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The extrinsic primitive torsion problem

KHALID BOU-RABEE
W PATRICK HOOPER

Let P; be the subgroup generated by k™ powers of primitive elements in F, the
free group of rank r. We show that F,/ Py is finite if and only if k is 1, 2 or 3.
We also fully characterize F,/ Py for k = 2,3, 4. In particular, we give a faithful
9-dimensional representation of F,/P, with infinite image.

20F05, 20F65; 20F38

1 Introduction

Let G be a group and r be a cardinality. We say that g € G is r—primitive if it is part
of a generating set of G with r elements. The rank of a group G is the cardinality
of a generating set of minimal size, and an element of G is called primitive if it is
r—primitive with r equal to the rank of G. Denote the rank r free group by F,. This
paper concerns the following collection of questions.

Question 1 (the extrinsic primitive torsion problems) Fix positive integers r and k.
Let T" be an image of F, such that the image of every r —primitive element in F, has
order dividing k .

(a) Is I necessarily finite?

(b) Is T" necessarily virtually nilpotent?

(c) Is I necessarily virtually solvable?

(d) Is T" necessarily finitely presented?
What if T is as above and also residually finite?
Observe that a positive answer to Question 1(a) or (b) implies a positive answer to
Question 1(d).

The extrinsic primitive torsion problems are topological variants of the classical Burn-
side problem posed by William Burnside in 1902 [2]. This problem has led to many
important discoveries: the classical Jordan—Schur theorem, A'Y Olshansky’s outrageous
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subgroup index in F, quotient Gy = F,/ Py,
P, 4 the Klein four-group
P3 27 H(Z/3Z)
Py o0 virtually a 5-dimensional image of H(Z) x H(Z)
Ps o0 we conjecture this is virtually solvable
P, withk > 6 %) we conjecture the quotient is not finitely presented

Table 1: Results and conjectures on Py and F,/ Py .

Monster groups [17] and the fundamental Golod—Shafarevich theorem [9]. As such,
Question 1 is intrinsically motivated through group theory (moreover, it increases our
understanding of new characteristic subgroups of free groups). The case of r = 2 has
direct ties to geometric questions about square-tiled surfaces; please see the appendix.

There has been significant progress made on the primitive torsion problem for some suf-
ficiently large k ; see Koberda and Santharoubane [13] and Malestein and Putman [15].
This paper answers Question 1(a) in the case r = 2, and also Question 1(a)—(d) in the
cases r =2 and k € {2,3,4}.

We succinctly state our findings in Table 1. Let P, C F; be the subgroup generated
by k't powers of primitive elements in F, (observe that the answer to Question 1(a),
(b) or (c) is affirmative if and only if the respective answer to (a), (b) or (c) is affirmative
for I' = F, /P, ). Use Py to denote P, ; and use H(R) to denote the Heisenberg
group over aring R.

In resolving the cases k = 4 we show that F,/ P4 is isomorphic to the matrix group
generated by the two matrices

(00 0 0 0110] 0Y)
0 0 0 0[-1001| 0
0 0 0 0| 0010/ 1
0 0 0 0| 0001 0
diag(1,—1,—i,—i;—1,1,i,i;1), |0 -1 -1 0| 0000| O
1 0 0-1] 0000 0
0 0-1 0 0000 0
0 0 0-1] 00001
0 0 0 0| 0000/ 1

For k > 5, we develop tools for constructing and refining new infinite linear represen-
tations of F,/Pj.. These tools allow us to answer Question 1(a), and we hope they will
be useful in future work.
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Instead of speaking of primitivity in a free group, we can phrase an intrinsic version of
Question 1.

Question 2 (the intrinsic (restricted) primitive torsion problems) Fix positive integers
r and k. Let I be a (residually finite) group of rank r such that every primitive element
has order dividing k. Which questions from Question | have affirmative answers?

The primitive torsion problems are natural variants of the original bounded Burnside
problem. There has been great progress in understanding the quotients arising from
these problems; see for instance Coulon and Gruber [5]. Moreover, studying laws other
than the power law in restricted Burnside problems is a very active area; see Bradford
and Thom [1] and Kozma and Thom [14] for the state of the art.

Question 3 (the bounded Burnside problem) Fix r,k € Z. Let G be a group
generated by r elements. Let By be the group in G generated by elements of the
form gk, where g € G. Is G/ By necessarily finite?

We note that when G/ Py, is virtually solvable, the resulting group G/ By is necessarily
finite. Thus, our work recovers the well-known result that F»/Bjy is finite. If our
conjecture that F5/ Ps is virtually solvable is correct, then it follows that F,/B5 is
finite, which is unknown.

Outline of article

In Section 2, we describe normal generators for Py . We produce finite lists of normal
generators for k € {2,3,4,5}. The generators in these cases correspond to the vertices
of the triangular dihedron, the tetrahedron, the octahedron and the icosahedron. We
use our list of generators to show that the quotients F»/P, and F»/P3 are as listed in
the introduction. Running out of platonic solids with triangular faces, our techniques
would give a infinite collection of normal generators for P for k > 6, and so we
conjecture that F,/ Py is not finitely presented for k > 6.

In Section 3, we produce highly symmetric representations of F»/P; into GL(n, C)
with infinite image when k > 4. Our technique involves deforming a representation
into GL(n, C) inside a bigger group, namely GL(N, C) for N > n. We take highly
symmetric representations of F»/ P, — GL(n, C) which factor through a finite group
and then deform them in such a way that the representations develop an infinite image
in GL(N, C) while remaining highly symmetric. This allows us to prove that F»/ Py,
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is infinite for k > 4. Also, the process leads to new highly symmetric representations
of F»/Py. In the case of k = 4, we repeat this process twice (with a tensor product in
the middle) to produce the representation F»/ P4 — GL(9, C) which was mentioned
in the introduction.

In Section 4, we prove that our representation F>/P4 — GL(9, C) is faithful and
proves F,/ P4 has the form mentioned in the introduction.

The appendix discusses the relationship between this work and the geometry of square-
tiled surfaces.

2 Normal generators for P;

2.1 Primitive elements of F,

Let F» denote the free group (a,b). The reader will recall or quickly observe the
following facts about primitive elements of F5:

(1) If ¢ € F5 is primitive then there is a ¢ € Aut(F>) such that ¢(a) =c.
(2) If ¢ € F, is primitive then so is every element of its conjugacy class [c] =
{geg™! g € P2}
In particular, we will say a conjugacy class is primitive if it consists of primitive
elements of F5.

The observation that there is a short exact sequence
1 - F> — Aut(F>) 2> GL(2,Z) — 1

dates back to Jakob Nielsen’s 1913 thesis. Here the map F, — Aut(F,) sends
an element of F5 to its corresponding inner automorphism and thus GL(2,7Z) is
isomorphic to the outer automorphism group Out(F>) = Aut(F>)/Inn(F3). The
map D: Aut(F>) — GL(2,Z) may be defined by using the abelianization homomor-
phism ab: F, — Z?, which we choose to satisfy a — (1,0) and b — (0, 1). Then
D(¢) € GL(2, Z) is determined by the condition that D(¢) o ab(g) = abo ¢(g) for
all g € F,.

An automorphism of F» either preserves the conjugacy class of the commutator [a, ]
or sends it to the conjugacy class of [b,a]. Thus there is a natural homomorphism
Aut(F») — C,, where we identify C, with the permutation group of these conju-
gacy classes. We set Auty (F>) to be the kernel which consists of automorphisms
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preserving the conjugacy class of the commutator [a, b]. We use Aut_(F3) to denote
Aut(Fy) ~ Auty (F3).

The group Outy (F>) = Aut4 (F>)/ Inn(F3) is isomorphic to SL(2, Z) via the map D
above. The following elements of Aut4 (F>) have images in Outy (F,) which generate
it:

Yola)=b. Yob)=b"la"",
) Yi(@) =b, y1(b)=a"",

Y2(a) =a, V2(b)=ab.

We will use ¥q, ¥ and v/, to denote the outer automorphism classes of these elements.
It may be observed that

) Yooyn=v1. Yo=vi=1 [Yi.VYol=[7. V2l=1

Recall that outer automorphisms act on conjugacy classes. We will use [g] to denote
the conjugacy class of g € F,. We have the following:

Lemma 2.1 (primitive conjugacy classes) An element g € F, is primitive if and
only if it lies in the conjugacy class v ([a]) for some ¥ € Outy (F3).

Proof If g € F5, is primitive then by (1) above there is a i € Aut(F,) such that
¥ (a) = g. Then, by possibly precomposing with the automorphism _ € Aut_(F3)
determined by ¥_(a) = a and ¥_(b) = b1, we can assume that y € Aut (F,). Let
¥ € Outy (F») be the class containing ¥ . Then [g] = ¥ ([a]). The converse is clear
since primitivity is a conjugacy invariant and is invariant under automorphisms. O

It follows that the conjugacy classes of primitive elements are naturally identified with
Out, (F») modulo the stabilizer of the conjugacy class [a]. This stabilizer is (/5).

The primitive conjugacy classes come naturally in pairs: if g € F» is primitive, then
we call the conjugacy classes [g] and [g™!] opposites. We will denote the collection
of unions of opposite pairs of conjugacy classes by P. Opposites are related by the
action of the central involution 1}12 of Out4(F2):

Proposition 2.2 If [g] is a primitive conjugacy class then its opposite [g 1] is 1/_/12([g]) .

Proof From the lemma above we have [g] = ¥/ ([a]) for some ¥ € Outy (F>). Since
wlz(a) =a~! we have 1/712([64]) =[a and [g =y ox/_flz([a]). Since 1;12 is central
in Out4 (F2) we have [¢7'] = y7 o ¥ ([a]) = Y7 ([g]). O
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Since () is the stabilizer of [a] and 1;12 acts as above, there is a bijective correspon-
dence from the coset space C = Outy (F»)/ (2, 1;12) to P given by

3) C—P. VY. ¥i) = v(a) Uy (a').

The group SL(2,7)/ & I has a well-known action on the upper half-plane by Mobius
transformations with —7 acting trivially. Here the matrix

(mll mia mi1z+mip

) actsby z
ma1 ma2

ma1z +may

This is useful for organizing the pairs of primitive conjugacy classes. Observe that
(D(2). D(Y1)) is the stabilizer in SL(2, Z) of the point §. The SL(2, Z) orbit of §
is @ =QU {%} Thus, we have:

Lemma 2.3 There are bijections C: @ — C and P: @ — P compatible with (3) such
that for any g € @ we have:

e The class C(g) is the collection of € Outy.(F») such that D(y)(§) = g.

e The union of the pair of conjugacy classes P(g) consists of all primitive elements
g € F, such that ab(g) = +(p,q) (where p,q € Z are taken to be relatively
prime).

The Farey triangulation F is an SL(2, Z)—invariant triangulation of the upper half-
plane with vertices in @ We depict F in Figure 1. The group PSL(2,Z) is the
orientation-preserving symmetry group of F. It is useful to think of the three spaces
@, C and P as in bijective correspondence to the vertices in this triangulation.

