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The extrinsic primitive torsion problem

KHALID BOU-RABEE

W PATRICK HOOPER

Let Pk be the subgroup generated by kth powers of primitive elements in Fr , the
free group of rank r . We show that F2=Pk is finite if and only if k is 1 , 2 or 3 .
We also fully characterize F2=Pk for k D 2; 3; 4 . In particular, we give a faithful
9–dimensional representation of F2=P4 with infinite image.

20F05, 20F65; 20F38

1 Introduction

Let G be a group and r be a cardinality. We say that g 2G is r –primitive if it is part
of a generating set of G with r elements. The rank of a group G is the cardinality
of a generating set of minimal size, and an element of G is called primitive if it is
r –primitive with r equal to the rank of G. Denote the rank r free group by Fr . This
paper concerns the following collection of questions.

Question 1 (the extrinsic primitive torsion problems) Fix positive integers r and k .
Let � be an image of Fr such that the image of every r –primitive element in Fr has
order dividing k .

(a) Is � necessarily finite?

(b) Is � necessarily virtually nilpotent?

(c) Is � necessarily virtually solvable?

(d) Is � necessarily finitely presented?

What if � is as above and also residually finite?

Observe that a positive answer to Question 1(a) or (b) implies a positive answer to
Question 1(d).

The extrinsic primitive torsion problems are topological variants of the classical Burn-
side problem posed by William Burnside in 1902 [2]. This problem has led to many
important discoveries: the classical Jordan–Schur theorem, A Y Olshansky’s outrageous
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subgroup index in F2 quotient Gk D F2=Pk

P2 4 the Klein four-group
P3 27 H.Z=3Z/
P4 1 virtually a 5–dimensional image of H.Z/�H.Z/
P5 1 we conjecture this is virtually solvable

Pk with k � 6 1 we conjecture the quotient is not finitely presented

Table 1: Results and conjectures on Pk and F2=Pk .

Monster groups [17] and the fundamental Golod–Shafarevich theorem [9]. As such,
Question 1 is intrinsically motivated through group theory (moreover, it increases our
understanding of new characteristic subgroups of free groups). The case of r D 2 has
direct ties to geometric questions about square-tiled surfaces; please see the appendix.

There has been significant progress made on the primitive torsion problem for some suf-
ficiently large k ; see Koberda and Santharoubane [13] and Malestein and Putman [15].
This paper answers Question 1(a) in the case r D 2, and also Question 1(a)–(d) in the
cases r D 2 and k 2 f2; 3; 4g.

We succinctly state our findings in Table 1. Let Pr;k � Fr be the subgroup generated
by kth powers of primitive elements in Fr (observe that the answer to Question 1(a),
(b) or (c) is affirmative if and only if the respective answer to (a), (b) or (c) is affirmative
for � D Fr=Pr;k ). Use Pk to denote P2;k and use H.R/ to denote the Heisenberg
group over a ring R .

In resolving the cases k D 4 we show that F2=P4 is isomorphic to the matrix group
generated by the two matrices

diag.1;�1;�i;�i I �1; 1; i; i I 1/;

0BBBBBBBBBBBBBB@

0 0 0 0 0 1 1 0 0

0 0 0 0 �1 0 0 1 0

0 0 0 0 0 0 1 0 1

0 0 0 0 0 0 0 1 0

0 �1 �1 0 0 0 0 0 0

1 0 0 �1 0 0 0 0 0

0 0 �1 0 0 0 0 0 0

0 0 0 �1 0 0 0 0 �1

0 0 0 0 0 0 0 0 1

1CCCCCCCCCCCCCCA
:

For k � 5, we develop tools for constructing and refining new infinite linear represen-
tations of F2=Pk . These tools allow us to answer Question 1(a), and we hope they will
be useful in future work.
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Instead of speaking of primitivity in a free group, we can phrase an intrinsic version of
Question 1.

Question 2 (the intrinsic (restricted) primitive torsion problems) Fix positive integers
r and k . Let � be a (residually finite) group of rank r such that every primitive element
has order dividing k . Which questions from Question 1 have affirmative answers?

The primitive torsion problems are natural variants of the original bounded Burnside
problem. There has been great progress in understanding the quotients arising from
these problems; see for instance Coulon and Gruber [5]. Moreover, studying laws other
than the power law in restricted Burnside problems is a very active area; see Bradford
and Thom [1] and Kozma and Thom [14] for the state of the art.

Question 3 (the bounded Burnside problem) Fix r; k 2 Z. Let G be a group
generated by r elements. Let Bk be the group in G generated by elements of the
form gk, where g 2G. Is G=Bk necessarily finite?

We note that when G=Pk is virtually solvable, the resulting group G=Bk is necessarily
finite. Thus, our work recovers the well-known result that F2=B4 is finite. If our
conjecture that F2=P5 is virtually solvable is correct, then it follows that F2=B5 is
finite, which is unknown.

