON(o;)\ L; =0N(o;)\ L’ as both L; and L' meet N (o;) at e and h; (e).

Recall that dN(o;) \ L; is not connected (Lemma 4.4) and L; has exactly two half-
spaces (Lemma 10.3). Thus L; induces a partition A; LI B; on the set of components
of dN(o;) \ L; such that the components in A; meet one half-space of L; and the
components in B; meet the other half-space of L;. Further, by Lemma 10.2, for each
square s € .7, sNdN(o1) meets A; if and only if s IN(03) meets Az. Thus, there
exists no path between a point in A; and a point in B3 in the spliced graph dN (o) \ L".
Hence dN(o) is separated by L’. Thus o N (o) is not connected (Fact 7.8).

Because h1_1 preserves half-spaces of L1, it sends a square containing /1 (e) in Ay
(respectively Bj) to a square containing e in A (respectively B). Similarly, 43 sends
a square in A (respectively B) to As (respectively B3). In other words, there is no
path between a point in A; and a point in B3 in the quotient of don V(o) by the action
of i'. By Lemma 7.9, dN(C’) is not connected. O

Proof of Proposition 10.1 By Lemma 10.7, L’ is a separating line. By Lemma 10.6,
L’ crosses L. O

11 An algorithm of double exponential time

The main result of this section is the following theorem.
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Theorem 11.1 There exists an algorithm of double exponential time complexity that
takes a Brady—Meier tubular graph of graphs X with hyperbolic fundamental group G
as input and returns a finite list of splitting cycles that contains all universally elliptic
cycles up to commensurability.

For the rest of the article, we will also assume that G is §—hyperbolic. Denote by X
the Gromov boundary of X . We refer the reader to [6] for background on hyperbolic
groups and the Gromov boundary.

As G is hyperbolic and one-ended, [4, Lemma 5.21] and Proposition 10.1 imply that:

Proposition 11.2 If C is a maximal 3-repetitive UC-separating cycle, then 71 (C) is
not universally elliptic.

Proof of Theorem 11.1 Let G and X be as in the statement. By Lemma 8.4, every
universally elliptic subgroup H has a vertical axis in X . This implies that there exists
a splitting cycle C in X such that 71(C) and H are commensurable (Lemma 7.25).

Let F be the number of squares of X and E the number of edges. By Proposition 9.9,
any UC-separating cycle of length greater than M =2E (2F (F+1/2) <g p(F (F+1)/2)
is 3-repetitive. By Proposition 11.2, a universally elliptic cycle C is either of length at
most M, or it is a power of a maximal UC-separating cycle C’ of length at most M.
If it is the latter, then C’ is not universally elliptic because it is not strongly UC-
separating. By Lemma 7.15, C is an n™ power of C’, where n is bounded by the
maximal thickness of an edge of C’. Thus the length of C is at most F - M.

There exist finitely many cycles of length at most F - M in X. Thus our algorithm
takes each cycle from this finite list as input and returns whether this cycle is strongly
UC-separating with no self-crossings or not. By Lemma 7.26, we thus have a list of all
universally elliptic cycles up to commensurability.

The time taken by this algorithm is calculated as follows:

(1) The number of cycles of length at most F' - M is bounded by a number which
is exponential in F - M (see [1] for instance). This is of the order of a double
exponential in F as M is itself exponential in F.

(2) The regular sphere around a cycle C of length k is a spliced graph of the regular
spheres around its k vertices (Lemma 3.9), and the number of vertices and edges
in this regular sphere is bounded by a constant times the number F of squares
of X. Finding whether this sphere is connected is linear in F, by [19].
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(3) Acycle C has a self-crossing if there exists a self-crossing at a component of
self-intersection P C C (Definition 7.22). There is a self-crossing at P only
if a subpath of C meets dN(P) N IN(C) in different components (Fact 7.23).
This information is available when the regular sphere around C is computed
and does not cost any additional time.

The algorithm thus takes double exponential time in the number of squares of X. 0O

12 Constructing a JSJ complex

The goal of this section is to construct from X a tubular graph of graphs Xjs; whose
graph of groups structure gives the JSJ decomposition of G.

12.1 Splitting cycles as hyperplanes

Let ¢: C — Xy C X be a splitting vertical cycle. We will show how to modify X to a
tubular graph of graphs X¢ such that 71 (X) = 71 (X¢) and 71(C) is commensurable
with the cyclic group generated by a vertical hyperplane of X¢ .

We perform this construction at the level of universal covers using the machinery of
spaces with walls [17] (utilised earlier in Section 6). We refer the reader to [26] and [10]
for details on constructing CAT(0) cube complexes from spaces with walls.

Recall that X is the cube complex dual to the space with walls ()? 0. 3) [31], where X0
denotes the O—skeleton of X and H the set of hyperplanes of X . For our purposes, we
slightly modify the space with walls as follows. First we attach a strip S, = R x [0, 1]
isomorphically along R x {0} to each translate L of C . Note that there is a natural
square structure on Sy, so that every horizontal hyperplane of X that meets L naturally
extends to S7,. Let Z be the set of open horizontal half-edges of the union of X and
the attached strips. Then the vertical and horizontal hyperplanes of X induce a space
with walls (Z, W).

Note that we do not add the vertical hyperplanes through the strips Sy, to the collec-
tion W. Thus the dual cube complex of (Z, W) is nothing but X [31, Theorem 10.3].
We now enrich W to W¢ . The walls in W¢ are determined by

(i) the horizontal hyperplanes of X,
(i1) the vertical hyperplanes of X, and
(iii) the G-translates of C.
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Note that the elements of type (i) and (ii) induce W, where each half-space Y in X
of an element of type (i) or (ii) defines a wall {Y N Z,Y° N Z}. Given a translate L
of C in X, each half-space Y in X of L defines a wall {YNZ,Y°NZ} of type (iii).
Thus L induces exactly K walls in Z if it has K half-spaces in X.