2.2 Symmetries and images of primitive elements

Having a power of a primitive element in a normal subgroup N guarantees that some
corresponding elements of Out(F,) stabilize N. It suffices to consider the case when
a power of a lies in N.

Lemma 2.4 Suppose N C F, is a normal subgroup containing ak for some k > 1.
Then ¢§ (N) = N. Furthermore, the induced action of W§ on F»/N given by

hN — X ()N

is trivial.
Proof Assume a¥ € N and N C F> is normal. Observe that the action of 1//£C satisfies

Vi@ =a, yEia@Y=a"', yEb)=d*b and yEOH=b"la7F.
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Figure 1: A portion of the Farey triangulation F of the hyperbolic plane with

some rational points at infinity marked. The top endpoint of the vertical edges

1
3

is

Let & € F> and consider /& as a word in {a, a” L. b, b_l}. From the above description
of 1//£C we see that w;‘ (h) is formed from & by inserting copies of ¥ and a=¥ into
the word representing /. Let n be the number of such insertions. Then we can write

h=vy%h)gig2-gn,

where each g; is a conjugate of either a=* or a¥ selected to remove an inserted copy

of a* or a=*. Since ak € N and N is normal, each g; € N. It follows that & € N if
and only if 1/f£c (h) € N. Thus W§ (N) = N. Finally we see that for any hN € F»/N,

YE(N) = y5 (N =hg,' - &5 e ' N = hN. o
We get the following if a power of a primitive element lies in a normal subgroup of F5:

Corollary 2.5 Let g €Q,let ge P(g) and let : F» — F, be an automorphism
such that the associated outer automorphism v lies in C(g). Then, for any k > 2 and
for any normal subgroup N’ C F, containing g*, y o % oy "\ (N') = N’ and the
induced action of ¥ o W§ oy ™! on F/N’ is trivial.

Proof From Lemma 2.3, we note that ¥ ([a]U[a~']) = [g]U[g"!]. Set N =y~ (N).
By normality, we see that a* € N. Thus Lemma 2.4 tells us that W§ (N)=N and wi‘
acts trivially on F»/N. It follows that V¥ o 1/f§ oy~ ! stabilizes N and acts trivially
on F,/N'. O
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Recall that P, C F» is the subgroup generated by k™ powers of primitive elements
of F,. This subgroup is clearly characteristic, and thus there is a well-defined homo-
morphism

€: Aut(F2) > Aut(F2/ Pr),  €(9)(gPk) = ¢(g) Pr.

Inner automorphism of F, are sent by € to inner automorphisms of F,/ Py, thus €
induces a well-defined map between outer automorphism groups,

& Out(F,) — Out(F»/Py).

Let O C Outy(F3) denote the subgroup normally generated by 1%‘ The lemma
above guarantees:

Corollary 2.6 The subgroup Oy is contained in ker €.

Proof We must show that for each ¥ € Out, (F,) we have ¥ o Jé‘ oy~ ekere.
Since ker € is a normal subgroup, we may take 1 = 1, and that 1%‘ € ker € follows
from Lemma 2.4. O

In order to better understand O we make use of D: Outy (F,) — SL(2,Z) and
the Mobius action on the Farey triangulation F. Note that SL(2, Z) is the group of
orientation-preserving symmetries of & which permute the triangles. Thus, covering
space theory identifies each subgroup I' C SL(2,Z) bijectively with the (possibly
orbifold) quotient F/I" which is tiled by triangles (possibly including some quotients
of triangles by their order 3 rotation groups). These quotients are intermediate between
F and the modular surface F/SL(2, Z) (which has a vertex added at the cusp since F
includes vertices). The valence of a vertex in a triangulation is the number of vertices
of triangles that are identified to make that point. The valence of a vertex may be a
positive integer or infinity.

The following gives a concrete understanding of the quotient 7 = /DOy
Proposition 2.7 The orbifold Fy, is the unique simply connected triangulated surface

such that all vertices have valence k. In particular, the combinatorial type of the
triangulated surface Fj can be described as follows:

e If k €{2,3,4,5}, then Fi is a sphere. Specifically, F, is a triangle doubled
across its boundary, F3 is a tetrahedron, F4 is an octahedron, and F5 is an
icosahedron.
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e The quotient Fg is the plane tiled by equilateral triangles.

e For k > 7, the quotient Fy, is the hyperbolic plane tiled by equilateral triangles
each of whose angles measures 27”

Proof First observe that D, acts as the Mobius transformation z — z + 1, and thus
sends each triangle of F incident to oo to the adjacent triangle in the counterclockwise
direction about co. Thus, if ' C SL(2, Z) contains Dlﬂé‘, the corresponding quotient
F/T' has valence dividing k at the vertex in the image of oo under the covering
F—F/T.

Now suppose I" contains all of DOy . Since SL(2, Z) acts transitively on @ and DOy
is normal in SL(2, Z), it follows that each vertex of F/T" has valence dividing k.

Now consider moving from orbifolds to groups. Let S be a connected combinatorial
orbifold built by identifying in pairs the edges of some collection of triangles and
quotients of a triangle modulo the order 3 rotation. Such an S is covered by the
Farey triangulation, and, fixing such a covering map n: F — S, covering space theory
associates the deck group

I'={M eSL(2,Z):moM = m}.
We observe that if each vertex of S has valence dividing k, then DOy C T.

We conclude from the previous paragraph that the quotients of F described in the
proposition are of the form F/T" for some I' containing DOy. To see I' = DOy,
recall from covering space theory that the surface F; (branched) covers any F/I" with
DOy, C T'. But, since the surfaces described in the proposition are simply connected
and have all vertices of valence precisely k, they exhibit no (nontrivial) branched
covers such that all vertices of the cover have valence dividing k. a

The same mechanism can be used to shorten the list of group elements needed to
normally generate Py .

Theorem 2.8 Let k > 2. Let {pi/qi : i € A} be a subset of @ containing one
representative of each preimage of a vertex of Fj under the covering map F — Fy.
For each i € A choose a primitive element g; € P(p;/qi) and an outer automorphism
vi €C(pi/qi). If

{gl_fiolzécolpi_l (i €A}

generates Oy, then Py is normally generated by {gfc 1l €AY
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Proof Fix the quantities above and assume all hypotheses are satisfied. Let QO be the
subgroup of F» normally generated by {gllc ;i € A}. Clearly Q C Py since each g;
is primitive. We will show P C Q.

As a consequence of Corollary 2.5 we know that 1/; o 1}5 o 1;1._ ! stabilizes Q for all
i € A. Then from the hypotheses we know each element of Oy, stabilizes Q.

To show Py C Q, it suffices to show that if g € F, is primitive then g¥ € 0. Fix g.
Then there is a £ € Q such that P(g) = [g] U [g™']. From our hypothesis on
{pi/qi} we know there is an i € A and a ¥ € O such that DV (p; /qi) = g. Then
v ([gi1U[g;']) = [g]U[g']. By definition of Q we know that the conjugacy classes
[glk] and [gl._k] are contained in Q. Since Q is O —invariant and g¥ € J([g{‘]u[gi_k])
we have gk € O, as desired. a

The following describes a combinatorial way to find the generators:

Corollary 2.9 Fix k > 2. Let T C F be a tree in the 1—skeleton of Fj, whose vertex
set coincides with the collection of all vertices of the triangulation. Let T bealiftof T
to F and let {p;/q; :i € A} be the vertices of T. Then Py = ((g,k))ieA, where each
gi € P(pi/qi) is chosen arbitrarily as in Theorem 2.8.

Proof We must check the hypotheses of Theorem 2.8. Define {p;/q;} and {g;} as
in the statement of the corollary and {1/;} as in Theorem 2.8. Since the vertices of T
include all vertices of Fj, we see that {p; /q;} contains one preimage of each vertex
of F. Let Q = (Vi oYk o /1) C Of. We need to show Q = O.

Associated to the chain of subgroups {1} C Q C O is the sequence of spaces related
by covering maps branched at the vertices of the triangulations,

F—F/DQ T F.

Proving that Q = Oy, is equivalent to proving that 7 is the trivial covering. Note
that triviality will follow from Proposition 2.7 if all vertices of F/DQ have valence
dividing k, so this is what we will prove.

Let To C F/DQ denote the image of T under the covering map F — F/DQ . Then
Tp is a tree because w(Tg) = T. Observe that each vertex of T is incident to k
triangles because such a vertex is the image of some p;/q; € T and the action of
D(Y; o 1%‘ o %—1) on F rotates by k triangles about p;/q;. Thus it suffices to prove
that every vertex of F/DQ is a vertex of the tree T . If this were not the case then
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there would be an edge of a triangle of F/DQ with one vertex in T and the other
not in Tp. We will show this doesn’t happen.

A key observation is the following. Say that the link of a vertex of a triangulated
surface is the union of the vertex with the interiors of incident edges and triangles.
The link lifting observation is the observation that 7 restricted to the link of a vertex
vp € To C F/DQ is abijection to the link of the image vertex v =n(vg) € T C Fi
since both vp and v are incident to k triangles.

Now we return to the proof. Suppose eg = vgwg is an oriented edge of a triangle of
F/DQ initiating at a vertex v of Tp. We will show that the terminating vertex wo
also is a vertex of Tp. Let e = 9w be m(ep). We break into two cases.

First, it could be that e is an edge of T'. Since vg € Tg, by the link lifting observation
we know that e has a unique lift to Fo initiating at vy . Since Ty is alift of 7" and e
is an edge of T, this means that ep must be an edge of Tp. Thus, wg is also a vertex
of Tg, as desired.

Now suppose that e is not an edge of 7. Since T is a spanning tree, both v and w are
vertices of T. As T is a tree, there is a unique oriented path p in 7 joining v to w.
Let v = pg, p1,-.., Pn = w be the sequence of vertices passed through by p. We will
inductively prove p has a unique lift to 7/ DQ starting at vg . This involves checking
that for each j € {1,...,n} there is a unique lift of the path po,..., p; denoted
Do. ..., pj suchthat pp =vo and n(ml) = pipit1 fori €{0,...,j—1}. This
is true for j =1 because vg € T using the unique lifting provided by the observation
above. Now we will argue the inductive step. Suppose the lift is unique up through
index j <n. Then, since p is apathin T and n(Tp) = T, we must have that all
vertices of the lift so far lie in Tjp. From the link lifting observation we know that
there is a unique lift of the next edge p; p;+1, completing the inductive step.

Now observe that since Fj is a triangulation of a simply connected surface, p U e
bounds a topological disk A. Since vg € Tg, by the link lifting observation again
there is a unique lift Aof Ato F /DQ such that v lifts to vg. From the previous
paragraph, the path p in the boundary of A lifts to a path p in the boundary of A
and contained in the tree T . Again by the assumption, the edge e in the boundary
of A lifts to eg in the boundary of A. Thus, ep joins the initial point vg of p to
the terminal point wg of p. Since p is contained in T, we see that wg € T, as
desired. a
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Conjecture 1 The normal generators for Py provided by Corollary 2.9 are a minimal
set of normal generators. In particular, for k > 6, the group F,/Pj is not finitely
presented.