Outline of article

In Section 2, we describe normal generators for Pk . We produce finite lists of normal
generators for k 2 f2; 3; 4; 5g. The generators in these cases correspond to the vertices
of the triangular dihedron, the tetrahedron, the octahedron and the icosahedron. We
use our list of generators to show that the quotients F2=P2 and F2=P3 are as listed in
the introduction. Running out of platonic solids with triangular faces, our techniques
would give a infinite collection of normal generators for Pk for k � 6, and so we
conjecture that F2=Pk is not finitely presented for k � 6.

In Section 3, we produce highly symmetric representations of F2=Pk into GL.n;C/
with infinite image when k � 4. Our technique involves deforming a representation
into GL.n;C/ inside a bigger group, namely GL.N;C/ for N > n. We take highly
symmetric representations of F2=Pk! GL.n;C/ which factor through a finite group
and then deform them in such a way that the representations develop an infinite image
in GL.N;C/ while remaining highly symmetric. This allows us to prove that F2=Pk
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is infinite for k � 4. Also, the process leads to new highly symmetric representations
of F2=Pk . In the case of k D 4, we repeat this process twice (with a tensor product in
the middle) to produce the representation F2=P4! GL.9;C/ which was mentioned
in the introduction.

In Section 4, we prove that our representation F2=P4 ! GL.9;C/ is faithful and
proves F2=P4 has the form mentioned in the introduction.

The appendix discusses the relationship between this work and the geometry of square-
tiled surfaces.

2 Normal generators for Pk

2.1 Primitive elements of F2

Let F2 denote the free group ha; bi. The reader will recall or quickly observe the
following facts about primitive elements of F2 :

(1) If c 2 F2 is primitive then there is a � 2 Aut.F2/ such that �.a/D c .

(2) If c 2 F2 is primitive then so is every element of its conjugacy class Œc� D
fgcg�1 W g 2 F2g.

In particular, we will say a conjugacy class is primitive if it consists of primitive
elements of F2 .

The observation that there is a short exact sequence

1! F2! Aut.F2/
D
�! GL.2;Z/! 1

dates back to Jakob Nielsen’s 1913 thesis. Here the map F2 ! Aut.F2/ sends
an element of F2 to its corresponding inner automorphism and thus GL.2;Z/ is
isomorphic to the outer automorphism group Out.F2/ D Aut.F2/= Inn.F2/. The
map DW Aut.F2/! GL.2;Z/ may be defined by using the abelianization homomor-
phism abW F2! Z2 , which we choose to satisfy a 7! .1; 0/ and b 7! .0; 1/. Then
D.�/ 2 GL.2;Z/ is determined by the condition that D.�/ ı ab.g/D ab ı �.g/ for
all g 2 F2 .

An automorphism of F2 either preserves the conjugacy class of the commutator Œa; b�
or sends it to the conjugacy class of Œb; a�. Thus there is a natural homomorphism
Aut.F2/ ! C2 , where we identify C2 with the permutation group of these conju-
gacy classes. We set AutC.F2/ to be the kernel which consists of automorphisms
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preserving the conjugacy class of the commutator Œa; b�. We use Aut�.F2/ to denote
Aut.F2/XAutC.F2/.

The group OutC.F2/DAutC.F2/= Inn.F2/ is isomorphic to SL.2;Z/ via the map D
above. The following elements of AutC.F2/ have images in OutC.F2/ which generate
it:

(1)

 0.a/D b;  0.b/D b
�1a�1;

 1.a/D b;  1.b/D a
�1;

 2.a/D a;  2.b/D ab:

We will use x 0 , x 1 and x 2 to denote the outer automorphism classes of these elements.
It may be observed that

(2)  0 ı 2 D  1;  30 D  
4
1 D 1; Œ x 21 ;

x 0�D Œ x 
2
1 ;
x 2�D 1:

Recall that outer automorphisms act on conjugacy classes. We will use Œg� to denote
the conjugacy class of g 2 F2 . We have the following:

Lemma 2.1 (primitive conjugacy classes) An element g 2 F2 is primitive if and
only if it lies in the conjugacy class x .Œa�/ for some x 2 OutC.F2/.

Proof If g 2 F2 is primitive then by (1) above there is a  2 Aut.F2/ such that
 .a/D g . Then, by possibly precomposing with the automorphism  � 2 Aut�.F2/
determined by  �.a/D a and  �.b/D b�1 , we can assume that  2AutC.F2/. Let
x 2 OutC.F2/ be the class containing  . Then Œg�D x .Œa�/. The converse is clear
since primitivity is a conjugacy invariant and is invariant under automorphisms.

It follows that the conjugacy classes of primitive elements are naturally identified with
OutC.F2/ modulo the stabilizer of the conjugacy class Œa�. This stabilizer is h x 2i.

The primitive conjugacy classes come naturally in pairs: if g 2 F2 is primitive, then
we call the conjugacy classes Œg� and Œg�1� opposites. We will denote the collection
of unions of opposite pairs of conjugacy classes by P . Opposites are related by the
action of the central involution x 21 of OutC.F2/:

Proposition 2.2 If Œg� is a primitive conjugacy class then its opposite Œg�1� is x 21 .Œg�/.