Lemma 12.1 (Z, W) is a space with walls. a
Denote by X¢ the CAT(0) cube complex dual to Z.

Lemma 122 X¢ isa VH-complex.

The proof uses the following observation, which is a consequence of Lemma 5.5.

Lemma 12.3 Let L and L’ be two noncrossing lines of X . Then, given half-spaces
Y of L and Y’ of L, at least one of the following four intersections is empty: Y NY,
Yeny,YnNY®and YENY'“

Two walls {Y, Y} and {Y’, Y’} in a space with walls cross [10] if all four intersections
Yny,YenY, YNY'®and Y NY’® are nonempty.

Proof of Lemma 12.2 Two walls of type (i) don’t cross as two horizontal hyperplanes
of X are either equal or disjoint. Similarly, two walls of type (ii) don’t cross. By
Lemma 12.3, two walls of type (iii) don’t cross either. Further, a wall of type (ii) and a
wall of type (iii) don’t cross since a vertical line is disjoint from any vertical hyperplane.
By [26, Proposition 4.6], there exists a bijective correspondence between the hyper-
planes of X and the walls of (Z, Wc). Further, two hyperplanes in Xc intersect if and
only if the corresponding walls cross. Declare an edge e of Xc to be vertical if and only
if the hyperplane through e corresponds to a wall of type (i). Otherwise, declare the edge
to be horizontal. No square contains two adjacent edges of the same type as otherwise
two hyperplanes of the same type or two hyperplanes of type (ii) and (iii) intersect. O

Observe that there exists a natural G—equivariant map 7c: Xc — X such that the
following diagram commutes:
(Z,We) == (Z.W)
~ ;]‘C ~
Xc — X
Since W C W, the map 7 takes any vertex (ultrafilter) o’ of X¢ to a vertex o’ N W

of X. But every vertex of X isa principal ultrafilter, and hence 7)¢ (6”) = o, for some z.
By the way the set of walls W was defined on Z, we have the following result:
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Lemma 12.4 The map 7j¢c has the following properties:

(1) Let c be a cell of X that does not meet any translate of C. Then Nc restricted
to ' (c) is injective.

(2) It sends vertical edges to vertical edges and horizontal edges to either horizontal
edges or vertices.

(3) A horizontal edge is mapped to a vertex if and only if the vertical hyperplane
through this edge is induced by a wall of type (iii). |

Lemma 12.5 For any z € Z, the preimage ﬁEl (07) is a finite horizontal tree. Further,
the edges in the preimage of o, are dual to vertical hyperplanes induced by translates
of C that meet 0, In X.

Proof Let o] and o} be two vertices of 7'(0;). Let {¥,Y°} be a wall such
that Y € o7 and Y€ € 0. Then, clearly, {Y,Y ¢} is a wall of type (iii). Let L be the
line that defines {Y, Y¢}. We claim that L passes through the vertex o, in X . If not,
then let h be a hyperplane of X that separates L from o,. Let Y, be a half-space
of h that contains the vertex o,. Then Y}, € o, the ultrafilter. Clearly, this implies
that ¥, € o1 and Y}, € 07,. Since L and h are disjoint, either Y, CY or ¥}, C Y. Thus
either Y e oy and Y € 0}, or Y € 0] and Y ¢ € 0}, a contradiction. So L has to pass
through o, . There are only finitely many translates of C that meet at any given point
of X. This proves the result. |

Since 7)¢ is a finite-to-one G—equivariant map, we conclude that:
Lemma 12.6 G acts geometrically on Xc. |
Lemma 12.7 Every vertical hyperplane of Xc is aline.

Proof The stabiliser of a vertical hyperplane is the stabiliser of a wall of either type (ii)
or type (iii), and hence is a cyclic subgroup. Thus every vertical hyperplane is a line. O

The complex Xc consists of two types of subcomplexes:

e Denote by Zc a connected component of the subcomplex of Xc consisting of
the union of the first cubical neighbourhood of all hyperplanes corresponding to
walls of type (iii). In other words, Zc is a connected component of the closed
strips in Xc¢ induced by half-spaces of translates of C.

¢ The second type of subcomplex, denoted by Y, is the closure of the complement
in X c of the G-translates of Zc.
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Lemma 12.8 The subcomplex Zc is a tree of finite trees whose underlying tree
fic(Zc) is a copy of $(C).

Proof By Lemma 12.5, ﬁEl (07) is a finite tree for every vertex of X, and thus after
subdivision, for the midpoint of every edge of X . The horizontal edges of Z¢ are all
dual to hyperplanes of type (iii). Note that 7j¢c sends such horizontal edges to vertices
and vertical edges to vertical edges (Lemma 12.4). Thus 7)¢ (Z c) is a tree and Z c 1is
a tree of finite trees.

We now claim that 7j¢ (Zc) isa copy of the universal cover of ¢(C ). Note that d}/(?}/)
is a connected union of lines which are translates of C . Slnce nc (ZC) is also a union
of translates of C with i image ¢(C) in X, 77C (Zc) C ¢(C ). Conversely, if a vertex v
of a translate L of C is contained in ne (Zc), then ncl(v) meets the strips induced
by half-spaces of L and thus these strips are contained in Zc. The image of any such
strip under fc is L and thus L C fic(Z¢). O

Define X¢ := )?C/ G. By Lemma 12.7, X¢ is a tubular graph of graphs. The
space X is called the opened-up space of X along C. The G-equivariant map
ne: XC — X induces a map nc: Xc — X. Let Y¢ and Z¢ denote the respective
images of YC and Zc in X¢c . We have proved that:

Lemma 12.9 Z is a graph of finite trees with underlying graph ¢ (C) and with the
following property: If u € ¢(C) is a vertex (or a midpoint of an edge), then the vertex
(edge) tree T (u) is the tree dual to Z with the walls induced by translates of C passing
through a lift i of u in X.