2.3 Normal generators for P, with k <5

We describe normal generators for P when k <5 because these are the cases where
Corollary 2.9 yields a finite set of normal generators. These cases are finite because
Proposition 2.7 tells us that Fj is a triangulated sphere.

The case k =2

The triangulated sphere JF, is the double of a triangle across its boundary. In Figure 2
we depict a tree T in an unfolding of 7. We have lifted T to a tree T in the Farey
triangulation and labeled the vertices of T by their lifts as elements of @ Following
Theorem 2.8 and Corollary 2.9, we have converted these elements of @ to normal
generators of Py.

Proposition 2.10 The quotient F,/ P, is isomorphic to the Klein four-group.

Proof Since all elements of the Klein four-group K = (a,b | a®,b?, [a,b]) have
order 2, K is a quotient of F,/P,. Therefore, it suffices to prove the defining relations
hold in F,/P,. Clearly a®> = b> =1 in F,/P, since a and b are primitive in F,.
Thus, a =a~' and b = b~ !. It follows that [a, b] = (ab)? = 1 since ab is primitive
in F5. O

The case k =3

The triangulated sphere F3 is a tetrahedron. We depict a tree T in an unfolded copy
of the tetrahedron in Figure 3. We have lifted 7 to a tree T in the Farey triangulation
and labeled the vertices of T by their lifts as elements of @ Following Theorem 2.8
and Corollary 2.9, we have converted these elements of @ to normal generators of P3.

Proposition 2.11 The quotient F,/P3 is isomorphic to H(Z/3Z).

Proof In H(Z/3Z), all elements have order 3. Thus, H(Z/37Z) is a quotient
of F>/P3 and so it suffices to prove that relations defining H(Z/3Z) are satisfied
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vertex generator of P,

2

o0 a
0 b2
1 (ab)?

0

Figure 2: The triangulated sphere F, and the normal generators of P, corre-
sponding to the vertices.

in F»/P3. We work with the presentation
H(Z)= H(Z/3Z) = {(a,b|a* b> [a.b])*,[a.a,b]]. [b.[a,b]]).
Since a and b are primitive, we have ad=b3=1inF, / P3. Also we have
[a.[a.b]]=a (b Ya Yba)a(a™ b ab)
=a b Ya hab™lab
= (@ 'b™H2b%ab™tab.
Since a~'h~! is primitive in FZ, we have (¢~'»~!)3 =1 and thus, continuing,

[a,[a,b]] = bab%ab™'ab. = bab 'ab™'ab. = b(ab™ " )?ba"'ab = b*a"'ab = 1.

Further, since P3 is characteristic, we get [b, [a, b]] = 1. It follows that [a, b] is central,
thus [a,b]3 = [a3,b] = 1 via commutator identities, completing the proof. O

The case k =4

The triangulated sphere F4 is an octahedron. We depict a tree T in an unfolded copy
of the octahedron in Figure 4. We have lifted T to a tree T in the Farey triangulation

S vertex generator of P3
-1 00 a?
! 0 b3
1 (ab)?
0 -1 (ab™')?

Figure 3: The triangulated sphere 3 and normal generators of Ps3.
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vertex generator of Py
00 a*
0 b*
1 (ab)*
-1 (ab~H*
2 (a®b)*
% (ab?)*

2

Figure 4: The triangulated sphere F,; and normal generators of Py.

and labeled the vertices of 7" by their lifts as elements of @ Following Theorem 2.8
and Corollary 2.9, we have converted these elements of @ to normal generators of Py.

The case k =5

The triangulated sphere F5 is an icosahedron. We depict a tree T in an unfolded copy
of the icosahedron in Figure 5. We have lifted T to a tree T in the Farey triangulation
and labeled the vertices of T by their lifts as elements of @ Following Theorem 2.8
and Corollary 2.9, we have converted these elements of @ to normal generators of Ps.
These generators are listed in Figure 5.

vertex generator of Ps

) a’

0 b3

1 (ab)®
-1 (ab™1)®

2 (a?b)?

% (ab?)?
) (a2b—1)5
-1 (ab™2)?

% (a%bab)?
—% (ab~lab™?)°
s (a®ba?b)?
-2 (ab™2ab™3)>

Figure 5: The triangulated sphere F5 and normal generators of Ps.
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3 Characteristic representations

3.1 Definition and a criterion

We say that a homomorphism p: F» — GL(n, C) is a characteristic representation if
for any ¢ € Aut(F>) there is a W € Aut(GL(#n, C)) such that

@) Wopoy~l(g)=p(g) forallge F,.
The following should be clear:

Proposition 3.1 The kernel of a characteristic representation is a characteristic sub-
group of F,.

Recall from Section 2.1 that Aut(F,) = Aut4 (F2) U Aut_(F3). Our automorphisms of
GL(n, C) will have one of two forms corresponding to this partition. If M € GL(n, C)
then we define

(5) W, Wy eAut(GL(n,C)) by Wy (X)=MXM™', Uy (X)=MXM™!
We call the map Wys a conjugate inner automorphism.

We say p: F» — GL(n, C) is an oriented characteristic representation if the following
two statements hold:

(+) For each ¥ € Auty(F>) there is an M € GL(n, C) such that (4) holds with

U =Uy.
(=) For each y € Aut_(F») there is an M € GL(n, C) such that (4) holds with
U="Uy.

We will be working exclusively with oriented characteristic representations.

Based on properties of the tensor product, it can be observed:
Proposition 3.2 If p;: F» — GL(n1,C) and py: F» — GL(n3, C) are oriented char-
acteristic representations, then so is their tensor product p; ® pa2: Fo» — GL(n1n,,C)

and so is the complex-conjugate representation pj .

We will now give an elementary method to prove that a homomorphism p is an
oriented characteristic representation. We single out elements V1, ¥, € Aut4(F>) and
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W_ € Aut_(F>) whose images in Out(F,) generate Out(F>):
Y@ =b,  Yi(b)y=a"",

(6) V2(a)=a,  Y2(b) =ab,
y—(@=a"', y_(b)=h.

We have the following criterion for checking if a representation is oriented characteristic:

Proposition 3.3 Let p: F» — GL(n, C) be a homomorphism. Then p is an oriented
characteristic representation if and only if the following statements are satisfied:

(1) There is an M; € GL(n,C) such that M1 = p(a)M1p(b) and Mip(a) =

p(b)M.

(2) There is an M, € GL(n,C) such that Myp(a) = p(a)M, and M,p(b) =
olab)M,.

(-) There is an M_ € GL(n,C) such that M_ = p(a)M_p(a) and M_p(b) =
p(bYM_.

We remark that the equations in the respective statements above are simple algebraic
manipulations of (4) in the special cases where (¥, ¥) is taken to be one the pairs
W1, Ypm,), (V2. Wa,) or (Y, Wy ) and g is restricted to a pair of generators of F».
(For (1) and () we use generators @ and b, while in (2) we use a and ab.) Thus the
“only if”” direction is clear.

Proof of “if”’ direction Assume statements (1), (2) and (-) of the proposition hold. We
must prove statements (+) and (-) of the definition of oriented characteristic definition.
Let

. Ay ={(M,¥) €GL(n,C) x Auty (F2) : (4) holds with ¥ = Wy},

A_={(M,V¥) eGL(n,C) x Aut_(F,) : (4) holds with ¥ = W, }.

Observe that A = A4 LI A_ is a group, though the group operation needs adjustment.
If (M, ¢') € Ay with s € {+, —}, we define

(MM/’WOWI)GAS lf(M,W)€A+,

(MM’ yoy')ye Ay if (M, y)eA_.

(This choice is made to be compatible with composition of inner automorphisms and

(M. y)- (M, y') =

conjugate inner automorphisms.) We must prove that the projection of A to Aut(F?2)
is surjective.
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First consider the inner automorphisms of F,, which have the form v, (g) =hgh™! for
some & € F>. By manipulating (4) it can be observed that (p(h), ¥) € A+ for all A.

Now consider 17 and ¥, . Observe that (4) holds for all g € F, if and only if it holds
for a set of generators of F,. As indicated above this proof, by manipulating (4) in each
case, it follows that (My, V1), (M2, ¥>) € A4. The elements ¥; and v, together
with the inner automorphisms generate Auty (F3), so Auty (F>) is in the image of the
projection of A .

Similarly, consider —. Again by considering (4), we see that (M_,y¥_) € A_. The
collection {¥_} Ll Auty (F>) generates Aut(F>), so it must be that Aut(F?>) is in the
image of the projection of A, as desired. O

Remark 3.4 (orientation-reversing elements) For the main goals of the paper, it
would suffice to work with Aut4 (F,) rather than all of Aut(F>), since Auty (F>)
already acts transitively on primitive elements of F,, and one could define a notion of
oriented characteristic representation omitting (—) from the definition. However, all the
representations we found have this extra symmetry, and our algorithm for “improvement”
of representations described in Section 3.3 respects this additional symmetry. So, we
have opted to consider Aut_(F>) throughout this section for aesthetic reasons at the
cost of some minor increase in the complexity of some of our arguments.

3.2 Some characteristic representations with finite image

We will now give some finite oriented characteristic representations.
We define py: F> — GL(3,C) by

®) p2(a) = diag(—1,—1,1) and py(b) = diag(l,—1,—1).

Proposition 3.5 The image p,(F>) is isomorphic to the Klein four-group, C, x C;.
The representation p; is oriented characteristic.

Proof The image p(F>) can easily be seen to consist of four elements: ps(a), p2(b),
the identity and p(ab) = diag(—1,1,—1). By inspection, the image is isomorphic
to the Klein four-group. By an elementary calculation it can be observed that the
statements of Proposition 3.3 are satisfied for the choices of

001 010
Mi={010 and M,=|100
100 001
and M_ =1. a
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For odd numbers k > 3 define pg: F» — GL(k, C) by

0100 0
0010 0
0001 0 ---
©) pk(a)=diag(1,a),a)2,...,a)k_1) and pr(B)=1] . . . . ,
0000 1
1000 --- 0

where w = ¢27/% Here py(b) is a permutation matrix of order k.

Proposition 3.6 The image py (F») is isomorphic to the Heisenberg group H(Z/ k7).
The representation is oriented characteristic: It satisfies the hypotheses of Proposition 3.3
with the matrix M, given by

(M1)i,; =@ DU fori je{l,... k}

with M, given by the diagonal matrix with entries (M2);; = w~C=DE=2)/2 404 with
M_=1.

Proof To see the image is the Heisenberg group, recall that
H(Z/KZ) = (a,b | a*, ¥, [a,b], [a, [a,b]]. [b. [a, B])).

First we will check that p; factors through H(Z/kZ). It should be clear that ak
and b* lie in ker pg . By computation we see pg ([a, b]) = w~'I. Thus [a, b] is central
in the image and [a, b]¥ € ker pi. This shows that the image pg (F») is isomorphic to
a quotient of H(Z/kZ). The image must be isomorphic to H(Z/kZ) because the
homomorphism restricts to an isomorphism of the center of H(Z/kZ).