Proof From the lemma above we have Œg�D x .Œa�/ for some x 2 OutC.F2/. Since
 21 .a/D a

�1 we have x 21 .Œa�/D Œa
�1� and Œg�1�D x ı x 21 .Œa�/. Since x 21 is central

in OutC.F2/ we have Œg�1�D x 21 ı x .Œa�/D x 
2
1 .Œg�/.
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Since h x 2i is the stabilizer of Œa� and x 21 acts as above, there is a bijective correspon-
dence from the coset space C D OutC.F2/=h x 2; x 21 i to P given by

(3) C! P; x h x 2; x 
2
1 i 7!

x .Œa�/[ x .Œa�1�/:

The group SL.2;Z/=˙ I has a well-known action on the upper half-plane by Möbius
transformations with �I acting trivially. Here the matrix�

m11 m12
m21 m22

�
acts by z 7!

m11zCm12

m21zCm22
:

This is useful for organizing the pairs of primitive conjugacy classes. Observe that
hD. x 2/;D. x 1/i is the stabilizer in SL.2;Z/ of the point 1

0
. The SL.2;Z/ orbit of 1

0

is yQDQ[
˚
1
0

	
. Thus, we have:

Lemma 2.3 There are bijections CW yQ! C and PW yQ! P compatible with (3) such
that for any p

q
2 yQ we have:

� The class C
�p
q

�
is the collection of x 2 OutC.F2/ such that D. x /

�
1
0

�
D

p
q

.

� The union of the pair of conjugacy classes P
�p
q

�
consists of all primitive elements

g 2 F2 such that ab.g/ D ˙.p; q/ (where p; q 2 Z are taken to be relatively
prime).

The Farey triangulation F is an SL.2;Z/–invariant triangulation of the upper half-
plane with vertices in yQ. We depict F in Figure 1. The group PSL.2;Z/ is the
orientation-preserving symmetry group of F . It is useful to think of the three spaces
yQ, C and P as in bijective correspondence to the vertices in this triangulation.

2.2 Symmetries and images of primitive elements

Having a power of a primitive element in a normal subgroup N guarantees that some
corresponding elements of Out.F2/ stabilize N. It suffices to consider the case when
a power of a lies in N.

Lemma 2.4 Suppose N � F2 is a normal subgroup containing ak for some k � 1.
Then  k2 .N /DN. Furthermore, the induced action of  k2 on F2=N given by

hN 7!  k2 .h/N

is trivial.

Proof Assume ak 2N and N �F2 is normal. Observe that the action of  k2 satisfies

 k2 .a/D a;  k2 .a
�1/D a�1;  k2 .b/D a

kb and  k2 .b
�1/D b�1a�k :
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Figure 1: A portion of the Farey triangulation F of the hyperbolic plane with
some rational points at infinity marked. The top endpoint of the vertical edges
is 1
0

.

Let h 2 F2 and consider h as a word in fa; a�1; b; b�1g. From the above description
of  k2 we see that  k2 .h/ is formed from h by inserting copies of ak and a�k into
the word representing h. Let n be the number of such insertions. Then we can write

hD  k2 .h/g1g2 � � �gn;

where each gi is a conjugate of either a�k or ak selected to remove an inserted copy
of ak or a�k . Since ak 2N and N is normal, each gi 2N. It follows that h 2N if
and only if  k2 .h/ 2N. Thus  k2 .N /DN. Finally we see that for any hN 2 F2=N,

 k2 .hN /D  
k
2 .h/N D hg

�1
n � � �g

�1
2 g�11 N D hN:

We get the following if a power of a primitive element lies in a normal subgroup of F2 :

Corollary 2.5 Let p
q
2 yQ, let g 2 P

�p
q

�
and let  W F2! F2 be an automorphism

such that the associated outer automorphism x lies in C
�p
q

�
. Then, for any k � 2 and

for any normal subgroup N 0 � F2 containing gk ,  ı k2 ı 
�1.N 0/D N 0 and the

induced action of  ı k2 ı 
�1 on F2=N 0 is trivial.

Proof From Lemma 2.3, we note that x .Œa�[Œa�1�/D Œg�[Œg�1�. Set N D x �1.N 0/.
By normality, we see that ak 2N. Thus Lemma 2.4 tells us that  k2 .N /DN and  k2
acts trivially on F2=N. It follows that  ı k2 ı 

�1 stabilizes N and acts trivially
on F2=N 0.
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Recall that Pk � F2 is the subgroup generated by kth powers of primitive elements
of F2 . This subgroup is clearly characteristic, and thus there is a well-defined homo-
morphism

�W Aut.F2/! Aut.F2=Pk/; �.�/.gPk/D �.g/Pk :

Inner automorphism of F2 are sent by � to inner automorphisms of F2=Pk , thus �
induces a well-defined map between outer automorphism groups,

N�W Out.F2/! Out.F2=Pk/:

Let Ok � OutC.F2/ denote the subgroup normally generated by x k2 . The lemma
above guarantees:

Corollary 2.6 The subgroup Ok is contained in ker N� .