We conclude with the following observation:

Lemma 12.10 The opened-up space X ¢ is a union of the subcomplexes Y¢c and Z¢
with Yc N Z¢ consisting of those cells of Y¢ that are mapped by nc to ¢(C). a

12.2 Algorithmic construction of X¢

The main result of this subsection is the following:

Theorem 12.11 There exists an algorithm of exponential time complexity that takes a
Brady—Meier tubular graph of graphs X and a splitting cycle ¢: C — X as input and
returns the opened-up space X¢ along C as output.
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Define a complex Y/, as the square complex obtained from X \ ¢(C) by “completing
the missing cells” as follows: for each vertex or edge x of ¢(C), take as many copies
of x as the number of squares of X that contain x and add them to the semi-open
squares of X \ ¢(C) to obtain closed squares. Observe that:

Lemma 12.12 Y/, is isomorphic to Yc . O

Therefore, in order to construct X¢ algorithmically, it only remains to construct Z¢ .
The first result we will need is the following. Fix a lift C of the splitting cycle
¢: C — X; C X. Let K be the number of half-spaces of CinX.

Proposition 12.13 There exists D’ € N such that for any vertex or (midpoint of an
edge) v € C and any D > D', the D™ cubical neighbourhood {v}*tP? of v has the
following properties:

(1) Every translate gé that satisfies v € gé separates {v}TP into exactly K
components.

2) gCn{wytP £ g'C N{v}*tP forany g, ¢’ € G that satisty gC # g'C and
vegCngCcC.

The main ingredient for proving Proposition 12.13 is the following result. Let N be
such that the thickness of any edge of X is at most N.

Lemma 12.14 Let Cy be a 2V " power of C and Py a fundamental domain of Cy; .
Then there exists a natural bijection between the set of half-spaces of C and the set of
components of dohn N(Pp).

We first prove a preliminary result on the number of connected components of graphs.
Let I" be a graph with no cut points and {a, b} a cut pair. Assume that the valence n
of a is equal to the valence of . We will construct a spliced graph (Definition 3.7) of
finitely many copies of I'. Let ¢4: {1,...,n} — adj(a) and ¢p: {1,...,n} — adj(b)
denote labellings of vertices adjacent to @ and b. For each i € N, let I; be a copy of I'
with the corresponding cut pair {a;, b; }. We will denote the labellings on the adjacent

vertices by ¢a; and @p,; . Let I7:= T 1,6, ) Ba2.6ay) 12 (b2:60,) P Bty 90 i -

Lemma 12.15 Suppose that the number of components of I" \ {a, b} is equal to the
number of components of T'; \ {a1, b2}. Then, for each i, the number of components
of I'/\ {ay, b;} is equal to the number of components of T} \ {ay,b2}.
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Proof Let k be the number of components of I"\ {a,b}. T’} \ {a1, b2} has the same
number of components as I' \ {a, b} if and only if there is a partition into k subsets of
{1,...,n} such that the corresponding partition induced by ¢,: {1,...,n} — adj(a)
and ¢p: {1,...,n} — adj(b) on the vertices adjacent to a and b coincides with the
partition induced by the & components of I" \ {a, b}. Continuing iteratively, we obtain
the result. a

Proof of Lemma 12.14 Denote by Pj; a fundamental domain of a k™ power Cy
of C. Assume that for each k, Pj has been chosen such that Py is a concatenation of
two copies of Pr_;. The result then follows from Lemmas 12.15 and 3.9. a

Let L be alinein X and v € L a vertex. Let D € N. Note that {v}*tP is a CAT(0)
cube (sub)complex [18]. We will assume that dN (L) C X. By Lemma 4.7, we have:

Lemma 12.16 There exists a bijection between the half-spaces of LN{v} 1P in {v} TP
and the components of IN(L) N {v} TP, a

Proof of Proposition 12.13 Let D = £(C)2", where £(C) denotes the length
of C. Then {v}*? contains a lift of Py, a fundamental domain of a 2V " power
of C. By Lemma 12.14, C separates ON(Py) C {v}TP into exactly K components.
Lemma 12.16 then implies (1). Conclusion (2) follows from Lemma 7.20. a

12.2.1 Construction of X¢ Choose a basepoint v € ¢(C) with lift ¥ in C. Let
B:={3}72 in X. Note that:

Lemma 12.17 There exists an algorithm that takes X, C and v as input and returns B
in exponential time. |

For each translate L meeting B, we attach a finite strip S = L NB x [0, 1]. Let
Z = Zp be the set of open horizontal half-edges in the union of B and the collection
of finite strips. For each vertex u (respectively edge ¢) in ¢(C), we define a set of
walls W, (respectively W, ) on Z as follows. First fix a fundamental domain P of C
in X such that ¥ € P. Choose a lift of u (respectively e) in P. Let C = Li,....L,
be the translates of C that pass through # (respectively €). By Proposition 12.13, each
line L; separates B into exactly K components. Thus each line L; induces K walls
of W, (respectively W, ) on Z, where each half-space Y in X of L; defines a wall
{YNz,y°nZzj.

Since C has no self-crossing, no two walls of W;, (respectively W) cross (Lemma 12.3).
Thus the dual cube complex of (Z, W,,) (respectively (Z, We)) is a tree, denoted
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by T (u) (respectively T (e)). Note that the definition of W, (and W, ) is independent
of the choice of ¥ and of the choice of # (respectively ¢)in P C B.