The statements of Proposition 3.3 for the matrices M;, M> and M_ listed can be
verified by a direct computation (calculation carried out by hand, and checked for
various values of k with SageMath [19]). a

Observe that the images of p; are matrices with entries in Z[w]. Later we will need
the following observation:

Proposition 3.7 Fix an odd k > 3. Let My ; denote the additive group of k x k
matrices with entries in Z[w]. The subgroup of My ;. generated by {pi(g): g € F2}
has finite index.

Proof Let E; ; denote the matrix with a 1 in the entry in row i and column j but
with all other entries equal to zero. It suffices to show that k@™ E; ; is in the generated
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subgroup for all i, j € {1,...,k} and all n € {0, ...,k — 1}. By direct computation
we observe b1
kEi1 = Zpk(ae).
{=0

Utilizing the action of pg (b) as a permutation matrix we can then see
Eij=pe(®' ™) Epri-pe(d’™h).

Thus, kE; ; is in this generated subgroup as well. Finally, to get the powers of @

observe that px ([b, a]) = wl. O

Corollary 3.8 For odd k > 3, the representation py, is irreducible.

Proof Any subspace of Ck which is invariant under Pr must be mapped into itself
by all elements of the subgroup of My ; generated by {px(g) : g € F2}. The previous
proposition implies that there is no such nonzero proper subspace. |

3.3 Improving characteristic representations

We will now explain a process which can take an oriented characteristic representation
p: F» — GL(n, C) and produce a new oriented characteristic representation p: Fp, —
GL(77, C) where 7 > n and hopefully the ker g is strictly smaller than ker p.

Fix p for this subsection. We will consider deformations of p into the affine group
Aff(n) = C" xGL(n, C), where the product in Aff(n) is given by
10) (v, M)-(w,N)=(v+Mw,MN).

The group GL(n, C) is isomorphic to a subgroup Aff(n) via the map M — (0, M), and
this explains how to multiply elements of GL(n, C) and Aff(n). Let 71: Aff(n) — C”"
and mp: Aff(n) — GL(n,C) be the natural projections (noting that m; is not a
homomorphism). We will say that an affable representation p: Fp — Aff(n) is a
homomorphism for which 75 o p = p. We use A to denote the collection of all affable
representations. Observe:

Proposition 3.9 The collection A is a vector space over C when endowed with the
operations of addition and scalar multiplication defined by

(01 + 02)(g) = (w10 p1(g) + 1 0p2(2). p(g)),  (Ap1)(g) = (A1 0p1(g). p(g))

for all p1,p2 € A, all A € C and all g € F,. In particular, for any g the map
evalg: A — C”" defined by evalg (p) = 71 © p(g) is linear.
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Discussion of proof The operations are clearly linear in nature, but it must be checked
that p; + p» and Ap; define group homomorphisms (assuming p; and p, are group
homomorphisms). We leave this elementary check to the reader. O
Proposition 3.10 Recall a and b denote the generators of F,. The map

eval, x evaly: A — C" xC"

is a vector space isomorphism.

Proof It should be clear that this defines a homomorphism between vector spaces by
definition of the operations in Proposition 3.9. It is an isomorphism because the images
of the generators determine the homomorphism; the inverse map sends (a, ) to the
homomorphism determined by the following images of the generators of F5:

an ar (a,p(a)) and b (b, p(D)). a

Let conj: C" x A — A be the action defined by postconjugation by C”* C Aff(n),

(12) conj, (P)(g) = (v.1)-p(g) - (—v.I) forallg € Fy,

where I denotes the identity element of GL(n, C). When A is viewed as isomorphic
to C2", we see that each conj, acts by translation on A (ie conj,(p) — p does not
depend on p):

Proposition 3.11 Foreach v € C", each p € A and each g € F,, we have

(13) (conj, (B) = P)(g) = ((I — p(g))v. p(g))-
We call conj, (p) — p the translation vector of conj, .

Proof This follows from the computation in Aff(#n),
conj, (p)(g) = (v, I)-(w10p(g). p(8))-(—v. I) = (v+m10p(g) +p()(—v). p(g)). O

Let ~ denote the equivalence relation on .A where

(14) p1~ P2 if there is a v € C" satisfying conj, (p1) = pa.

Corollary 3.12 The quotient A/~ is a complex vector space with operations induced
by those of A.
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Proof It needs to be observed that the operations of addition and scalar multiplication
induce well-defined actions on A/~. This follows from linearity of the translation
vector of (13) in v € C”. |

Recall that p is a fixed homomorphism. Recall the definition of A = A4 U A_
in (7) from the proof of Proposition 3.3 and recall that p is an oriented characteristic
representation if and only if the projection of A = A4 LU A_ to Aut(F3) is surjective.

We view GL(7n, C) as a subgroup of Aff(n). Conjugation by an element of GL(#n, C)
induces an automorphism of Aff(n).

We use GL(.A) to denote the group of linear automorphisms of A and GL(A) to denote
the collection of conjugate-linear automorphisms. Together, GL(.A) U GL(.A) forms a
group. We have the following:
Lemma 3.13 There is a homomorphism N: A — GL(A) U GL(A) such that:
(+) If (M, y)e Ay and p € A, then N,y € GL(A) and
Nat,y (D)) =M -(poy~"(8))-M™" forall g € F.
(=) If (M,¢) e A_ and p € A, then Ny y € GL(A) and
Numy (P)(g) =M - (poy~1(g))-M™" forall g € Fa.

Each N,y sends ~—equivalence classes to ~—equivalence classes and so induces an
automorphism Ny; , € GL(A/~)UGL(A/~). Furthermore, the induced map

N~: A — GL(A/~)UGL(A/~) givenby (M,y)) Ny,
is a homomorphism.
Proof Since M € GL(n,C) and ¥ € Aut(F3), it should be clear that the defini-

tions provided for Nas,y (p) give a homomorphism F, — Aff(n). Writing p(g) =
(1 0 p(g), p(g)) (using affability of p) we see that when (M, ) € A+ we have

(15) Nut,y(0)(g) = (M -mr10poy (). M- (poy ™' (g))- M)
=(M-m10p0y ' (g). p(g))

with the last step given by definition of A4 in (7). To see linearity observe that
mpopoyr~1(g) varies linearly in p by Proposition 3.9 and we are simply postcomposing
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with the linear action of M € GL(n, C). Similarly, if (M, ) € A_,

(16) Ny (P)(g) = (M -my0poy—1(g), M -poy~—l(g)- M)
=(M - -mopoy=1(g).p(g)).

Observe that Nps  is conjugate-linear in this case.

Now we must check that the linear action respects ~—equivalence classes. Suppose
p1 ~ p2. By Proposition 3.11, this is true if and only if there is a v € C" such that

(17) (P1—P2)(g) = (I —p(g))v. p(g)) forall g€ F.

Fix such a v and let p, € A be defined as in the right side of (17). Then, by linearity
or conjugate-linearity of Ny y , we have

Nty (P1) — Npt,y (02) = Nag,y (Pw)-
By (15), if (M,{) € A4, we have

Nat,y (Bo)(g) = (M - (I —po ™1 (g)v. p(g)) = (I — p(g)) M. p(g)).

where we are using the identity M -(poy~1(g))-M ~! = p(g) again in the second step.
Then Proposition 3.11 tells us that Npz v (01) ~ Nas,y (p2). Similarly, if (M, ) e A_,
we have

Npty (P)(8) = (M - (I —poy=1(g)v, p(g)) = (I — p(g)) M7, p(g)).

and again Proposition 3.11 tells us that Naz,y (01) ~ Ny, (02). O

It will be useful later to note that inner automorphisms act trivially on A/~:

Proposition 3.14 Let Y, € Aut(F,) denote the inner automorphism g — hgh™!.
Then, for all z € C ~ {0}, we have

(zp(h). ¥n) € Ay and N3y, (B) =2[] forall [5] € A/~.
In particular, N;;V(h), v, acts trivially on A/~.
Proof Fix z € C ~ {0} and fix h € F». Recall that (zp(h), ¥,) € A4 if and only if

(zp(h)) - (po ¥y, ' (8)) - (zp(h)) ™' = p(g) forall g€G.

The z and z~! cancel and the left side simplifies as

(zp(h)) - (po ¥, 1(£)) - (zp(h)) " = p(h)p(h~ gh)p(h) ™" = p(g).
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Now fix any p € A and observe po wh_l(g) =p(h~Hp(g)p(h). Choose v, w € C" sat-
isfying p(g) = (v, p(g)) and p(h) = (w, p(h)). Then () ~" = (—p(W)~'w, p(1)~")
and thus
poyy, (&) = (=p(h) " 'w, p(h)™")- (v, p(g)) - (w, p(h))
= (o)~ (p(&) = Dw + p() v, p(h ™" gh)).
By definition,

Nzo)n (0)(&) = (z0(h)) - (B o v () - (zp(h) .

By combining with the above we see

[Nzo(h), v, (P) = 2P1(g) = ((I = p(8))(—zw). p(g)).

and so by Proposition 3.11 N, v, () ~ zp. o

Fix an integer k > 2. Recall Py C F, denotes the subgroup generated by the k"
powers of primitive elements in F». Assume Pj C ker p. The collection of k —affable
representations is

(18) A ={peA: Py Ckerp}.

As a consequence of Proposition 3.9, Ay is a linear subspace of A: it is the intersection
of the kernels of the linear maps eval « taken over all primitive p € F.

We have:

Proposition 3.15 (1) Each ~—equivalence class is either contained in or disjoint
from Ay .

(2) Foreach (M,v) € A, A is invariant under Ny y; .

Proof Since P C F> is characteristic, if f: A — A is such that ker f(p) differs from
ker p by an automorphism of F, for every affable p, then A is invariant under f.
This holds in the cases of f given by conj, and Ny, and these cases cover the
respective cases of the proposition. |

Summarizing the results above, we see that A/~ is a linear subspace of A/~, and
Ny (Ai/~) = Ag/~ forall (M, ) € A.

Choose any subspace Z C Ay /~ which is invariant under the action of N A},w for
(M, ) € A. Ideally we would take Z = Ay /~ to get the largest invariant space
possible. (Later in the proof of Theorem 3.18 we do not prove that our choice of Z is
all of Az /~.)
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Let m = dimZ. Choose pi, ..., pm € A such that the images in Ay /~ form a basis
for Z. In block matrix form we define

(19) 5 F» —GL(n +m,C), gl—)(p(og) Qﬁg))eGL(n +m,C),
where
0(g) =(miopi(g) mopa(g) ... m1opm(g)).

Here each 71 o p;(g) is interpreted as the i™ column vector of Q(g). Then:

Theorem 3.16 Assume p: F> — GL(n, C) is an oriented characteristic representation
with Py C ker p. Define Z, m, p1, ..., pm and p as above. Then p is also an oriented
characteristic representation with Py C kerp. Furthermore, there is a short exact
sequence of the form

1 — p(ker p) = F>/kerp — F»/kerp — 1,
and p(ker p) is a torsion-free abelian group.
Proof First we will show that p is a group homomorphism. Considering the block
form of the image, observe that it suffices to understand the top-right block (since

we are given that p is a homomorphism). Checking that p(g1g2) = p(g1)p(g2) then
reduces to checking that

0(g182) = 0(g1) + p(g1) 0 (g2)-
Checking this for column i amounts to checking that
1 0pi(g182) =10 pi(g1) + p(g1) - 710 pi(g2),

which is true because p; is a homomorphism to Aff(n), which has product rule as
in (10).