Proof We must show that for each x 2 OutC.F2/ we have x ı x k2 ı x 
�1 2 ker N� .

Since ker N� is a normal subgroup, we may take x D 1, and that x k2 2 ker N� follows
from Lemma 2.4.

In order to better understand Ok we make use of DW OutC.F2/ ! SL.2;Z/ and
the Möbius action on the Farey triangulation F . Note that SL.2;Z/ is the group of
orientation-preserving symmetries of F which permute the triangles. Thus, covering
space theory identifies each subgroup � � SL.2;Z/ bijectively with the (possibly
orbifold) quotient F=� which is tiled by triangles (possibly including some quotients
of triangles by their order 3 rotation groups). These quotients are intermediate between
F and the modular surface F=SL.2;Z/ (which has a vertex added at the cusp since F
includes vertices). The valence of a vertex in a triangulation is the number of vertices
of triangles that are identified to make that point. The valence of a vertex may be a
positive integer or infinity.

The following gives a concrete understanding of the quotient Fk D F=DOk :

Proposition 2.7 The orbifold Fk is the unique simply connected triangulated surface
such that all vertices have valence k . In particular, the combinatorial type of the
triangulated surface Fk can be described as follows:

� If k 2 f2; 3; 4; 5g, then Fk is a sphere. Specifically, F2 is a triangle doubled
across its boundary, F3 is a tetrahedron, F4 is an octahedron, and F5 is an
icosahedron.
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� The quotient F6 is the plane tiled by equilateral triangles.

� For k � 7, the quotient Fk is the hyperbolic plane tiled by equilateral triangles
each of whose angles measures 2�

k
.

Proof First observe that D 2 acts as the Möbius transformation z 7! zC1, and thus
sends each triangle of F incident to 1 to the adjacent triangle in the counterclockwise
direction about 1. Thus, if � � SL.2;Z/ contains D k2 , the corresponding quotient
F=� has valence dividing k at the vertex in the image of 1 under the covering
F ! F=� .

Now suppose � contains all of DOk . Since SL.2;Z/ acts transitively on yQ and DOk
is normal in SL.2;Z/, it follows that each vertex of F=� has valence dividing k .

Now consider moving from orbifolds to groups. Let S be a connected combinatorial
orbifold built by identifying in pairs the edges of some collection of triangles and
quotients of a triangle modulo the order 3 rotation. Such an S is covered by the
Farey triangulation, and, fixing such a covering map � W F ! S, covering space theory
associates the deck group

� D fM 2 SL.2;Z/ W � ıM D �g:

We observe that if each vertex of S has valence dividing k , then DOk � � .

We conclude from the previous paragraph that the quotients of F described in the
proposition are of the form F=� for some � containing DOk . To see � D DOk ,
recall from covering space theory that the surface Fk (branched) covers any F=� with
DOk � � . But, since the surfaces described in the proposition are simply connected
and have all vertices of valence precisely k , they exhibit no (nontrivial) branched
covers such that all vertices of the cover have valence dividing k .

The same mechanism can be used to shorten the list of group elements needed to
normally generate Pk .

Theorem 2.8 Let k � 2. Let fpi=qi W i 2 ƒg be a subset of yQ containing one
representative of each preimage of a vertex of Fk under the covering map F ! Fk .
For each i 2ƒ choose a primitive element gi 2 P.pi=qi / and an outer automorphism
x i 2 C.pi=qi /. If

f x i ı x 
k
2 ı
x �1i W i 2ƒg

generates Ok then Pk is normally generated by fgki W i 2ƒg.
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Proof Fix the quantities above and assume all hypotheses are satisfied. Let Q be the
subgroup of F2 normally generated by fgki W i 2ƒg. Clearly Q � Pk since each gi
is primitive. We will show Pk �Q .

As a consequence of Corollary 2.5 we know that x i ı x k2 ı x 
�1
i stabilizes Q for all

i 2ƒ. Then from the hypotheses we know each element of Ok stabilizes Q .

To show Pk �Q , it suffices to show that if g 2 F2 is primitive then gk 2Q . Fix g .
Then there is a p

q
2 yQ such that P

�p
q

�
D Œg� [ Œg�1�. From our hypothesis on

fpi=qig we know there is an i 2ƒ and a x 2Ok such that D x .pi=qi /D
p
q

. Then
x .Œgi �[ Œg

�1
i �/D Œg�[ Œg�1�. By definition of Q we know that the conjugacy classes

Œgki � and Œg�ki � are contained in Q . Since Q is Ok –invariant and gk 2 x .Œgki �[Œg
�k
i �/

we have gk 2Q , as desired.