Suppose that an edge e is incident to a vertex u in ¢(C). Let é and incident vertex i be
the corresponding lifts in P C B. Since every translate of C that passes through ¢ also
passes through i, there exists a natural inclusion W, C W,,. Further, given translates
L1 and L, that contain ¢ with half-spaces Y; and Y, such that Y; C Y», suppose
there exists a translate L’ that meets # with half-space Y’ such that Y; C Y’ C Y.
Then it is easy to see that L’ contains &. Thus we have:

Lemma 12.18 Given an edge e in ¢ (C) incident to a vertex u, there exists a natural
inclusion T (e) — T (u).

Let Z, denote the geometric realisation of the graph of trees (¢(C).{T(u)}.{T (e)}).

Proposition 12.19 There exists a natural isomorphism between the square complexes
Zc and Z..

Proof By Lemma 12.9, Z¢ is a graph of finite trees with underlying graph ¢(C). So
is Z . Further, the wall structures that define vertex and edge trees of Z¢ and Z
are isomorphic: Indeed, the walls that define T'(u) for u € ¢(C) in Z¢ are induced
by half-spaces in X of translates of C that pass through a lift % of u. In Z/., the tree
is defined by walls induced by half-spaces of translates of C in a finite ball B of X
containing #%. Since there exists a bijection between the half-spaces of C in B and the
half-spaces of CinX (Lemma 12.16), Z¢ is isomorphic to Z’C. m|

Proof of Theorem 12.11 The compact space B can be constructed in exponential
time from X (Lemma 12.17). It costs exponential time to calculate the number of
half-spaces of any translate of C (Lemma 12.14).

Since the number of translates of C meeting at any point of X is bounded by the
length of C (by Lemma 7.20), the dual trees T'(u) (respectively T (e)) of all vertices u
(respectively edges e) in ¢(C) can be constructed in polynomial time. Thus Z. is
constructed in exponential time. Yé is constructed in linear time in X and Xc¢ is
obtained in linear time from Yc = Y/, and Z¢ = Z,. Hence the result. O

12.2.2 Structure of X¢
Lemma 12.20 The tree T (u) (or T (e)) is a bipartite tree with black vertices having

valence exactly K .
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Proof We will first show that there exist vertices of valence K in T (u) (respec-
tively 7'(e)) and then show that the tree is bipartite. Let L be a translate of C passing
through # (respectively ¢) in B. Let Yq, ..., Yx be the half-spaces of L. Let z be
an open horizontal half-edge in the strip Sz . Denote by oy, the ultrafilter o, in T (u)
(respectively T'(e)). Thus op contains {Y{,...,Yg} and exactly those half-spaces
of translates of C passing through # that contain L. Observe that the valence of o,
is at least K : switching each half-space Y; of L gives an edge incident to o . It is
easy to see that it is exactly K as no edge of the form {Y’, Y'¢} can be incident to o,
when Y’ # Y;.

Let 0’ be a vertex at distance two from oz,. Let 0o’ Aoy = {Y1, Y[, Y], Y}, where
Y/ is a half-space of a translate L’ of C . We will show that ¢’ = o7,. Assume that
Y| € o7 . This implies that for each half-space Y/ of L’ with i # 1, Y/ is in o7 and
hence in o’. Further, Y|° € ¢’ by assumption. If ¢’ # o/, then any path from o’
to o7/ involves a change of half-spaces of the type {¥/, Y/°}. Hence we conclude that
o’ =ors. The case when Y/ ¢ o7, is similar and we leave it as an exercise. This proves
that a vertex in T (u) (respectively T'(e)) is of the form o7, if and only if it is at even
distance from oy . Thus the tree is bipartite. a

Let u (respectively e¢) be in ¢(C). Let vy and v, be black vertices in T'(u) (respec-
tively T'(e)).

Lemma 12.21 Given an edge e; incident to vy in T (u) (respectively T (e)), there
exists an edge e, incident to v in T (u) (respectively T (e)) such that the hyperplane
inZ /C dual to ey is equal to the hyperplane dual to e;.

Proof Let v; be the ultrafilter o7;, where L1 and L, are translates of C passing
through # (respectively €) in B. Let e; correspond to the wall {Y7, Y}, where
Y is a half-space of L. Since L, is a translate of L1, there exists a fundamental
domain P’ of C’ in L; containing # (respectively €) such that there exists g € G
and 71’ (respectively &’ in P”) with gii’ =1 (respectively g¢’ =¢)and gP’ C L. The
segment from 7 to %’ (respectively € to &’) projects to ¢(C) as a subgraph. Since L
passes through every vertex and edge in this segment, there is an edge corresponding
to {Y1, Y[} in the dual tree of the image in ¢(C) of each vertex and edge of this
segment. By the way Z. was defined, this defines a unique hyperplane in Z.. Since
gi' =1 (respectively gé’ =€) and gL, = L, the required edge incident to oz,
is {g¥1.8Y{}. O

Let ¢': C' — X, be a maximal cycle such that C is a power of C’.
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Lemma 12.22 There exists a natural embedding of C' in X¢ such that the vertical
graph that contains C' is isomorphic to C’. Further, for a vertex u (respectively
edge e) in ¢(C), the embedded copy of C' meets every black vertex of T (u) (respec-
tively T (e)) exactly once. a

12.3 The tubular graph of graphs X’
Let € = {Cy,...,Cy} be the set of splitting cycles of X furnished by Theorem 11.1.

Remark 12.23 It is easy to see that a vertical cycle induced by the attaching map of
a tube is a splitting cycle that is not 3—repetitive. Hence each such cycle is included
in ¢.

Procedure 12.24 (construction of X’) The tubular graph of graphs X’ is constructed
from X using the cycles in ¢ as follows:

e Start with X = Xj.

e For 1 <i < n, check whether ¢;: C; — X factors through a vertical cycle
Yi: C; — X;_1. If it doesn’t, then declare X; = X;_1. Otherwise, define X;
to be the opened-up space of X;_; along the cycle ¥;: C; — X;—1.

e Declare X' = X,,.