From (19) and by definition of 4, we see that [)'(gk) = [ for each primitive g € F3,
guaranteeing that P, C ker p.

Exactness of the provided sequence should be clear. The group p(ker p) is torsion-free
and abelian because for each g € ker p we have

o=y %)

In particular, p(ker p) is an additive subgroup of C™”.
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It remains to show that p is an oriented characteristic representation. Choose any
¥ € Aut(Fy). Let s € {+, —} be such that i € Autg(F3). Define
po: F» = GL(n+m,C)

by

50(0) poy~l(g) ifs=+,

08)=y=——— .

g oy (g ifs=—.

We need to show that pg is conjugate by an element of GL(m +n,C) to p. We will

demonstrate this by applying a sequence of conjugations.

First, since p is an oriented characteristic representation, there is a matrix M € GL(n, R)
such that (M, ) € As. This guarantees that either

20)  M-[poy (@] M ' =p(g) or M-poy~l(g)-M'=p(g)

for all g € F, depending on the sign s. Define p; to be a conjugate of pog formed as

~ M 0\ - M=o

p1(g) = ( 0 1) -po(g)-( 0 1)'
Recall from Lemma 3.13 there is an Npz,y in GL(A) or GL(A) (depending on s)
describing the conjugation action on A. Let Col;(X) denote the i column of a

follows:

matrix X. By (20) and the description of Njy,y , we have

e = (75 ©1). where Coli (012 = m1 (Nt ()2

fori €{l,...,m}.

Let 7 C Ag denote the preimage of Z under the quotient map Ay — Ay /~; this is
the union of the equivalence classes in Z. Recall that Z C A/~ is N M, w—invariant.
In addition, ~—equivalence classes are permuted by Nps y; see Lemma 3.13. It
follows that 7 is N M,y —invariant. We therefore have that Npz y (p;) lies in 7 for
i €{l,...,m}. Let Iy = span{pi,...,Pm}. From our choice of p1,...,0m, the
space Iy, is a lift of Z; ie the quotient map Ay — Ay /~ restricts to an isomorphism
71, — I. Recall that the ~—equivalence classes are conj,, orbits; see (14). Thus, for
each i € {1,...,m} there is a unique vector v; such that

conjy,. o Nas,y (i) € ZL.
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We now define a homomorphism p,: F» — GL(n + m, C) conjugate to p; by

~ I VY . %
Pl(g)=(0 I)'Pl(g)'(o I)’ where V =(v1 ... o).
By definition of conj in (12) we see that

o) = (75 929). where Coli(0a() =i (coni, o Noey (1)

foralli € {l,...,m}.

Let p denote the isomorphism Z; — Z mentioned above. Since this is an isomorphism,
there is an Nz, € GL(Zz) UGL(Zz) such that po Ny = Ny v |zo p. Then, in particular,
we have

conj,. o Npgy (pi) = Np(p;) forall i € {l,...,mj}.

As a consequence we see that {conj, o Nas,y(0;) :i = 1,...,m} is a basis for 7.
Thus there is a matrix R = (R;,j) € GL(m, C) such that

m
pj = ZRi’jconjvl, o Npy(pi) forall je{l,...,m}.
i=1

Then, by linearity of the evaluation maps (see Proposition 3.9), for each g € F, we
have

m
@) m(pj(g) =Y Rijmi(conj,, o Nagy(pi)(g) forall j e{l,....m}.
i=1
Recall the left side gives the columns of Q(g), which is the top-right submatrix of p(g);
see (19). Thus, this equation expresses column j of Q(g) as a linear combination of

columns of Q5(g) with weights given by entries in the j™ column of R. Thus we
have that Q,(g)- R = Q(g) for all g. We define the conjugate p3 of p, by

~ (1 0 I 0\ _(p(g) O209)R) _ ~
ps(g)—(o R—l) p2(8) (0 R)—( 0 ) = p(g).
Since p3 = p, we have produced the desired conjugacy. O

34 Casek =6

We define pe to be the tensor product p, ® p3, where p and p3 are defined as in (8)
and (9). Then pg may be thought of as a homomorphism F, — GL(9,C). Letting
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w = e27i/ 3 we have the formulas
06(a) =diag(—l,—a),—a)z;—l,—a),—a)z;l,a),a)z),
(010[ 0 0 0f 0 0 0Y)
001 0O 0 0| 0 O O
100 0 0 O] O O O
000 0-1 O] O O O
psb)=1000| 0 0 —1 0 0 O
000|—-1 0 O] O O O
000 0 0O O] O0-1 0
000 0 0O O] O O0-1
000/ 0 0 0|-1 0 0}

Applying the improvement algorithm of Theorem 3.16 to pg can be shown by calculation
to give rise to the representation pg: F> — GL(12, C) defined as block matrices as

1 00
0 00
-1 00
0 10
pel(a) = (,06(a) 0) and pg(b) = ('O6(b) B), where B=| 0 00
0 I 0 I
0-10
0 00
0 01
0 00)

We will not present the computational proof that pg arises from pg by applying
Theorem 3.16 with 7 = Ag. However we will demonstrate that it is an oriented
characteristic representation:

Proposition 3.17 The homomorphism pg is an oriented characteristic representation.
The kernel ker pg contains Pg and is of infinite index in F,. Furthermore, there is a
short exact sequence of groups of the form

1 > 7218 — F>/ker ps — Co x Co x H(Z/3Z) — 1.

Proof To see the representation is oriented characteristic, observe that the criterion of
Proposition 3.3 is satisfied with the choices of matrices M_ = I and M; and M> as
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below:
(00 000 011 1) 0 0 —3)
00 000 01w w?| 0 0 1
00 000 01w w| O 0 1
00 011 100 0] O 0 0
00 01w w00 0| 0—2w—1 0
00 01lw?>? w00 0| 0 20+1 0
Mi=11 91 100000 o/ 1 o o]
l w w20 0 000 O0f-1 0 0
lw> ®w 00 000 O0f-1 0 0
00 000 00O O 0 o0 -3
00 000 00O O] 0—20w—1 0
\00O 00O 000 0/ -2 0 0
(000100000 0 00
00001 000O0| 0O 00
00 000w>200 0| O 0O
10000000O0| 0 00
01 000000O0| 0 00
00w>00 000O0| 0 0O
M2=10600000100]| 0 00
00000001 O0| 0 00
00 0000 00w 0 00
00000000O0O| 0—-10
00000000O0|—-1 00
00 000O0O00O0| 0 0aw?

Thus ker pg is a characteristic subgroup of F, by Proposition 3.1. Observe that
pe(a®) = I, and thus Pg C ker pg.

The top-left 9 x 9 block is isomorphic to the representation pg = p2 ® p3, where these
representations were taken from Section 3.2. Thus, the image pg(F2) is isomorphic to
Cy x Cy x H(Z/3Z), and therefore this map induces the surjective map F»/ker pg —
Cy x Cy x H(Z/3Z) in the short exact sequence. The kernel of this map is isomorphic
to the image pg(ker pg). Thus we get our exact sequence as described but with 78
replaced by pg(ker pg). The group pg(ker pg) is an abelian group because matrices in
pe(ker pg) have a 2 x 2 block form with copies of the identity matrix along the diagonal
and a zero matrix in the lower-left block. In this subgroup, multiplication is the same as
addition in the top-right block, and thus pe(ker pg) is naturally a subgroup of Z[w]?’
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since pg takes values in GL(12, Z[w]). This shows that pg(ker pg) is a finite-rank free
abelian group. To figure out this rank, we observe using [18] that C, x Co x H(Z /37Z)
can be written as a quotient of the rank 2 free group (a, b) by

ker pg = ((a®,b°, [a,b], [a, [a, b]1, b, [a, B]]).
We already know that a®, h% € ker pg and can check that [a, b]? € ker pg. Thus the

abelian image pg(ker pg) is generated by elements of the form

(22) Pe(gla.la.bllg™") and Pe(g[b.[a,bllg™")

with g € F>. Note that if pg(g1) = ps(g2), then glgz_1 € ker pe, and since pg(ker pg)
is abelian, we have

Pe(g2la. la.bllg>") = Pe(g185 ) Pe(g2la. [a. bllg> e (g185 ") "
= pe(g1la. [a.bllgT ).

Similarly, for such g; and g5, we have

Po(g1[b.la,bllgr ") = Po(g2lb, la,bllgz ).

Since pg(F2) = Co xCo x H(Z/37), to generate pg(ker pg) it suffices to take elements
from (22) with one g taken from each preimage pgl(M ), where M varies over
elements of pg(F3). Since pg(Fp) == C, x Co x H(Z/37Z), this amounts to a list of
108 pairs of generators. This reduces the computation of the rank of pg(ker pg) to
a finite computation which can be done on the computer. Using SageMath [19], we
computed rank pg (ker pg) = 18, so pg(ker pg) = Z'8. O

35 Odd k=5

Let k > 5 be odd and define pg: F» — GL(k, C) as in (9). We define w = ¢27i/k

We will define an extension pg: Fp — GL(k + %(k —3), (C), which we found by
applying the method of Theorem 3.16. (In the next proof, we will show that py arises
from pg by this method.) Let B denote the k x %(k —3) matrix whose column vectors
are given by

(23) bj =ej41—eg_; forintegers j with 1 <j <Z(k—3),
where e; denotes the standard basis vector with a 1 in position i. We define py in
block form by

~ v (pr(a) O ~ o _ (pr(b) B
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Theorem 3.18 For each odd k > 5 the homomorphism py, is an oriented charac-
teristic representation. The kernel ker py contains P} and is of infinite index in F5.
Furthermore, there is a short exact sequence of groups of the form

1 —> 2% — F,/kerpj — H(Z/kZ) — 1,

where d =k - 3(k —3)-[Q(w) : Q.

Proof Fix an odd k > 5. To simplify notation, we will use p to denote p; and use
p to denote py as defined in (24). In this proof, we will show that p is derivable
from p as described by Theorem 3.16. The theorem then implies that p is an oriented
characteristic representation and that P, C ker p.

Verifying that the theorem applies requires working through Section 3.3. We will begin
by setting up notation and applying some results from Section 3.3 to our setting. We
will then define a subspace Z; of the space A of affable representations. We will
check that 7y is contained in A; and that its quotient in A/~ is N M. w—invariant.
Then we will observe that p as defined above coincides with the definition in (19) used
in Theorem 3.16 with an appropriate choice of basis. Finally we must check that the
group p(ker p) is isomorphic to Z¢ with d as in the statement of the theorem.

Recall that eval, x eval, gives an isomorphism A4 — Ck x Ck; see Proposition 3.10.
We’ll find it useful to use coordinates provided by the inverse map

R = (eval, x evalp) ™! ckxck > a.
The image of (a, b) is defined as in (11).