The following describes a combinatorial way to find the generators:

Corollary 2.9 Fix k � 2. Let T �Fk be a tree in the 1–skeleton of Fk whose vertex
set coincides with the collection of all vertices of the triangulation. Let zT be a lift of T
to F and let fpi=qi W i 2ƒg be the vertices of zT . Then Pk D hhgki iii2ƒ , where each
gi 2 P.pi=qi / is chosen arbitrarily as in Theorem 2.8.

Proof We must check the hypotheses of Theorem 2.8. Define fpi=qig and fgig as
in the statement of the corollary and f x ig as in Theorem 2.8. Since the vertices of T
include all vertices of Fk , we see that fpi=qig contains one preimage of each vertex
of Fk . Let QD h x i ı x k2 ı x 

�1
i i �Ok . We need to show QDOk .

Associated to the chain of subgroups f1g �Q �Ok is the sequence of spaces related
by covering maps branched at the vertices of the triangulations,

F ! F=DQ �
�! Fk :

Proving that Q D Ok is equivalent to proving that � is the trivial covering. Note
that triviality will follow from Proposition 2.7 if all vertices of F=DQ have valence
dividing k , so this is what we will prove.

Let TQ � F=DQ denote the image of zT under the covering map F! F=DQ . Then
TQ is a tree because �.TQ/ D T . Observe that each vertex of TQ is incident to k
triangles because such a vertex is the image of some pi=qi 2 zT and the action of
D. x i ı x 

k
2 ı
x �1i / on F rotates by k triangles about pi=qi . Thus it suffices to prove

that every vertex of F=DQ is a vertex of the tree TQ . If this were not the case then
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there would be an edge of a triangle of F=DQ with one vertex in TQ and the other
not in TQ . We will show this doesn’t happen.

A key observation is the following. Say that the link of a vertex of a triangulated
surface is the union of the vertex with the interiors of incident edges and triangles.
The link lifting observation is the observation that � restricted to the link of a vertex
vQ 2 TQ � F=DQ is a bijection to the link of the image vertex vD �.vQ/ 2 T � Fk
since both vQ and v are incident to k triangles.

Now we return to the proof. Suppose eQ D
�����!
vQwQ is an oriented edge of a triangle of

F=DQ initiating at a vertex vQ of TQ . We will show that the terminating vertex wQ
also is a vertex of TQ . Let e D ��!vw be �.eQ/. We break into two cases.

First, it could be that e is an edge of T . Since vQ 2 TQ , by the link lifting observation
we know that e has a unique lift to FQ initiating at vQ . Since TQ is a lift of T and e
is an edge of T , this means that eQ must be an edge of TQ . Thus, wQ is also a vertex
of TQ , as desired.

Now suppose that e is not an edge of T . Since T is a spanning tree, both v and w are
vertices of T . As T is a tree, there is a unique oriented path p in T joining v to w .
Let vD p0; p1; : : : ; pnDw be the sequence of vertices passed through by p . We will
inductively prove p has a unique lift to F=DQ starting at vQ . This involves checking
that for each j 2 f1; : : : ; ng there is a unique lift of the path p0; : : : ; pj denoted
zp0; : : : ; zpj such that zp0D vQ and �.

�����!

zpi zpiC1/D
�����!
pipiC1 for i 2 f0; : : : ; j �1g. This

is true for j D 1 because vQ 2 TQ using the unique lifting provided by the observation
above. Now we will argue the inductive step. Suppose the lift is unique up through
index j < n. Then, since p is a path in T and �.TQ/ D T , we must have that all
vertices of the lift so far lie in TQ . From the link lifting observation we know that
there is a unique lift of the next edge ������!

pjpjC1 , completing the inductive step.

Now observe that since Fk is a triangulation of a simply connected surface, p [ e
bounds a topological disk �. Since vQ 2 TQ , by the link lifting observation again
there is a unique lift z� of � to F=DQ such that v lifts to vQ . From the previous
paragraph, the path p in the boundary of � lifts to a path zp in the boundary of z�
and contained in the tree TQ . Again by the assumption, the edge e in the boundary
of � lifts to eQ in the boundary of z�. Thus, eQ joins the initial point vQ of zp to
the terminal point wQ of zp . Since zp is contained in TQ , we see that wQ 2 TQ , as
desired.
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Conjecture 1 The normal generators for Pk provided by Corollary 2.9 are a minimal
set of normal generators. In particular, for k � 6, the group F2=Pk is not finitely
presented.

2.3 Normal generators for Pk with k� 5

We describe normal generators for Pk when k � 5 because these are the cases where
Corollary 2.9 yields a finite set of normal generators. These cases are finite because
Proposition 2.7 tells us that Fk is a triangulated sphere.

The case kD 2

The triangulated sphere F2 is the double of a triangle across its boundary. In Figure 2
we depict a tree T in an unfolding of F2 . We have lifted T to a tree zT in the Farey
triangulation and labeled the vertices of T by their lifts as elements of yQ. Following
Theorem 2.8 and Corollary 2.9, we have converted these elements of yQ to normal
generators of P2 .

