Volume 20, issue 6 (2020)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 21
Issue 4, 1595–2140
Issue 3, 1075–1593
Issue 2, 543–1074
Issue 1, 1–541

Volume 20, 7 issues

Volume 19, 7 issues

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the Journal
Editorial Board
Editorial Interests
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN (electronic): 1472-2739
ISSN (print): 1472-2747
Author Index
To Appear
 
Other MSP Journals
Trees, dendrites and the Cannon–Thurston map

Elizabeth Field

Algebraic & Geometric Topology 20 (2020) 3083–3126
DOI: 10.2140/agt.2020.20.3083
Abstract

When 1 H G Q 1 is a short exact sequence of three word-hyperbolic groups, Mahan Mj (formerly Mitra) has shown that the inclusion map from H to G extends continuously to a map between the Gromov boundaries of H and G. This boundary map is known as the Cannon–Thurston map. In this context, Mj associates to every point z in the Gromov boundary of Q an “ending lamination” on H which consists of pairs of distinct points in the boundary of H. We prove that for each such z, the quotient of the Gromov boundary of H by the equivalence relation generated by this ending lamination is a dendrite, that is, a tree-like topological space. This result generalizes the work of Kapovich and Lustig and Dowdall, Kapovich and Taylor, who prove that in the case where H is a free group and Q is a convex cocompact purely atoroidal subgroup of Out(FN), one can identify the resultant quotient space with a certain –tree in the boundary of Culler and Vogtmann’s Outer space.

Keywords
Cannon–Thurston map, hyperbolic group, algebraic lamination, dendrite, Gromov boundary
Mathematical Subject Classification 2010
Primary: 20F65
Secondary: 20E07, 20F67, 57M07
References
Publication
Received: 25 July 2019
Revised: 22 January 2020
Accepted: 15 February 2020
Published: 8 December 2020
Authors
Elizabeth Field
Department of Mathematics
University of Illinois at Urbana-Champaign
Urbana, IL
United States