Volume 20, issue 5 (2020)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 24
Issue 7, 3571–4137
Issue 6, 2971–3570
Issue 5, 2389–2970
Issue 4, 1809–2387
Issue 3, 1225–1808
Issue 2, 595–1223
Issue 1, 1–594

Volume 23, 9 issues

Volume 22, 8 issues

Volume 21, 7 issues

Volume 20, 7 issues

Volume 19, 7 issues

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the Journal
Editorial Board
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN 1472-2739 (online)
ISSN 1472-2747 (print)
Author Index
To Appear
 
Other MSP Journals
Contact structures, excisions and sutured monopole Floer homology

Zhenkun Li

Algebraic & Geometric Topology 20 (2020) 2553–2588
Abstract

We explore the interplay between contact structures and sutured monopole Floer homology. First, we study the behavior of contact elements, which were defined by Baldwin and Sivek, under the operation of performing Floer excisions, which was introduced to the context of sutured monopole Floer homology by Kronheimer and Mrowka. We then compute the sutured monopole Floer homology of some special balanced sutured manifolds, using tools closely related to contact geometry. For an application, we obtain an exact triangle for the oriented skein relation in monopole theory and derive a connected sum formula for sutured monopole Floer homology.

Keywords
contact structures, Floer excisions, sutured manifolds, monopole Floer homology
Mathematical Subject Classification 2010
Primary: 57M25, 57M27
References
Publication
Received: 14 December 2018
Revised: 4 November 2019
Accepted: 23 November 2019
Published: 4 November 2020
Authors
Zhenkun Li
Department of Mathematics
Massachusetts Institute of Technology
Cambridge, MA
United States