Volume 20, issue 4 (2020)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 25, 1 issue

Volume 24, 9 issues

Volume 23, 9 issues

Volume 22, 8 issues

Volume 21, 7 issues

Volume 20, 7 issues

Volume 19, 7 issues

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the Journal
Editorial Board
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN 1472-2739 (online)
ISSN 1472-2747 (print)
Author Index
To Appear
 
Other MSP Journals
Naturality of the contact invariant in monopole Floer homology under strong symplectic cobordisms

Mariano Echeverria

Algebraic & Geometric Topology 20 (2020) 1795–1875
Bibliography
1 N Berline, E Getzler, M Vergne, Heat kernels and Dirac operators, 298, Springer (2004) MR2273508
2 C P Boyer, K Galicki, Sasakian geometry, Oxford Univ. Press (2008) MR2382957
3 B Charbonneau, Analytic aspects of periodic instantons, PhD thesis, Massachusetts Institute of Technology (2004) MR2717225
4 V Colin, P Ghiggini, K Honda, The equivalence of Heegaard Floer homology and embedded contact homology via open book decompositions, I, preprint (2012) arXiv:1208.1074
5 V Colin, P Ghiggini, K Honda, The equivalence of Heegaard Floer homology and embedded contact homology via open book decompositions, II, preprint (2012) arXiv:1208.1077
6 V Colin, P Ghiggini, K Honda, The equivalence of Heegaard Floer homology and embedded contact homology, III: From hat to plus, preprint (2012) arXiv:1208.1526
7 S K Donaldson, Floer homology groups in Yang–Mills theory, 147, Cambridge Univ. Press (2002) MR1883043
8 M Echeverria, Naturality of the contact invariant in monopole floer homology under strong symplectic cobordisms, PhD thesis, University of Virginia (2019) MR2717225
9 J Eichhorn, Gauge theory on open manifolds of bounded geometry, Internat. J. Modern Phys. A 7 (1992) 3927 MR1175322
10 Y Eliashberg, Classification of overtwisted contact structures on 3–manifolds, Invent. Math. 98 (1989) 623 MR1022310
11 J B Etnyre, Planar open book decompositions and contact structures, Int. Math. Res. Not. 2004 (2004) 4255 MR2126827
12 J B Etnyre, K Honda, On symplectic cobordisms, Math. Ann. 323 (2002) 31 MR1906906
13 D S Freed, K K Uhlenbeck, Instantons and four-manifolds, 1, Springer (1991) MR1081321
14 K A Frøyshov, Compactness and gluing theory for monopoles, 15, Geom. Topol. Publ., Coventry (2008) MR2465077
15 H Geiges, An introduction to contact topology, 109, Cambridge Univ. Press (2008) MR2397738
16 P Ghiggini, Ozsváth–Szabó invariants and fillability of contact structures, Math. Z. 253 (2006) 159 MR2206641
17 R E Gompf, Handlebody construction of Stein surfaces, Ann. of Math. 148 (1998) 619 MR1668563
18 M Hutchings, Embedded contact homology as a (symplectic) field theory, in preparation
19 M Hutchings, Strong cobordisms and the ECH contact invariant, blog post (2012)
20 M Hutchings, C H Taubes, Proof of the Arnold chord conjecture in three dimensions, II, Geom. Topol. 17 (2013) 2601 MR3190296
21 P B Kronheimer, T S Mrowka, Monopoles and contact structures, Invent. Math. 130 (1997) 209 MR1474156
22 P Kronheimer, T Mrowka, Monopoles and three-manifolds, 10, Cambridge Univ. Press (2007) MR2388043
23 P Kronheimer, T Mrowka, P Ozsváth, Z Szabó, Monopoles and lens space surgeries, Ann. of Math. 165 (2007) 457 MR2299739
24 C Kutluhan, Y J Lee, C H Taubes, HF = HM, I : Heegaard Floer homology and Seiberg–Witten Floer homology, preprint (2011) arXiv:1007.1979
25 C Kutluhan, Y J Lee, C H Taubes, HF = HM, II : Reeb orbits and holomorphic curves for the ech/Heegaard–Floer correspondence, preprint (2010) arXiv:1008.1595
