Volume 20, issue 5 (2020)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 25, 1 issue

Volume 24, 9 issues

Volume 23, 9 issues

Volume 22, 8 issues

Volume 21, 7 issues

Volume 20, 7 issues

Volume 19, 7 issues

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the Journal
Editorial Board
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN 1472-2739 (online)
ISSN 1472-2747 (print)
Author Index
To Appear
 
Other MSP Journals
Amenable signatures, algebraic solutions and filtrations of the knot concordance group

Taehee Kim

Algebraic & Geometric Topology 20 (2020) 2413–2450
Bibliography
1 J R Burke, Infection by string links and new structure in the knot concordance group, Algebr. Geom. Topol. 14 (2014) 1577 MR3212578
2 J C Cha, Amenable L2–theoretic methods and knot concordance, Int. Math. Res. Not. 2014 (2014) 4768 MR3257550
3 J C Cha, Symmetric Whitney tower cobordism for bordered 3–manifolds and links, Trans. Amer. Math. Soc. 366 (2014) 3241 MR3180746
4 J C Cha, A topological approach to Cheeger–Gromov universal bounds for von Neumann ρ–invariants, Comm. Pure Appl. Math. 69 (2016) 1154 MR3493628
5 J C Cha, T Kim, Covering link calculus and iterated Bing doubles, Geom. Topol. 12 (2008) 2173 MR2431018
6 J C Cha, T Kim, Unknotted gropes, Whitney towers, and doubly slicing knots, Trans. Amer. Math. Soc. 371 (2019) 2383 MR3896084
7 J C Cha, K E Orr, L2–signatures, homology localization, and amenable groups, Comm. Pure Appl. Math. 65 (2012) 790 MR2903800
8 S Chang, S Weinberger, On invariants of Hirzebruch and Cheeger–Gromov, Geom. Topol. 7 (2003) 311 MR1988288
9 J Cheeger, M Gromov, Bounds on the von Neumann dimension of L2–cohomology and the Gauss–Bonnet theorem for open manifolds, J. Differential Geom. 21 (1985) 1 MR806699
10 T D Cochran, Noncommutative knot theory, Algebr. Geom. Topol. 4 (2004) 347 MR2077670
11 T D Cochran, S Harvey, C Leidy, Knot concordance and higher-order Blanchfield duality, Geom. Topol. 13 (2009) 1419 MR2496049
12 T D Cochran, S Harvey, C Leidy, 2–Torsion in the n–solvable filtration of the knot concordance group, Proc. Lond. Math. Soc. 102 (2011) 257 MR2769115
13 T D Cochran, S Harvey, C Leidy, Primary decomposition and the fractal nature of knot concordance, Math. Ann. 351 (2011) 443 MR2836668
14 T D Cochran, T Kim, Higher-order Alexander invariants and filtrations of the knot concordance group, Trans. Amer. Math. Soc. 360 (2008) 1407 MR2357701
15 T D Cochran, K E Orr, P Teichner, Knot concordance, Whitney towers and L2–signatures, Ann. of Math. 157 (2003) 433 MR1973052
16 T D Cochran, K E Orr, P Teichner, Structure in the classical knot concordance group, Comment. Math. Helv. 79 (2004) 105 MR2031301
17 T D Cochran, P Teichner, Knot concordance and von Neumann ρ–invariants, Duke Math. J. 137 (2007) 337 MR2309149
18 C W Davis, Linear independence of knots arising from iterated infection without the use of Tristram–Levine signature, Int. Math. Res. Not. 2014 (2014) 1973 MR3190357
19 J Duval, Forme de Blanchfield et cobordisme d’entrelacs bords, Comment. Math. Helv. 61 (1986) 617 MR870709
20 M H Freedman, The topology of four-dimensional manifolds, J. Differential Geom. 17 (1982) 357 MR679066
21 M H Freedman, F Quinn, Topology of 4–manifolds, 39, Princeton Univ. Press (1990) MR1201584
22 M H Freedman, P Teichner, 4–manifold topology, I : Subexponential groups, Invent. Math. 122 (1995) 509 MR1359602
23 S Friedl, L2–eta-invariants and their approximation by unitary eta-invariants, Math. Proc. Cambridge Philos. Soc. 138 (2005) 327 MR2132174
24 S Friedl, P Teichner, New topologically slice knots, Geom. Topol. 9 (2005) 2129 MR2209368
25 S L Harvey, Higher-order polynomial invariants of 3–manifolds giving lower bounds for the Thurston norm, Topology 44 (2005) 895 MR2153977
26 S L Harvey, Homology cobordism invariants and the Cochran–Orr–Teichner filtration of the link concordance group, Geom. Topol. 12 (2008) 387 MR2390349
27 P D Horn, The non-triviality of the grope filtrations of the knot and link concordance groups, Comment. Math. Helv. 85 (2010) 751 MR2718138
28 H J Jang, Two-torsion in the grope and solvable filtrations of knots, Int. J. Math. 28 (2017) MR3639041
29 S G Kim, T Kim, Polynomial splittings of metabelian von Neumann rho-invariants of knots, Proc. Amer. Math. Soc. 136 (2008) 4079 MR2425750
30 S G Kim, T Kim, Splittings of von Neumann rho-invariants of knots, J. Lond. Math. Soc. 89 (2014) 797 MR3217650
31 T Kim, Filtration of the classical knot concordance group and Casson–Gordon invariants, Math. Proc. Cambridge Philos. Soc. 137 (2004) 293 MR2092061
32 T Kim, An infinite family of non-concordant knots having the same Seifert form, Comment. Math. Helv. 80 (2005) 147 MR2130571
33 T Kim, New obstructions to doubly slicing knots, Topology 45 (2006) 543 MR2218756
34 T Kim, Knots having the same Seifert form and primary decomposition of knot concordance, J. Knot Theory Ramifications 26 (2017) MR3735404
35 C Livingston, Seifert forms and concordance, Geom. Topol. 6 (2002) 403 MR1928840
36 M Ramachandran, Von Neumann index theorems for manifolds with boundary, J. Differential Geom. 38 (1993) 315 MR1237487
37 B Stenström, Rings of quotients: an introduction to methods of ring theory, 217, Springer (1975) MR0389953
38 R Strebel, Homological methods applied to the derived series of groups, Comment. Math. Helv. 49 (1974) 302 MR354896