The subgroup C¥ C Aff(k) acts on A by conjugation. For v € C¥ we used conj,
to denote this action, and wrote p; ~ py if there is a v such that conj,(p1) = p2.
The space A/~ is a vector space. By Proposition 3.11, we know that conj, acts by
translation on A and this translation vector depends linearly on v. Thus the natural
map C: A— A/~ is linear and the kernel 7 = ker C is the collection of translation
vectors. By applying the formula in Proposition 3.11 to the standard basis vectors
e1.....ex € CK and our particular p, we see

(25) T = spang ({R(O, e1—ep) U{R((1 —a)j_l)ej, ej—ej_1):2<j < k}).
In particular, for each p € A there is a unique v € C k satisfying

(26) conj,(p) = R(ci1e1,cre2 +c3e3+ -+ crey)
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for some choice of cy,...,cr € C. This gives a standard representative for each
conjugacy class. Let S C A denote those representations which can be written in
the form on the right side of (26). Then S is a section for C in the sense that the
restriction C|s: S — A/~ is an isomorphism of vector spaces, and there is a linear
map P: A — S with kernel 7 (defined by S = C |§1 o C') which stabilizes points
in §. That is, P is the projection to & with leaves parallel to 7.

Now consider the subspace A, C A consisting of those p € A such that Py C ker p,
as originally defined in (18). Define

@7) T = spanc {R(0,b)) : 1 < j < 3(k—3)},

where the vectors b; are defined as in (23). Note 7, C S. Define Z = C(Zr). Then
T =11/~ is a subspace of .4/~. We make the following claims:

Claim1 T is Ny, w—invariant forall (M, V) € A.

Claim2 7 C A;.

This will verify the hypotheses of Theorem 3.16 providing a new oriented characteristic
representation p with P, C ker p. Let

(28) pj = R(0,b;) for je{l,.... (k-3)}.

We obtain the matrix representation for p using (19).

We will see that 7 has algebraic significance which explains the invariance in Claim 1.

First consider the kernel of the natural projection m2: A — Aut(F>). This subgroup
consists of those pairs (M, id) such that M commutes with every p(g). Since p is
irreducible (Corollary 3.8), Schur’s lemma implies that only the center of GL(k, C)
commutes with all of p(F>). Thus,

(29) kermp = {(zI.id) : z € C ~{0}}.

Let 7 denote the natural map A — Out(F3). If (M, ) € ker 5, then there is an &
such that ¥ (g) = hgh~! for all g € F,. Fix this ¥ for this discussion. Observe that
one M which satisfies (M, ) € A is p(h) (see Proposition 3.14). The other solutions
differ by multiplication by an element of ker 7>, so we have (M, ¥) € A if and only if
M = zp(h) for some z € C ~ {0}. Then, by recalling Proposition 3.14, we conclude
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that for any (M, ) € A with v an inner automorphism, there is a z € C ~ {0} such
that

(30) Nz ([P]) = z[p]  forall [p] € A/~.

Let ¢y € Aut(F>) be as in (6). Let M1 € GL(k, C) be the matrix in Proposition 3.6.
Then we have (M1, V1) € A. We claim that every element of N,  preserves the
eigenspaces of N~ (M1, y1)?. (In this proof, we will use N~ (M, ) to denote NA?,;/;
and N(M., V) to denote Nps 4 to avoid double subscripts.) This has to do with the
fact that the outer automorphism class of wlz represents —/ in the identification of
Out(F>) with GL(2, Z), and thus lies in the center of Out(F>). To understand these
eigenspaces are invariant, first recall that l/ff is the trivial automorphism of F,. Thus,
by (29), M 14 is a nonzero scalar multiple of the identity. Note that N~ (M1, ¥1)* also
scales by the same amount. It follows (say by considering Jordan canonical form)
that N~ (M, y1)? is diagonalizable and has eigenvalues in the set {£z1} for some
z1 € C~{0}. Let d+ and d_ denote the dimensions of the eigenspaces with eigenvalue
zy1 and —z1, respectively. Since dim(A/~) = k (which follows from (26)), we have
d++d—_=k. Since k is odd it follows that d # d_. To verify that these eigenspaces
are preserved, pick any (M, ) € A. Since the image of wlz in Out(F>) is central,
we know that the commutator [y ~!, v 2] is an inner automorphism. Thus, by (30),
N~y !, lﬁl_z], M1, Ml_z]) scales elements of A/~ by some z € C ~ {0}, and
by simplifying we get

31) N™(M, ) o N~ (My,y1)? o N~ (M, ) =zN~(MZ,v}).

Observe that the left side above is conjugate to N~ (M7, v1)? and so has eigenspaces of
dimension di with corresponding eigenvalues of +2z;. The right-hand side, however,
has eigenvalues of dimension d4 with corresponding eigenvalues of £zz;. It follows
that z = 1, and then (31) gives centrality of N~ (M1, y¥1)? in N and this centrality
implies that the eigenspaces of N~ (M, ¥1)?> must be preserved by elements of Ny .

We will now find a basis of eigenvectors for N~ (M7, ¥1)? to show that Z is an
eigenspace. Observe that wlz: F, — F, is the automorphism satisfying

Yi@=a"' and yP(b)=b""
and thus wlz is an involution. Also, the entries of M 12 are given by
k
(M?); ; = Zw(i—l)(f—l)w(f—l)(j—l)
{=1
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k
=Y Ut
(=

1
k if j +i—-2=0 (modk),
0 otherwise.

In particular,
(32) Mlzej =ke;, wherei issuchthat j +i—2=0 (modk).
Recalling the notation in the paragraph including (25) and (26), we define the map
NZ: S — S by
(33) N =Cl5' o N~ (M1, y1)? 0 Cls = P o N(My1.¥1)’]s.
Equality of these two expressions follows from the facts that
CoN(My,y1)> =N~ (My,y1)*oC

(ie that N~ (M, ¥1)? is the action on A/~ induced by N(M,1)?) and that P =
C |gl oC, as noted in the paragraph cited above. We will evaluate N 12 using the rightmost
identity in (33), by applying N (M7, v¥r1)? followed by the projection P: A — S which
has fibers parallel to 7. We will show that a list of eigenvalues and eigenvectors of N 12
is given by:

(a) The vectors p; = R(0,b;) for j € {1, ey %(k — 3)} are eigenvectors with
eigenvalue k.

(b) The vectors R(0, e;+1+ex_;) for j €{1,...,4(k—3)} are eigenvectors with
eigenvalue —k.

(c) The vectors R(e1,0), R(0, e 41)/2) and R(0, er) are eigenvectors with eigen-
value —k.

The reader will observe that the vectors listed above span S and the eigenspace formed
by the span of the eigenvectors in case (a) coincides with 7y, . Thus, by proving these
statements we will have verified Claim 1.

Before proving (a)—(c) we need to understand the action of N(My,¥1)?. Let (a,b) €
Ck x Ck and p = R(a,b). We have, by definition of N,

N(My1.y1)*(P)(a) = ME-(—p(a™Ha, pla™)) - M;>
= (-M¢p(a"a, M{pa~ " YM?).
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Since (M2, ¥?) € A, we know that MZp(a~')M[? = p(a) and thus

N(My.y1)*()(a) = (—pla)M{a. p(a)).
Similarly, we have N(M1,¥1)%(p)(b) = (—p(b)Mlzb, p(a)). Putting these two to-
gether, we see that

N(My,y1)* o R(a, b) = R(=p(a)M{a,—p(b)M{b).

We specialize this using our understanding of M 12 and p(a) and p(b) into some useful
special cases. We have

(34) N(M1,¥1)*0R(e1.0) = R(—p(a)Mie1.0) = R(—kp(a)e1,0) = R(—ke1,0).
For j > 1, we have
(35)  N(Mi.y1)>0R(0.¢;) = RO0.—p(b)M{e;) = R0, —kp(b)eg+2-))
=R(0,—kegy1—;)-

Now we will check (a)—(c). First consider (c). That N12 o R(e1,0) = —kR(e1,0)
follows from (34). Similarly, that R(0, e(x1)/2) has eigenvalue —k follows from (35)
with j = %(k +1). Again by (35), le o R(0, ey ) is the projection of R(0, —ke;) to S
along 7. Since R(0,e;—ey) €T, we have NIZOR(O, er) = R(0,—key), finishing the
proof of (c). Now consider (a). Recall that b; = e;j11—ex_; for j =1,..., %(k -3),
and using (35), we observe

N(My,¥1)*0R(0,b;) = R(0, —key_; +kej+1) = kR(0,b)),
which verifies (a). Finally consider (b). For j € {1,....4(k —3)}, we have
N(Ml, wl)zo R(O, €j+1 —i—ek_j) = R(O, —kek_j —kej+1) = —kR(O, €ji+1 +ek—j)~
This completes the proof of Claim 1.

Finally, we need to prove Claim 2 that Z C Ay /~. From the above we know that 7 is
N~ —invariant, so it suffices to prove that p(a*) =1 for each p € Z1,. We clearly have
this since each p = R(0, v) for some v € C¥; see (27). This proves Claim 2.

Since we have proven the claims, we obtain the representation p as discussed sur-
rounding (28). It remains to show that p(ker p) == Z¢ with d =k - %(k —3)-n with
n =[Q(w): Q] as stated in the theorem. Observe that p is a representation from F,
into GL(k + %(k —3), Z[a)]). For g € ker p, the matrix p(g) has a block form as
in (19), with the identity appearing in the diagonal blocks, zero in the bottom left, and
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akx %(k —3) matrix Q(g) in the top right. We will show that the rank d is as large
as possible: as large as the rank k - %(k —3) -n of the additive group of k x %(k -3)
matrices with entries in Z[w]. We claim that it suffices to find a g € ker p such that the
top-right block Q(g) has linearly independent columns. We will prove this suffices,
and then give such a g below. Observe that given any & € F,, we have hgh™! € kerp
and a computation shows that Q(hgh™1') = p(h)Q(g). It follows that

Q(ker p) > AQ(g).

where A is the additive group of matrices generated by p(F>). Proposition 3.7 guaran-
tees that the additive group M of k x k matrices with entries in Z[w] contains A as a
finite-index subgroup. Thus we can find matrices My, ..., M2, € A which generate
the space of k x k matrices with entries in Q (w) as a Q—vector space. Define the map
® to send a k x k matrix M with entries in Q(w) to the product MQ(g). Then P is
Q(w)-linear, so we have

dimg ) (ker @) + dimgy,) (img ®) = dimgy,) M = k2.

The kernel of ® consists of those M € M such that the rows of M are perpendicular
to each column of Q(g). Since the columns of Q(g) are linearly independent, the
rows of matrices in ker @ can be taken from a Q(w)-linear subspace of codimension
%(k —3). We conclude dimg ) (ker ®) = k(k — %(k — 3)) and it follows that

dimg(e)(img®) =k-3(k—3) andso dimg(img®) =k -3(k—3)-n.