Proposition 2.10 The quotient F2=P2 is isomorphic to the Klein four-group.

Proof Since all elements of the Klein four-group K D ha; b j a2; b2; Œa; b�i have
order 2, K is a quotient of F2=P2 . Therefore, it suffices to prove the defining relations
hold in F2=P2 . Clearly a2 D b2 D 1 in F2=P2 since a and b are primitive in F2 .
Thus, aD a�1 and b D b�1 . It follows that Œa; b�D .ab/2 D 1 since ab is primitive
in F2 .

The case kD 3

The triangulated sphere F3 is a tetrahedron. We depict a tree T in an unfolded copy
of the tetrahedron in Figure 3. We have lifted T to a tree zT in the Farey triangulation
and labeled the vertices of T by their lifts as elements of yQ. Following Theorem 2.8
and Corollary 2.9, we have converted these elements of yQ to normal generators of P3 .

Proposition 2.11 The quotient F2=P3 is isomorphic to H.Z=3Z/.

Proof In H.Z=3Z/, all elements have order 3. Thus, H.Z=3Z/ is a quotient
of F2=P3 and so it suffices to prove that relations defining H.Z=3Z/ are satisfied
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1

1

0

vertex generator of P2

1 a2

0 b2

1 .ab/2

Figure 2: The triangulated sphere F2 and the normal generators of P2 corre-
sponding to the vertices.

in F2=P3 . We work with the presentation

H.Z/DH.Z=3Z/D ha; b j a3; b3; Œa; b�3; Œa; Œa; b��; Œb; Œa; b��i:

Since a and b are primitive, we have a3 D b3 D 1 in F2=P3 . Also we have

Œa; Œa; b��D a�1.b�1a�1ba/a.a�1b�1ab/

D a�1b�1a�1bab�1ab

D .a�1b�1/2b2ab�1ab:

Since a�1b�1 is primitive in F 2 , we have .a�1b�1/3 D 1 and thus, continuing,

Œa; Œa; b��D bab2ab�1ab:D bab�1ab�1ab:D b.ab�1/3ba�1ab D b2a�1ab D 1:

Further, since P3 is characteristic, we get Œb; Œa; b��D 1. It follows that Œa; b� is central,
thus Œa; b�3 D Œa3; b�D 1 via commutator identities, completing the proof.

The case kD 4

The triangulated sphere F4 is an octahedron. We depict a tree T in an unfolded copy
of the octahedron in Figure 4. We have lifted T to a tree zT in the Farey triangulation

1

0

1

�1

vertex generator of P3

1 a3

0 b3

1 .ab/3

�1 .ab�1/3

Figure 3: The triangulated sphere F3 and normal generators of P3 .
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1
2

1

0

1

2

�1

vertex generator of P4

1 a4

0 b4

1 .ab/4

�1 .ab�1/4

2 .a2b/4

1
2

.ab2/4

Figure 4: The triangulated sphere F4 and normal generators of P4 .

and labeled the vertices of T by their lifts as elements of yQ. Following Theorem 2.8
and Corollary 2.9, we have converted these elements of yQ to normal generators of P4 .

The case kD 5

The triangulated sphere F5 is an icosahedron. We depict a tree T in an unfolded copy
of the icosahedron in Figure 5. We have lifted T to a tree zT in the Farey triangulation
and labeled the vertices of T by their lifts as elements of yQ. Following Theorem 2.8
and Corollary 2.9, we have converted these elements of yQ to normal generators of P5 .
These generators are listed in Figure 5.

–2
5

–1
2

–2
3

–1

–2

1

0

1
2

1

3
2

2

5
2 vertex generator of P5

1 a5

0 b5

1 .ab/5

�1 .ab�1/5

2 .a2b/5

1
2

.ab2/5

�2 .a2b�1/5

�
1
2

.ab�2/5

3
2

.a2bab/5

�
2
3

.ab�1ab�2/5

5
2

.a3ba2b/5

�
2
5

.ab�2ab�3/5

Figure 5: The triangulated sphere F5 and normal generators of P5 .
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3 Characteristic representations

3.1 Definition and a criterion

We say that a homomorphism �W F2! GL.n;C/ is a characteristic representation if
for any  2 Aut.F2/ there is a ‰ 2 Aut.GL.n;C// such that

(4) ‰ ı � ı �1.g/D �.g/ for all g 2 F2:

The following should be clear:

Proposition 3.1 The kernel of a characteristic representation is a characteristic sub-
group of F2 .

Recall from Section 2.1 that Aut.F2/DAutC.F2/[Aut�.F2/. Our automorphisms of
GL.n;C/ will have one of two forms corresponding to this partition. If M 2GL.n;C/
then we define

(5) ‰M ; x‰M 2Aut.GL.n;C// by ‰M .X/DMXM
�1; x‰M .X/DMXM

�1:

We call the map x‰M a conjugate inner automorphism.

