Volume 20, issue 6 (2020)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 23
Issue 9, 3909–4400
Issue 8, 3417–3908
Issue 7, 2925–3415
Issue 6, 2415–2924
Issue 5, 1935–2414
Issue 4, 1463–1934
Issue 3, 963–1462
Issue 2, 509–962
Issue 1, 1–508

Volume 22, 8 issues

Volume 21, 7 issues

Volume 20, 7 issues

Volume 19, 7 issues

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the Journal
Editorial Board
Editorial Interests
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN (electronic): 1472-2739
ISSN (print): 1472-2747
Author Index
To Appear
 
Other MSP Journals
Equivariant dendroidal Segal spaces and $G$–$\infty$–operads

Peter Bonventre and Luís A Pereira

Algebraic & Geometric Topology 20 (2020) 2687–2778
DOI: 10.2140/agt.2020.20.2687
Bibliography
1 T Beke, Sheafifiable homotopy model categories, Math. Proc. Cambridge Philos. Soc. 129 (2000) 447 MR1780498
2 C Berger, I Moerdijk, On an extension of the notion of Reedy category, Math. Z. 269 (2011) 977 MR2860274
3 J E Bergner, A characterization of fibrant Segal categories, Proc. Amer. Math. Soc. 135 (2007) 4031 MR2341955
4 J E Bergner, A survey of (,1)–categories, from: "Towards higher categories" (editors J C Baez, J P May), IMA Vol. Math. Appl. 152, Springer (2010) 69 MR2664620
5 J E Bergner, Equivalence of models for equivariant (,1)–categories, Glasg. Math. J. 59 (2017) 237 MR3576335
6 A J Blumberg, M A Hill, Operadic multiplications in equivariant spectra, norms, and transfers, Adv. Math. 285 (2015) 658 MR3406512
7 P Bonventre, L A Pereira, Genuine equivariant operads, preprint (2017) arXiv:1707.02226
8 P Bonventre, L A Pereira, Equivariant dendroidal sets and simplicial operads, preprint (2019) arXiv:1911.06399
9 D C Cisinski, I Moerdijk, Dendroidal sets as models for homotopy operads, J. Topol. 4 (2011) 257 MR2805991
10 D C Cisinski, I Moerdijk, Dendroidal Segal spaces and –operads, J. Topol. 6 (2013) 675 MR3100887
11 D C Cisinski, I Moerdijk, Dendroidal sets and simplicial operads, J. Topol. 6 (2013) 705 MR3100888
12 T G Goodwillie, Calculus, II : Analytic functors, K–Theory 5 (1992) 295 MR1162445
13 J J Gutiérrez, D White, Encoding equivariant commutativity via operads, Algebr. Geom. Topol. 18 (2018) 2919 MR3848404
14 G Heuts, V Hinich, I Moerdijk, On the equivalence between Lurie’s model and the dendroidal model for infinity-operads, Adv. Math. 302 (2016) 869 MR3545944
15 M A Hill, M J Hopkins, D C Ravenel, On the nonexistence of elements of Kervaire invariant one, Ann. of Math. 184 (2016) 1 MR3505179
16 P S Hirschhorn, Model categories and their localizations, 99, Amer. Math. Soc. (2003) MR1944041
17 M Hovey, Model categories, 63, Amer. Math. Soc. (1999) MR1650134
18 J Lurie, Higher topos theory, 170, Princeton Univ. Press (2009) MR2522659
19 I Moerdijk, I Weiss, Dendroidal sets, Algebr. Geom. Topol. 7 (2007) 1441 MR2366165
20 I Moerdijk, I Weiss, On inner Kan complexes in the category of dendroidal sets, Adv. Math. 221 (2009) 343 MR2508925
21 L A Pereira, Equivariant dendroidal sets, Algebr. Geom. Topol. 18 (2018) 2179 MR3797065
22 C Rezk, A model for the homotopy theory of homotopy theory, Trans. Amer. Math. Soc. 353 (2001) 973 MR1804411
23 C Rezk, A Cartesian presentation of weak n–categories, Geom. Topol. 14 (2010) 521 MR2578310
24 E Riehl, Categorical homotopy theory, 24, Cambridge Univ. Press (2014) MR3221774
25 E Riehl, D Verity, The theory and practice of Reedy categories, Theory Appl. Categ. 29 (2014) 256 MR3217884
26 M Stephan, On equivariant homotopy theory for model categories, Homology Homotopy Appl. 18 (2016) 183 MR3551501
27 I Weiss, Broad posets, trees, and the dendroidal category, preprint (2012) arXiv:1201.3987