Lemma 12.25 The cycle C; in € factors through a vertical cycle in X;_ if and only
if for 1 < j <1, lifts of C; and C; don’t cross in X. O

By Theorem 1.7, we will assume that X’ is a Brady—Meier tubular graph of graphs.

Theorem 12.26 There exists an algorithm of double exponential time complexity
that takes a Brady—Meier tubular graph of graphs X with hyperbolic fundamental
group G as input and returns a homotopy equivalent Brady—Meier tubular graph of
graphs whose vertical hyperplanes generate all universally elliptic subgroups of G up
to commensurability.

Proof The algorithm of Theorem 11.1 takes X as input and returns a set of cy-
cles € that contains all universally elliptic cycles up to commensurability. Given C,
X’ is constructed using Procedure 12.24. This procedure consists of applying the
algorithm of Theorem 12.11 repeatedly. The algorithm of Theorem 11.1 takes double
exponential time to return a finite set of cycles. The number of cycles in this set is
bounded by a number of double exponential magnitude. Given this data, the algorithm
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L/
Figure 9: L’ in X’ when L has three half-spaces.

of Theorem 12.11 operates by taking exponential time for each cycle, and hence
obtaining X’ costs double exponential time in the input data. a

12.3.1 Structure of X’ Note that the maps 7;: X; — X,;_; induce maps 7: X' - X
and n: X’ — X. Denote by I'' the underlying graph of the graph of spaces X’ and
by T’ the underlying tree of the tree of spaces X' Let L be a lift of an element C;
of ¥ such that C; factors through a vertical cycle in X;_;. From Lemma 12.22, it
follows (see Figure 9) that:

Lemma 12.27 There exists a vertical tree in X' whose stabiliser is equal to the
stabiliser of L.

Let h be a vertical hyperplane in X' Let L and L, be the two boundary lines of h,
that is, the two vertical lines on either side of h at distance % from h, and parallel to h.
As G is hyperbolic, it follows from the flat plane theorem (see [6, Theorem I'.3.1]) that:

Lemma 12.28 The stabiliser of h is equal to either stab(L1) or stab(L»). a

Observe that X" is the cube complex dual to a space with walls, where walls are defined
on the set Z of open horizontal half-edges of X along with open horizontal half-edges
of strips attached to translates of C; whenever C; factors through a vertical cycle
in X;_1. The set of walls W’ in Z are thus of three types:

e Walls of type (i), induced by horizontal hyperplanes of X.

e Walls of type (ii), induced by vertical hyperplanes of X.

e Walls of type (iii), induced by translates of C;, where C; € % factors through a
vertical cycle in X;_j.
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A vertical half-space of X (or X') is a half-space of a wall of type (ii) or (iii). Let h
be a vertical hyperplane in X" and L, and L its boundary lines. Then:

Lemma 12.29 Either the vertical tree containing L1 or the vertical tree containing L,
is a line.

Proof Let {Y,Y ¢} be the wall of type (ii) or (iii) in Z corresponding to h. Let L
be the (boundary) line in X (of the vertical hyperplane) that defines {Y,Y¢}. By
Lemma 12.27, there exists a linear vertical tree L’ in X’ such that stab(L) = stab(L’).
Note that any vertical half-space of X contained in a vertex (ultrafilter) of L’ contains
either Y or Y¢, by Lemma 6.5. Thus any vertical half-space of X’ (except perhaps a
half-space of L’) that contains L’ contains h. So no vertical tree separates L’ and h.
Hence the result. a

Definition 12.30 A vertex of a G—tree is a cyclic vertex if its stabiliser is a cyclic
subgroup of G.

Thus, in the underlying tree 7’ of X', at least one of the two vertices of any edge is a
cyclic vertex.

Lemma 12.31 Let L’ be a line in X'. Suppose that dN(L') contains at least three
components. Then the vertical tree containing L’ is equal to L'.

We need two observations to prove the lemma. Let L be a line in X that defines a wall
of type (iii). Suppose that the number of half-spaces of L is K. Let L’ be a vertical
tree in X’ such that j(L’) = L (Lemma 12.27).

Lemma 12.32 Exactly K vertical strips are attached to L' in X'. Furthermore, if
n(L") = L for any vertical line L”, then L" is contained in one of these K strips.

Proof The fact that exactly K strips are attached to L’ follows from Lemma 12.22.
Further, each of the K strips above is contained in 7~!(L), by Lemma 12.5.

Let L” be a vertical line such that (L") = L. Denote by o}, the set of vertical
half-spaces contained in any vertex (ultrafilter) of L”. Note that (L") = L implies
that the vertical half-spaces of type (ii) in 07, consists of the half-spaces of vertical
hyperplanes in X that contain L.

If 07, = 07,, we have nothing to prove as the vertical tree that contains L’ is equal
to L'. Let o/ be the set of vertical half-spaces such that o/ A o7, = {Y;, Y}, where
Y; is a half-space of L. Either 0}, = o/ for some i or 0}, # o] for any i.
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First assume the latter. Then there exists a half-space Yy of a line Lo such that
{Yo.Y§.Y:, Y} Coy Aoy, with Y; Cop,. Let 0 be avertex in L\ Lo. Then there
exists 6/ € L” such that 7)(¢”") = o. This implies that the vertex ¢ contains Y;, which
is not possible. Assume now that o7, = o/, for some i. Let L} # L’ be a boundary
line of the strip that separates L” from L’. The result follows from the following
observation. Let y denote a geodesic between L” and L. Since y consists of vertical
edges, 7(y) has the same length as y (by Lemma 12.4) and is a geodesic between
n(L") and 7(L?7). O

Let L), ..., L be the boundary lines of strips attached to L’ such that L’ # L’. Then:
Lemma 12.33 dN(L}) has exactly two components.