The images ®(M;), ..., P(Mj.2,) of our Q—basis of matrices span the image of &
as a Q-—vector space, so we can find k - %(k —3) -n such images which are linearly
independent over Q. These images freely generate a free abelian group, which lies
in AQ(g) and therefore also in Q(ker p). We conclude that the rank of Q (ker p) is at
least k - %(k —3)-n, as desired.

We carry out this calculation for g = [a™!, [a, b~ ]| = aba='b~'a" bab™! € ker(p).
The columns of Q(g) are given by ;0 p;(g) for j € {1, ey %(k —3)}. It may be
computed that
pitaba™'b™") = (@’ =0 Deji1 + (@ =0 Ve, 071,
piabab™) = (0™ —w"ej11+ (@' —0’ Ter—;. 0l),
pi(8) = (@ =1 —0™ /" (ej+1—ex—)), ).
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(This calculation was done by hand and independently verified using [19] for several
values of k.) Observe that the coefficient (w/ —1)(1 —w™/~1) is never zero for the
range of j under consideration. Also the vectors are linearly independent since the
positions of nonzero entries never coincide. Thus the above argument gives us the rank
we claimed. O

3.6 Case k=4

We define p4: F» — GL(2,C) by

p4<a>:(g _‘l)) and p4(b)=(_? (1))

Proposition 3.19 The image p4(F>) is isomorphic to the quaternion group Q of
order 8. The representation p4 is oriented characteristic and P4 C ker p4. The additive
subgroup of 2 x 2 matrices generated by the image of p4 consists of those matrices of
the form

My, = (; _;) with x,y € Z[i].
Proof Let M ={M, ,:x,y € C} and observe that M is closed under multiplication.
Thus SL(2, C)NM is a multiplicative group containing p4(a) and p4(b). Furthermore,
det My, = |x|? +|y|?, so there are exactly eight matrices in SL(2, C) N M . Observe
by inspection that SL(2, C)NM is isomorphic to Q and that p4(a) and p4(b) generate.
Also observe that the matrices M1,9. M; 0. Mo,1, Mo,; € pa(F2) generate M as an
additive group. To see p4 is oriented characteristic, observe it satisfies Proposition 3.3
with the choice of matrices

1 i 0
Ml_(l 1), Mz—(o 1) and M_=1.

Also we have P4 C ker p4 since the kernel is characteristic and p4 (a)4 =1. O

Let ps: F» — GL(4, C) be defined by

pa(a) =

This representation was produced by following the argument of Theorem 3.16 with
Z = A4/~, though we will not prove this. We do show:
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Proposition 3.20 The homomorphism py4 is an oriented characteristic representation.
The kernel of py contains P4 and is of infinite index in F,. We have

pa(ker pg) = (w,z) e A},

where A is the kernel of the map
Zli> - 2/27 givenby (a+ib,c+id)+—a+b+c+d (mod?2).
Thus there is a short exact sequence of groups of the form

1 - Z*— Fy/kerps — Q — 1.

Proof To see p is oriented characteristic, apply Proposition 3.3 with M_ = 1,

2 2i i—1 —i—1
2t 2| —i+1 —-i—1
M, = - and M, =
00 2i —2 0
00 0 —-2i-2

Then, to see that P4 C ker P4, it suffices to observe that p4(a*) = 1.

Define y: Z[i]*> — GL(4, C) by

(36) y(z.w) =

The proposition claims that p4(ker p4) = y(A). Recall that the quaternion group has a
presentation of the form

Q=(abla*=b*=a*b?>=ab tab=1).

Since p4(a*) = pa(b*) = I, it follows that p4(ker ps) is generated by images under py4
of conjugates of a?h? and ab~'ab. We compute

pa(@*b?) =y(—1,1) and pa(ab™lab) =y(0,i +1).
Now we will consider p4(ga’b?g™!) for g € F>. Let P be the top-right 2 x 2

submatrix of p4(a2b?) above. Conjugates ps4(ga’b?g~") have top-right submatrix
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given by p4(g)- P. Thus ps(ker p4) contains all the matrices My, , P where My y is
in the additive group generated by p4(g) which was described by Proposition 3.19 in
terms of a vector (x, y) € Z[i]>. We have

x =y -1 -1 —x—-y —x+Yy
My , P = . = .
(37 x.y (y )?) ( 1 —1) (—y +x —y—)?)
Varying (x, y) over {(1,0), (i,0), (0,1),(0,i)} gives generators for the normal sub-

group of p4(F2)
N1 = (Pa(ga®b*g™ ") | g € F2).

Namely we see that
N1 =y(A1). where Ay =((=1,1), (=i, —i). (=1, —1),(i,—i)) C Z[i]>.
A similar calculation shows that the normal subgroup

Ny = (Pa(gab™"abg™") | g € F2)

is given by
N> =y(As), where Ay =((0,i +1),(0,1—1i),(=1—1i,0),(—1+i,0)) C Z[i]*.
A simple calculation shows that

(A1, Az) = (=1 1), (=i, =), (=1, =1).(0,i + 1)),

which is a subgroup of Z[i]? with index 2. Observe that A = (A1, A3) and from the
discussion above we have py(ker pg) = y(A).

The short exact sequence follows from the fact that y(A) is a free abelian group of

rank 4. O

Given p4 and p4 as above we may consider the tensor product py = ps ® ps4, which
is also an oriented characteristic representation by Proposition 3.2. We have ker p, =
ker p4 and we can view pj as a homomorphism to GL(8, C).

Define the homomorphism 54: F>, — GL(9,C) so that

(38) pala) = diag(1, —1, —i, —i; —1,1,i,i; 1),
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(00 0 0 01 10| 0)
00 0 0[-1001| 0
00 0 0/ 0010/ 1
00 0 0] 0001 0
(39) pab)y=10-1-1 0/ 0000| 0
1 0 0-1| 0000 0
0 0-1 0| 0000| 0
00 0-1] 0000|-1
00 0 0/ 0000/ 1

The top-left 8 x 8 submatrices of images of 54 realize pj. The representation 54 was
found by applying the approach of Theorem 3.16 to p; but we will not prove this. We
have:

Proposition 3.21 The homomorphism 54 is an oriented characteristic representation.
The kernel of 54 contains P,. Furthermore, there is a short exact sequence of groups
of the form

1> 7% - Fz/ker§4 — > /kerpg — 1,

where d > 1.

It will follow from later work that ker ,'5:4 = P, and that d = 1 in the statement above.
See Theorem 4.2.

Proof That 54 is oriented characteristic follows from Proposition 3.3 with

2 2 i—-1 —i—11]-2i 2 i4+1 i-1] i-1
2 2 —i4+1 —i—1| 2 =2i —i—1 i-1] i—-1
0 0 2i-2 0 0 0 2i+2 0 2
0 0 0 —2i—-2| 0 0 0 2i—2] =2
Mi=|-2i 2 i+1 i—-1| 2 2i i-1 —i—-1]|-i—1
2 =2i —i—1 i—-11] 2 2 —i4+1 —i—1]| i+1
0 0 2+2 0 0 0 2i-2 0 -2
0 0 0 202 0 0 0 —2i—-2| =2
\ 0 0 0 0 0 0 0 0 4 )

M, = diag(1, —i,—i,1,i,1,1,i,1)

and M_ = I. Again we have P4 C ker ,:5'4 because ker 54((14) =1.

It may be observed that the upper-left 8 x 8 submatrix of ﬁ(g) is a matrix representation
of p4(g) ®pa(g). Since ker pg C ker pg, we have that ker(ps ® p4) = ker p4. Matrices
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in ﬁ(ker 04) therefore have the block form

(07)

where I is the 8 x 8 identity matrix and v is an 8 x 1 matrix with entries in Z[i]. Thus
p(ker py) is isomorphic to an additive subgroup of Z[i]®. Let d = rank p(ker p4). We

compute
(1000 0000]2i)
0100[0000]|0
0010[0000]|0
0001[0000]|0

(40) pa[a,b)=]0000[1000] 0
0000[0100]2i
0000[0010]|0
0000[0001]0
Koooo 0000

Thus [a, b]? lies in ker o4 and its image generates a copy of Z in 54(F2). This shows
d > 1. Finally observe that we have the natural short exact sequence

1 — pker py) — p4(F2) — (54 ® Ba)(F2) — 1.

Here, the map 54 (F2) — (p4 ® p4a)(F>) is the map that takes a matrix in 54 (F>) toits
top-left 8 x 8 block. We have p,(F>) = Fy/ker py, and (ps4 ® pa)(F2) = F»/ker pa
from the discussion above. This yields the exact sequence in the proposition. |

4 Characterizing F,/P,

A polycyclic group is a group that admits a subnormal series with cyclic factors. Any
group that is virtually nilpotent is polycyclic. The Hirsch length of a polycyclic group
is the number of infinite factors in any subnormal series with cyclic factors. For any
polycyclic group G, we will refer to the Hirsch length as the dimension of the group,
and denote it by dim(G). A fact that we will use repeatedly in this section is that for
any normal subgroup N C G, we have (see for instance [3, Theorem 4.7] for a proof)

dim(G) —dim(N) = dim(G/N).

In particular, if G is torsion-free and N is nontrivial, then dim(G) > dim(G/N).
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For this section let G = F,/ P4. The following proposition tells us that G is virtually
torsion-free nilpotent of dimension equal to 5. We will use this result to prove that
the representation 54 is faithful. For this, we will need to record the generators of the
torsion free subgroup we find.

Proposition 4.1 Let N be the subgroup of G generated by
a1=E?, ay=A*D? a3=AE?A™*BAT'B7,
as=A°CA™'C™'BAB'A7!,

where

A=ba 'b7'a, B=b"laba™', C=b"'a"'ba,

D =a*b(a'bYH2%a'ba, E=>b"Yab)’a3b'a.
Then N is a 5—dimensional torsion-free nilpotent subgroup of index 2'2 in Fy/ Py
that is isomorphic to H(Z) x H(Z) with one nontrivial added relator.

Proof Let G, be the second term of the derived series for G, where G is described
in terms of the relations provided by the table in Figure 4. Using GAP [18], we can
confirm that G, is a subgroup of finite index in G. Moreover, GAP gives us the
following presentation for G, (the F; notation follows GAP’s output):

(Fi, Fa, F3,F4, Fs | Fy 'F{'F3F1 = F5 'Fy 'R Fs = Fy ' Fa R Fy =1,
FI'BF F; ' = FyFsF ' Fo = FOVR FsFy =1,
FyF7 Vs FU R FS = F FS VR Fs Fa Py
=F; 'R F FsFaFil =1,
FaF\BE VT = F R FU VR R By VR F =1,
Fo'F3FsFy ' Fs R F VR =1,
FU'F ' FsF P 'R Py 2R Fy L = B Ry FLFU R R =1).
From this presentation and computations in [18], we see that G, satisfies the following:
(1) The first homology of G, is Z/4Z x Z*.
(2) G, has index 1024.