We say �W F2!GL.n;C/ is an oriented characteristic representation if the following
two statements hold:

(+) For each  2 AutC.F2/ there is an M 2 GL.n;C/ such that (4) holds with
‰ D‰M .

(–) For each  2 Aut�.F2/ there is an M 2 GL.n;C/ such that (4) holds with
‰ D x‰M .

We will be working exclusively with oriented characteristic representations.

Based on properties of the tensor product, it can be observed:

Proposition 3.2 If �1W F2!GL.n1;C/ and �2W F2!GL.n2;C/ are oriented char-
acteristic representations, then so is their tensor product �1˝ �2W F2! GL.n1n2;C/
and so is the complex-conjugate representation x�1 .

We will now give an elementary method to prove that a homomorphism � is an
oriented characteristic representation. We single out elements  1;  2 2 AutC.F2/ and
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 � 2 Aut�.F2/ whose images in Out.F2/ generate Out.F2/:

(6)

 1.a/D b;  1.b/D a
�1;

 2.a/D a;  2.b/D ab;

 �.a/D a
�1;  �.b/D b:

We have the following criterion for checking if a representation is oriented characteristic:

Proposition 3.3 Let �W F2! GL.n;C/ be a homomorphism. Then � is an oriented
characteristic representation if and only if the following statements are satisfied :

(1) There is an M1 2 GL.n;C/ such that M1 D �.a/M1�.b/ and M1�.a/ D

�.b/M1 .

(2) There is an M2 2 GL.n;C/ such that M2�.a/ D �.a/M2 and M2�.b/ D

�.ab/M2 .

(–) There is an M� 2 GL.n;C/ such that M� D �.a/M��.a/ and M��.b/ D
�.b/M� .

We remark that the equations in the respective statements above are simple algebraic
manipulations of (4) in the special cases where . ;‰/ is taken to be one the pairs
. 1; ‰M1

/, . 2; ‰M2
/ or . �; x‰M�

/ and g is restricted to a pair of generators of F2 .
(For (1) and (–) we use generators a and b , while in (2) we use a and ab .) Thus the
“only if” direction is clear.

Proof of “if” direction Assume statements (1), (2) and (–) of the proposition hold. We
must prove statements (+) and (–) of the definition of oriented characteristic definition.
Let

(7)
�C D f.M; / 2 GL.n;C/�AutC.F2/ W (4) holds with ‰ D‰M g;

�� D f.M; / 2 GL.n;C/�Aut�.F2/ W (4) holds with ‰ D x‰M g:

Observe that �D�C t�� is a group, though the group operation needs adjustment.
If .M 0;  0/ 2�s with s 2 fC;�g, we define

.M; / � .M 0;  0/D

�
.MM 0;  ı 0/ 2�s if .M; / 2�C,
.MM 0;  ı 0/ 2��s if .M; / 2��.

(This choice is made to be compatible with composition of inner automorphisms and
conjugate inner automorphisms.) We must prove that the projection of � to Aut.F2/
is surjective.
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First consider the inner automorphisms of F2 , which have the form  h.g/Dhgh
�1 for

some h 2 F2 . By manipulating (4) it can be observed that .�.h/;  h/ 2�C for all h.

Now consider  1 and  2 . Observe that (4) holds for all g 2 F2 if and only if it holds
for a set of generators of F2 . As indicated above this proof, by manipulating (4) in each
case, it follows that .M1;  1/; .M2;  2/ 2 �C . The elements  1 and  2 together
with the inner automorphisms generate AutC.F2/, so AutC.F2/ is in the image of the
projection of �C .

Similarly, consider  � . Again by considering (4), we see that .M�;  �/ 2�� . The
collection f �g tAutC.F2/ generates Aut.F2/, so it must be that Aut.F2/ is in the
image of the projection of �, as desired.

Remark 3.4 (orientation-reversing elements) For the main goals of the paper, it
would suffice to work with AutC.F2/ rather than all of Aut.F2/, since AutC.F2/
already acts transitively on primitive elements of F2 , and one could define a notion of
oriented characteristic representation omitting (–) from the definition. However, all the
representations we found have this extra symmetry, and our algorithm for “improvement”
of representations described in Section 3.3 respects this additional symmetry. So, we
have opted to consider Aut�.F2/ throughout this section for aesthetic reasons at the
cost of some minor increase in the complexity of some of our arguments.

3.2 Some characteristic representations with finite image

We will now give some finite oriented characteristic representations.

We define �2W F2! GL.3;C/ by

(8) �2.a/D diag.�1;�1; 1/ and �2.b/D diag.1;�1;�1/:

Proposition 3.5 The image �2.F2/ is isomorphic to the Klein four-group, C2 �C2 .
The representation �2 is oriented characteristic.