Proof Note that L] is a separating line (Fact 4.9). Let Y; be a half-space of L’ that
does not contain L’. Then ﬁ(f}i’ ) does not contain L (Lemma 12.32) and is connected.
Thus 7(Y/) lies in the half-space ¥; of L. Further, if there exist two half-spaces of L]
that do not contain L', then 71 (¥; \ L) contains these half-spaces. By Lemma 12.5,
one of these half-spaces is at finite distance from L}, contradicting Lemma 4.10. O

Proof of Lemma 12.31 If dN(L’) contains three or more components, then a sub-
group H of stab(L’) is universally elliptic, by Proposition 8.5. Let L =7(L’). Then H
stabilises L as 7] is G—equivariant, and L defines a wall of type (iii). Lemmas 12.32
and 12.33 then give the result. a

12.4 Modification of X"’

The next step in the modification of X to Xjs; is the construction of an intermediate
tubular graph of graphs X” from X'.

12.4.1 Construction of X” Remove an open tube of X’ if both the vertex graphs
bounding the tube are circles, and then identify the vertex graphs. This is possible
as, by Lemma 12.28, one of the attaching maps of such a tube is an isomorphism of
graphs. Successively remove all such tubes of X’. Let X” be the tubular graph of
graphs obtained after removing all such tubes.

12.4.2 Structure of X” Let 7" be the underlying tree of X” and let Tis; denote
the Bass—Serre tree of the canonical JSJ decomposition of G.

Lemma 12.34 For each cyclic vertex u of Tjs there exists a cyclic vertex v of T”
such that stab(u) = stab(v).
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Proof Fix an axis L in X of stab(u). Note that stab(u) = stab(L) as stab(u) is
maximal cyclic. We can assume L is vertical since stab(u) is commensurable with a uni-
versally elliptic subgroup (Lemma 8.4). By Lemma 7.25, there exists a splitting cycle C
in X such that 71 (C) is commensurable with a conjugate of stab(u). Hence C € ¢
and there exists a vertical tree in X’ whose stabiliser is stab(é ). Hence the result. O

Let v be a cyclic vertex of 7 and L” the corresponding vertical tree (line) in X”.
Denote by AH the limit set in dG of a subgroup H of G.

Lemma 12.35 The number of components of dG \ A stab(v) is equal to the number
of edges incident to v .

Proof The number of edges incident to v is equal to the number of strips attached
to L”, which is equal to the number of components of dN(L”). The number of
components of dG \ A stab(v) is equal to the supremum of the number of components
of X”\ L"*k where k € N. Let K be the number of strips attached to L”. Let L}
be the boundary line of the i™ strip such that L” # L. Note that the vertical tree
containing L7 is not equal to L/ as otherwise the corresponding strip would have been
removed to obtain X”. By construction, LY has exactly two half-spaces. Let Y;” be the
half-space of L7 that does not contain L”. Note that no strip of Y/ contains L. By
Lemma 4.15, Y/"\ L;/Jrk and hence Y/ \ L"+®+1) s connected, for every k e N. O

Proposition 12.36 For each edge stabiliser H of Tjs, there exists an edge of T"”
whose stabiliser is H.

Proof Since each edge of Tj; is incident to a cyclic vertex, let stab(u) be the cyclic
vertex group of Tjs that contains H. Then H is the stabiliser of a component of
dG \ A stab(u). Let v be a vertex of T” such that stab(v) = stab(u) (Lemma 12.34).
Then the number of edges incident to v is equal to the number of components of
dG \ A stab(u), by Lemma 12.35. Further, H is the stabiliser of an edge incident to v
as each edge incident to v induces a unique component of dG \ A stab(u). |

Definition 12.37 [16] A G-tree Tisa refinement of a G—tree T if there exists a
G—equivariant map p: T — T such that p sends any segment [x, y] in T onto the
segment [p(x), p(y)]. In other words, T is obtained by blowing up vertices of 7.

By Proposition 12.36 and the properties of the JSJ decomposition (Definition 1.1), we
have:

Corollary 12.38 T is a refinement of Tjg;. O
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Lemma 12.39 The stabiliser H of an edge e of T" is not an edge stabiliser of Tjs
if and only if the cyclic vertex u incident to e in T" is of valence two and both the
noncyclic vertices adjacent to u are stabilised by hanging surface groups.

Proof No edge of Tj; is such that the cyclic vertex incident to this edge is adjacent to
exactly two hanging surface group vertices, by definition. The converse follows from
Lemma 12.35 and Corollary 12.38. a

So we can modify X” to Xjj by removing tubes which connect hanging surface groups.
This requires an identification of such groups, which is done in the next subsection.

12.5 Surface graphs

Definition 12.40 A vertex graph of a tubular graph of graphs is a surface graph if the
graph is not a circle and the fundamental group of the graph is a surface group whose
peripheral subgroups are precisely the subgroups induced by the incident edge graphs.

Thus a vertex graph is a surface graph if its fundamental group is a hanging surface
group. Recall that:

Definition 12.41 The double of a graph I" with a finite family of immersed cycles
{Ci,...,Cy} is a tubular graph of graphs whose underlying graph consists of two
vertices with 1 edges between them, each vertex space is a copy of I" and the i tube
attaches as C; on both sides.

Lemma 12.42 A vertex graph of a Brady—Meier tubular graph of graphs is a surface
graph if and only if every edge of its double is of thickness two.

Proof Let Dy be the double of the vertex graph X with incident edge cycles. It is a
standard fact that Dy is homeomorphic to a surface if and only if X is a surface graph.
Note that Dy is Brady—Meier as every vertex of X satisfies the Brady—Meier conditions.
Thus every edge of Dy is of thickness at least two. If each edge is of thickness two,
then the fact that every vertex link is connected implies that every vertex link is a circle.
This implies that Dy is homeomorphic to a closed surface and we are done.