26 C Kutluhan, Y J Lee, C H Taubes, HF = HM, III : Holomorphic curves and the differential for the ech/Heegaard Floer correspondence, preprint (2010) arXiv:1010.3456
27 C Kutluhan, Y J Lee, C H Taubes, HF = HM, IV : The Seiberg–Witten Floer homology and ech correspondence, preprint (2011) arXiv:1107.2297
28 C Kutluhan, Y J Lee, C H Taubes, HF = HM, V : Seiberg–Witten–Floer homology and handle addition, preprint (2012) arXiv:1204.0115
29 S Lang, Fundamentals of differential geometry, 191, Springer (1999) MR1666820
30 J Lin, The Seiberg–Witten equations on end-periodic manifolds and an obstruction to positive scalar curvature metrics, J. Topol. 12 (2019) 328 MR3911569
31 J Lin, D Ruberman, N Saveliev, On the Frøyshov invariant and monopole Lefschetz number, preprint (2018) arXiv:1802.07704v1
32 P Lisca, A I Stipsicz, Seifert fibered contact three-manifolds via surgery, Algebr. Geom. Topol. 4 (2004) 199 MR2059189
33 J Morgan, T Mrowka, On the gluing theorem for instantons on manifolds containing long cylinders, unpublished manuscript
34 J W Morgan, T Mrowka, D Ruberman, The L2–moduli space and a vanishing theorem for Donaldson polynomial invariants, International, Cambridge, MA (1994) MR1287851
35 T Mrowka, Y Rollin, Legendrian knots and monopoles, Algebr. Geom. Topol. 6 (2006) 1 MR2199446
36 T Mrowka, D Ruberman, N Saveliev, Seiberg–Witten equations, end-periodic Dirac operators, and a lift of Rohlin’s invariant, J. Differential Geom. 88 (2011) 333 MR2838269
37 L I Nicolaescu, Notes on Seiberg–Witten theory, 28, Amer. Math. Soc. (2000) MR1787219
38 J C Oxtoby, Measure and category: a survey of the analogies between topological and measure spaces, 2, Springer (1980) MR584443
39 P Ozsváth, A Stipsicz, Z Szabó, Planar open books and Floer homology, Int. Math. Res. Not. 2005 (2005) 3385 MR2200085
40 P Ozsváth, Z Szabó, Holomorphic disks and genus bounds, Geom. Topol. 8 (2004) 311 MR2023281
41 P Ozsváth, Z Szabó, Heegaard Floer homology and contact structures, Duke Math. J. 129 (2005) 39 MR2153455
42 P Safari, Gluing Seiberg–Witten monopoles, Comm. Anal. Geom. 13 (2005) 697 MR2191904
43 S Sivek, Monopole Floer homology and Legendrian knots, Geom. Topol. 16 (2012) 751 MR2928982
44 C H Taubes, SW Gr : from the Seiberg–Witten equations to pseudo-holomorphic curves, J. Amer. Math. Soc. 9 (1996) 845 MR1362874
45 C H Taubes, The Seiberg–Witten equations and the Weinstein conjecture, II : More closed integral curves of the Reeb vector field, Geom. Topol. 13 (2009) 1337 MR2496048
46 C H Taubes, Embedded contact homology and Seiberg–Witten Floer cohomology, I, Geom. Topol. 14 (2010) 2497 MR2746723
47 C H Taubes, Embedded contact homology and Seiberg–Witten Floer cohomology, II, Geom. Topol. 14 (2010) 2583 MR2746724
48 C H Taubes, Embedded contact homology and Seiberg–Witten Floer cohomology, III, Geom. Topol. 14 (2010) 2721 MR2746725
49 C H Taubes, Embedded contact homology and Seiberg–Witten Floer cohomology, IV, Geom. Topol. 14 (2010) 2819 MR2746726
50 C H Taubes, Embedded contact homology and Seiberg–Witten Floer cohomology, V, Geom. Topol. 14 (2010) 2961 MR2746727
51 C Wendl, A hierarchy of local symplectic filling obstructions for contact 3–manifolds, Duke Math. J. 162 (2013) 2197 MR3102479
52 C Wendl, Non-exact symplectic cobordisms between contact 3–manifolds, J. Differential Geom. 95 (2013) 121 MR3128981
53 B Zhang, A monopole Floer invariant for foliations without transverse invariant measure, preprint (2016) arXiv:1603.08136
54 R Zhang, Gauge theory and self-linking of Legendrian knots, PhD thesis, Northeastern University (2016) MR3517819