Let N be the group generated by Fy, F3, F4 and F5. Using GAP [18], we can check
that N has index 2'2 and has the desired generators. Moreover, GAP gives that N
has a presentation of the form

N = (ai,az,a3,a4 | R),
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where
R ={[a1.az].[as.a4]. [a1.a3). [aFas. a1 'az]. [az. as). [asas. ay *az],
lasas, (a7 az)'as(ay ar)]}.
This is a quotient of the right-angled Artin group F> x F, with the three added relators
[a§a3,a1_1a2], [a4a3,a1_2a2], [a4a3,(al_laz)_la4(a1_1a2)].
Viewing the group as F» x F» = (a1, as4) X {az, as), we can simplify the relations to
([a3.a7 '] laz, a2]), (s, a7’)[as,a2]), v = ([aa,ara4a7'], 1),
Using suitable conjugations, we further simplify the relations to
(a1, 3], las, az]),  ([67.aal. a3, a2]), v := ([as,arasa7'] 1)

Then N is the group (F> x F>)/K, where K is the normal subgroup generated by the
elements above.

The last relator gives that [a, a4] and a4 commute. By the two other relators, we have
([a1,a3],1) = ([a?,a4], 1). This equality is equivalent to

la1,aa]lar,as]® = lar,a4]" ar, as].

Hence, ([a1,a4], 1) is central in N. Moreover, since ([al,ai], [as, az)) is a relator,
(1, [a3,az)]) is also central in N.

Let H; be the image of F> x 1 in N and H» the image of 1 x F». Since ([a1,a4], 1)
and (1, [as,az]) are central, the groups H; and H» are both quotients of H(Z) (in
fact, they are both isomorphic to H(Z)). It follows that N must be H(Z) x H(Z)
with a relation identifying the square of a central generator of H(Z) x 1 with one of
1 x H(Z). It is now clear that N has infinite center. Thus, N has Hirsch length equal
to 5 and is torsion-free, as desired. O

Recall the definition of 54: F> — GL(9,C) described by (38) and (39). From
Proposition 3.21, P4 C ker p4, thus we can consider ps to be a homomorphism

from G to GL(9,C).

Theorem 4.2 The representation 54: F>/ Py — GL(9, C) is faithful. We have d = 1
in Proposition 3.21.
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Proof First we will show that d = 1 using a dimension argument. For this proof,
consider p4, ps4 and 54 to be homomorphisms from F,/ P4 and their kernels to be
subgroups of F»/P4. We can compute that the generators of N lie in ker p4, and we
conclude N C ker p4. Propositions 3.20 and 3.21 tell us that p4(ker p4) is isomorphic
to Z* and 54(ker p4) is a further Z¢ —extension for d > 1. It follows that 54 (ker pg4)
is polycyclic. Moreover, dim 54 (ker pg) = 44+ d > 5. Since dimension nonstrictly
drops under surjective homomorphisms, we have dim N > dim 54 (N), and since N is
of finite index inside of F»/Ps, we have dim p4(N) = dim p4(F»/Ps). Putting this
all together we have

5=dim N > dimps(N) = dim pa(F>/Ps) =4 +d > 5.

We conclude that all expressions in the above line are 5, and therefore d = 1. Since
nontrivial quotients of N have strictly smaller dimension, we also get that the restriction
of 54 to N is injective. Thus the faithfulness claimed in the theorem will follow if we
can prove that subgroup indices satisfy

[74(F2/ Pa): pa(N)] = [F2/ P4 N].

We already know that [F,/P4:N] =22 It suffices to prove that [54(G) :54 (N)] =212
since index cannot grow under group homomorphisms.

First observe that [04(G): p4(N)] = 23 since N C ker p4 and p4(G) is isomorphic to
the quaternion group.

Now consider the index [p4(G): p4(N)]. Let a1, az, as and a4 denote the gener-
ators for N listed in Proposition 4.1. Define y: Z[i]*> — GL(4,C) as in (36). By
Proposition 3.20, pa(ker ps) = y(A), where A C Z[i]? is a subgroup of index 2. We
compute

palar) =y(=2i —2,-2i +2), pa(az) =y(2i —2,2i +2),

pa(asz) = y(4,0), pa(as) = y(0,4i).

Thus pg(N) = y(A), where

(41)

N =((-2-2i,-2i +2),(2i —2,2i +2),(4,0), (0,4i)).

Based on this, we observe A’ C A and we can compute that [Z[i]?: A'] = 27 and thus
[A: A'] = 2. It follows that

[Pa(ker pa) : pa(N)] =2° and [Ba(Fa2/Pa):Pa(N)] =212,
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Finally, we consider the index [54(G) : 54(N )]. From the above, we know that
F> /ker 54 is a Z—extension of F» /ker p4. We have [a, b]? € ker p4 but 54([(1, b)) #1
(see (40)). Since the images under p4 of the four generators a; freely generate the image
pa(N), which is isomorphic to Z* = N/[N, N], it follows that N Nker o4 = [N, N].
Since N is two-step nilpotent, this commutator subgroup is generated by commutators
of the generators of N. We compute

pa(lar, az]) = pa(laz. as)) = 1.
For other pairs of generators of N we have
pa(laz,ar]) = Pa(las, ar]) = Ba(laz, as]) = pa(las, az)) = pa(la, b)),

Thus the central copy of Z in 54(F2 / P4) contains 54(N N ker p4) with index at
least 23. Consequently, [p4(Fa/Ps): pa(N)] > 23T6F3 as desired. O

Appendix Relation to square-tiled surfaces

A translation surface is a surface equipped with an atlas of coordinate charts to the
plane such that all transition functions are restrictions of translations.

Let T denote the 2—torus R2/Z? and T° = T ~ {0} be the once-punctured torus.
A square-tiled surface (or origami) is a cover of T° endowed with the pullback
translation structure. Here we allow the cover to be finite or infinite. See [20] for a
survey discussing translation surfaces including square-tiled surfaces.

Fix a translation surface S. Given a vector (1, v) € R? the straight-line flow determined
by (u,v) is the flow F’: § — S given in local coordinates by

F'(x,y) = (x.y) +1(u,v).

The straight-line flow of a point will not be defined for all time if under the projection
to T the flow hits the puncture at 0. We call such a straight-line trajectory singular.

Let (u,v) € Z? and assume u and v are relatively prime. Then the straight-line flow
determined by (u, v) on the torus T is periodic with all points having period 1. Let S
be a square-tiled surface. For a positive integer k we say S is k—periodic if for all
relatively prime (u, v) € Z2, every nonsingular straight-line trajectory determined by
(u, v) is periodic with period dividing k.
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We take (3. 1) to be the basepoint of T° and say that a square-tiled surface with
basepoint is a square-tiled surface S with the choice of a basepoint s such that the
covering map to T° maps s to (% %) If §; and S» are two square-tiled surfaces
with basepoints 51 and s,, respectively, and m;: S; — T° are the associated covering
maps, we say that S; covers Sy if there is a covering map 7: S — S» satisfying

w(s1) =n(sy) and mp o = 7.

This paper originated with the following observation:

Proposition A.1 For any k > 1 there is a k —periodic square-tiled surface with base-
point Uy such that Uy covers any other k —periodic square-tiled surface with basepoint.

We call Uy, the universal k—periodic square-tiled surface.

Covering space theory associates a square-tiled surface .S with basepoint to a subgroup
I's of the fundamental group 71 (T°, (3. 1)). Note that this fundamental group is iso-
morphic to the free group F3. For purposes of this appendix consider 1 (T°, (3, 5)) to
be the same as F,. Following Herrlich we call S characteristic if T's is a characteristic
subgroup of F,. Characteristic square-tiled surfaces S are maximally symmetric: they
have a deck group acting transitively on the lifts of any point of T° and each element
of GL(2, Z) stabilizes S (through the action of GL(2, R) on the space of translation
surfaces).

Some finite characteristic square-tiled surfaces which are k—periodic have attained
an almost mythical status in the subject of translation surfaces, serving up numerous
counterexamples in the field. Especially famous are the fantastically named eierlegende
Wollmilchsau discovered independently in [6] and [11] and the ornithorynque first
described in [7]. These surfaces were studied further in [8; 16]. If this article were
written more geometrically, the Heisenberg origamis studied by Herrlich in [10] would
play a leading role.

Two facts combine to give a proof of Proposition A.1:

(1) From basic covering space theory, the square-tiled surface with basepoint S
covers the square-tiled surface S» with basepoint if and only if I's, C I, .

(2) A conjugacy class in F, represents a homotopy class of curves containing closed
geodesics on T ° if and only if the conjugacy class consists of primitive elements
in F». This observation dates back to Nielsen’s 1913 thesis.
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It follows that a square-tiled surface with basepoint S is k—periodic if and only if it
is covered by the square-tiled surface Uy defined so that Iy, = Py, where P C F>
denotes the subgroup generated by k™ powers of primitive elements as in this paper.

From work in this paper we obtain an understanding of Uy, ..., Us:
(1) Wehave Uy =T°.
(2) The surface U, is (R/27)? punctured at the integer points.

(3) The surface Us is the Heisenberg origami denoted by O3 3 in [10] jointly
discovered by Herrlich, Moller and Weitze-Schmithiisen.

The eierlegende Wollmilchsau mentioned above is the square-tiled surface W defined
so that [y is the kernel of the surjective homomorphism F, — Q, where Q is the
quaternion group. The surface W is 4—periodic. From our understanding in this paper
of P4 and in particular knowledge of the representation 54 of Section 3.6, which is
faithful by Theorem 4.2, we see:

Theorem A.2 The surface Uy is an infinite area square-tiled surface and is a torsion-
free 5—dimensional 2—step nilpotent cover of the eierlegende Wollmilchsau.

It is particularly interesting that U, is a geometrically natural example of an infinite
nilpotent cover of a compact translation surface, because some methods are available
to study the dynamics of the straight-line flow on such a surface; see for instance [4].
It is a consequence of [12, Theorem G.3, Remark 4.1] and GL(2, Z)—invariance of Uy
that:

Corollary A.3 There is a dense subset E of the unit circle in R? with Hausdorff
dimension larger than % such that for any (u, v) € E the straight-line flow determined
by (u,v) on Uy is ergodic.

As a consequence of the universality of Uy it follows that the straight-line flow deter-
mined by each (u,v) € E is ergodic on each 4—periodic square-tiled surface. This
motivates:

Question 4 Is the straight-line flow determined by (u, v) ergodic on Uy whenever

v £Q?

The kernels of the representations py for odd k > 5 determine characteristic k—
periodic origamis Op which are infinite free abelian covers of the Heisenberg origamis
of Herrlich. The conclusions of Corollary A.3 then hold for the surfaces Oj and we
similarly wonder what the answer to Question 4 would be in these cases.
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This paper shows that Py is of infinite index in F» when k > 4 and it follows that for
k > 4 the surface Uy is infinite. Virtual nilpotence of F»/ Py is necessary to apply
[12, Theorem G.3], so an affirmative answer to Question 1(b) in the case of r = 2 and
k > 5 would extend Corollary A.3 to cover the corresponding Uy . Even in the absence
of this, the method of Section 3 can be iterated to produce other characteristic multistep
nilpotent covers of compact square-tiled surfaces when applied multiple times in the
cases of k > 5 as with our construction of the representation 54: F/ P4 — GL(9,C).
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