Conversely, suppose that there exists an edge e of thickness at least three in Ds. Let é
be a lift of ¢ in Dg and h the horizontal hyperplane through é. Note that h is a
tree. Let L be a line in h passing through the midpoint m of e. Note that L does
not separate dN(m) as ¢ is of thickness at least three. By Lemma 4.4, L does not
separate Dy. But this implies that Dy is not homeomorphic to a closed surface. O
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12.6 Construction of X

We are now ready to construct Xjsj. Remove from X" every cyclic vertex graph and
the (open) tubes attached to it whenever exactly two tubes are attached to the vertex
graph and both the tubes are attached to surface graphs on the other side. Call the
resulting complex X"”. Denote by T"” the underlying tree of X"”. By Lemma 12.39,
we have:

Proposition 12.43 T is isomorphic to Tjs as G—trees. O
The proposition proves that X" is the required Xjsj. We now have the main result:

Theorem 12.44 There exists an algorithm of double exponential time complexity that
takes a Brady—Meier tubular graph of graphs X with hyperbolic fundamental group G
as input and returns a Brady—Meier tubular graph of graphs whose underlying graph of
groups structure is the JSJ decomposition of G.

Proof Using Theorem 12.26, we obtain the tubular graph of graphs X’ in double
exponential time. Constructing X” from X’ involves identifying which tubes are
attached to only cyclic vertex graphs and takes at most polynomial time in the number
of squares of X. The construction of Xjs; from X" involves removing pairs of tubes
adjacent to surface graphs. Detecting surface graphs involves constructing doubles of
vertex graphs (Lemma 12.42) and also takes at most polynomial time in the number of
squares of X. a

13 Relative JSJ decompositions

Let F be a finite-rank free group and J{ be a finite family of maximal cyclic subgroups
in F. Recall that F splits relative to H if there exists a nontrivial splitting of F in
which each element of J is elliptic. Similarly F is freely indecomposable relative
to H if F does not split freely relative to J.

Definition 13.1 A relative JSJ decomposition of (F, ) is a graph of groups splitting
of F relative to H which satisfies the conditions of a JSJ decomposition (Definition 1.1),
with the constraints that vertex groups of type (3) are rigid relative to { and elements
of J{ can intersect vertex groups of type (2) only in their peripheral subgroups.
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Recall that a subgroup F’ of F is rigid relative to 3 if F’ is elliptic in every splitting
of F relative to H.

Theorem 13.2 [7, Theorem 4.25] Given a finite-rank free group F and a finite
family 3 of maximal cyclic subgroups of F such that F is freely indecomposable
relative to H, a relative JSJ decomposition of (F, H) exists and is unique.

In [9], the authors implement an algorithm that returns the JSJ decomposition of F
relative to J{, though they do not give an estimate of its time complexity. The main
result of this section is the following.

Theorem 13.3 There exists an algorithm of double exponential time complexity that
takes a finite-rank free group F and a finite family of maximal cyclic subgroups
such that F is freely indecomposable relative to H as input and returns the relative JSJ
decomposition of F relative to J.

We will construct a suitable tubular graph of graphs Xr 5¢ to prove Theorem 13.3.
There exists a central vertex graph X, in X g¢ such that m(Xs,) = F. If H =
{Hi,..., H,}, then for each H; there exists an immersed cycle ¢;: C; — X, such
that C; induces a conjugate of the group H; in m1(X,.) = F. Note that the word
generated by C; is cyclically reduced in F' as ¢; is an immersion of graphs. There
exist exactly n tubes in X g g that are attached to Xy, in the following way. The edge
graph of the i™ tube is isomorphic to C; and the attaching map is given by ¢;. We
subdivide X;. and the n edge graphs sufficiently to make all graphs simplicial. The
other end of the i tube is attached by an isomorphism to a circular vertex graph X .
There are exactly two other tubes attached to X;, with both attaching maps being
isomorphisms. Each of these two tubes connects X; to a copy of a surface graph whose
fundamental group is the fundamental group of the oriented surface of genus two with
exactly one boundary component. Thus the underlying graph of X r g¢ is a tree with
one “central” vertex s, of valence n, n cyclic vertices adjacent to s., of valence three
each, and 2n surface vertices of valence one each.

Let G be the fundamental group of X 5¢. Since each vertex group is freely indecom-
posable relative to its incident edge groups, G is one-ended, by [39, Theorem 18].
Hence, we can assume that Xz ¢ is Brady—Meier, by Theorem 1.7.

As a consequence of the Bestvina—Feighn combination theorem [3], we have:
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Lemma 13.4 G is 6—hyperbolic. O
Let G, be a vertex group of the graph of groups structure of G induced by X g.

Lemma 13.5 Either Gy = G, or Gy is a conjugate of either a cyclic vertex group of
the JSJ decomposition of G or a maximal hanging surface group.

Proof Let G, be a cyclic vertex group adjacent to Gy, with X the corresponding
vertex graph. Note that X, is a line and N ()? s) contains three components as there
are three tubes attached to X. By Proposition 8.5, a subgroup of Gy is universally
elliptic. The result then follows as G is maximal cyclic.

Now suppose that G is a hanging surface group corresponding to the surface graph Xj.
Note that no separating transversal line can meet X, as such a line will have to first
cross a vertical tree (line) adjacent to X, which is not possible, as seen above. Hence
any line which crosses a line contained in X s 1s itself contained in X s. Thus Gy is
maximal hanging. a

Corollary 13.6 If T is the JSJ tree of G and T the underlying tree of X F.9
then T is a refinement of T' obtained by blowing up lifts of the central vertex s .
O

Proof of Theorem 13.3 Given (F, ), the tubular graph of graphs Xr 5 can be
constructed algorithmically in polynomial time in the rank of F and the lengths of J(.
Let Xjs; be the tubular graph of graphs obtained from X g 5¢ in double exponential time
by Theorem 12.44. Let I and I' be the underlying graphs of Xj5; and X 3¢ respec-
tively. Note that since vertex graphs other than X, induce vertex groups of the JSJ,
I}s; is obtained from I" by a blow-up of the vertex s.. Let ¥ be the subgraph of groups
of Xj with underlying graph f ~1(s.). Then it is straightforward to check that Y is
the relative JSJ of (F, H). a

14 The case of graphs of free groups with cyclic edge groups

We can now extend our result to general hyperbolic one-ended graphs of free groups
with cyclic edge groups:

Theorem 14.1 There exists an algorithm of double exponential time complexity
that takes a graph of free groups with cyclic edge groups with hyperbolic one-ended
fundamental group as input and returns its JSJ decomposition.
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We recall that a graph of free groups with cyclic edge groups is the group-theoretic
analogue of a graph of spaces (see Definition 2.7) whose vertex and edge spaces are
finite connected one-dimensional CW complexes, with the additional restriction that
all the edge spaces are circles. We will further assume that the fundamental group of
the geometric realisation is one-ended and hyperbolic. Again, we will use the same
notation X to denote both the graph of groups under consideration and its geometric
realisation. We caution the reader that in this section X need not be a tubular graph of
graphs.

Remark 14.2 Each vertex space with its incident edge spaces gives rise to a free group
with a “marked” family of cyclic subgroups at the level of fundamental groups. This
marked family may contain nonmaximal cyclic subgroups, but this can be rectified by a
normalisation process as done in [7, Section 2.4]. The normalisation process introduces
a new vertex group H corresponding to each nonmaximal cyclic subgroup H' in
the marked family such that H is the maximal cyclic subgroup containing H. So,
without loss of generality, we will assume that we have a graph of free groups with
cyclic edge groups such that whenever a vertex group is not cyclic, then the incident
edge groups are all maximal cyclic. Since every cyclic subgroup of a (torsion-free)
hyperbolic group is contained in a unique maximal cyclic subgroup (see [11, chapitre 10,
proposition 7.1]), we note that any edge group injects into at most one of its vertex
groups in a nonmaximal cyclic subgroup. Thus, the normalisation procedure does not
produce two new adjacent cyclic vertices.

Proof of Theorem 14.1 Since the fundamental group G of the input graph of
groups X is one-ended, each noncyclic vertex group with its incident edge groups
gives a free group F with a finite family of maximal cyclic subgroups JH such that F
is freely indecomposable relative to J{. We now apply the algorithm of Theorem 13.3
to obtain the relative JSJ decomposition of (F,H). Replace the vertex group F in X
with the graph of groups corresponding to the relative JSJ decomposition of (F, ).
Repeat the procedure at each noncyclic vertex group of X to obtain a new graph of
groups decomposition X’, where each vertex group has been replaced by its relative
JSJ decomposition. Observe that X’ is still a graph of free groups with cyclic edge
groups. We now modify X’ to an intermediate graph of groups X” by removing
edges when the corresponding edge groups are attached to cyclic vertex groups on both
sides, analogous to the procedure in Section 12.4. What remains is to identify surface
graphs in X" using Lemma 12.42 and gluing them together to obtain Xjg;, as done in
Section 12.6. The resulting graph of groups is the JSJ decomposition of X. a
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15 The isomorphism problem

An important consequence of Theorem 14.1 is that the isomorphism problem for
hyperbolic fundamental groups of graphs of free groups with cyclic edge groups is
reduced to the Whitehead problem [38] and can be solved in double exponential time.

Theorem 15.1 There exists an algorithm of double exponential time complexity that
takes two graphs of free groups with cyclic edge groups and hyperbolic fundamental
group as input and decides whether they are isomorphic.

We refer the reader to [13, Section 4] for the relevant definitions. The main result that we
invoke from that paper is Proposition 4.4, which states that given two graphs of groups
X1 and X> on the same underlying graph, and a collection of group isomorphisms
between the corresponding vertex groups, X is isomorphic to X5 as graphs of groups
if and only if there exists an “extension adjustment” [13, Definition 4.3].

Proof of Theorem 15.1 Let X; and X, be the input graphs of free groups with cyclic
edge groups. We will denote their (hyperbolic) fundamental groups by G; and G,
respectively.

By [39, Theorem 18], G; is one-ended if and only if each vertex group of X; is freely
indecomposable relative to its incident edge groups. Corollary E of [37] gives a poly-
nomial time algorithm to detect whether a given vertex group is freely indecomposable
relative to its incident edge groups. One then obtains the Grushko decomposition of G; .
Since the Grushko decomposition of a group is unique, G and Gy are isomorphic if
and only if there is a one-to-one correspondence between the factors of their Grushko
decompositions such that the corresponding factors are isomorphic as groups.

So assume that G; and G, are one-ended. Using Theorem 14.1, we can construct the
JSJ decompositions of G; and G,. Then, by the uniqueness of the JSJ decomposition
and [13, Proposition 4.4], G, and G5 are isomorphic if and only if

(1) their JSJ decompositions have a common underlying graph I,

(2) for each vertex v of I, there exists an isomorphism ¢, between the vertex group
Gy,1 of X1 and the vertex group Gy 2 of X5, and

(3) there exists an extension adjustment.
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In our case, (3) boils down, for each vertex v, to ¢, taking the set of incident edge
subgroups of Gy, to the set of incident edge subgroups of G, ». We refer the reader
to [13, Definition 4.3 and commutative diagram (8)] for a precise formulation.

Thus, the isomorphism problem is reduced to solving the Whitehead problem for each
vertex group. There exist algorithms that provide solutions to the Whitehead problem in
at most exponential time (see [23; 22; 30]). Combining the above gives us the required
algorithm. a
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