Proof The image �.F2/ can easily be seen to consist of four elements: �2.a/, �2.b/,
the identity and �.ab/ D diag.�1; 1;�1/. By inspection, the image is isomorphic
to the Klein four-group. By an elementary calculation it can be observed that the
statements of Proposition 3.3 are satisfied for the choices of

M1 D

0@ 0 0 10 1 0

1 0 0

1A and M2 D

0@ 0 1 01 0 0

0 0 1

1A
and M� D I .
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For odd numbers k � 3 define �k W F2! GL.k;C/ by

(9) �k.a/D diag.1; !; !2; : : : ; !k�1/ and �k.b/D

0BBBBBBB@

0 1 0 0 0 � � �

0 0 1 0 0 � � �

0 0 0 1 0 � � �
:::
:::
:::

: : :

0 0 0 0 1

1 0 0 0 � � � 0

1CCCCCCCA
;

where ! D e2�i=k . Here �k.b/ is a permutation matrix of order k .

Proposition 3.6 The image �k.F2/ is isomorphic to the Heisenberg group H.Z=kZ/.
The representation is oriented characteristic: It satisfies the hypotheses of Proposition 3.3
with the matrix M1 given by

.M1/i;j D !
.i�1/.j�1/ for i; j 2 f1; : : : ; kg;

with M2 given by the diagonal matrix with entries .M2/i;i D !
�.i�1/.i�2/=2 and with

M� D I.

Proof To see the image is the Heisenberg group, recall that

H.Z=kZ/D ha; b j ak; bk; Œa; b�k; Œa; Œa; b��; Œb; Œa; b��i:

First we will check that �k factors through H.Z=kZ/. It should be clear that ak

and bk lie in ker �k . By computation we see �k.Œa; b�/D!�1I. Thus Œa; b� is central
in the image and Œa; b�k 2 ker �k . This shows that the image �k.F2/ is isomorphic to
a quotient of H.Z=kZ/. The image must be isomorphic to H.Z=kZ/ because the
homomorphism restricts to an isomorphism of the center of H.Z=kZ/.

The statements of Proposition 3.3 for the matrices M1 , M2 and M� listed can be
verified by a direct computation (calculation carried out by hand, and checked for
various values of k with SageMath [19]).

Observe that the images of �k are matrices with entries in ZŒ!�. Later we will need
the following observation:

Proposition 3.7 Fix an odd k � 3. Let Mk;k denote the additive group of k � k
matrices with entries in ZŒ!�. The subgroup of Mk;k generated by f�k.g/ W g 2 F2g
has finite index.

Proof Let Ei;j denote the matrix with a 1 in the entry in row i and column j but
with all other entries equal to zero. It suffices to show that k!nEi;j is in the generated
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subgroup for all i; j 2 f1; : : : ; kg and all n 2 f0; : : : ; k � 1g. By direct computation
we observe

kE1;1 D

k�1X
`D0

�k.a
`/:

Utilizing the action of �k.b/ as a permutation matrix we can then see

Ei;j D �k.b
1�i / �E1;1 � �k.b

j�1/:

Thus, kEi;j is in this generated subgroup as well. Finally, to get the powers of !
observe that �k.Œb; a�/D !I.

Corollary 3.8 For odd k � 3, the representation �k is irreducible.

Proof Any subspace of Ck which is invariant under �k must be mapped into itself
by all elements of the subgroup of Mk;k generated by f�k.g/ W g 2 F2g. The previous
proposition implies that there is no such nonzero proper subspace.

3.3 Improving characteristic representations

We will now explain a process which can take an oriented characteristic representation
�W F2! GL.n;C/ and produce a new oriented characteristic representation z�W F2!
GL.zn;C/ where zn� n and hopefully the ker z� is strictly smaller than ker � .

Fix � for this subsection. We will consider deformations of � into the affine group
Aff.n/DCn Ì GL.n;C/, where the product in Aff.n/ is given by

(10) .v;M/ � .w; N /D .vCMw;MN/:

The group GL.n;C/ is isomorphic to a subgroup Aff.n/ via the map M 7! .0;M/, and
this explains how to multiply elements of GL.n;C/ and Aff.n/. Let �1W Aff.n/!Cn

and �2W Aff.n/ ! GL.n;C/ be the natural projections (noting that �1 is not a
homomorphism). We will say that an affable representation y�W F2 ! Aff.n/ is a
homomorphism for which �2 ı y�D � . We use A to denote the collection of all affable
representations. Observe:

Proposition 3.9 The collection A is a vector space over C when endowed with the
operations of addition and scalar multiplication defined by

.y�1C y�2/.g/D .�1 ı y�1.g/C�1 ı y�2.g/; �.g//; .�y�1/.g/D .��1 ı y�1.g/; �.g//

for all y�1; y�2 2 A, all � 2 C and all g 2 F2 . In particular, for any g the map
evalg W A!Cn defined by evalg.y�/D �1 ı y�.g/ is linear.
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Discussion of proof The operations are clearly linear in nature, but it must be checked
that y�1C y�2 and �y�1 define group homomorphisms (assuming y�1 and y�2 are group
homomorphisms). We leave this elementary check to the reader.

Proposition 3.10 Recall a and b denote the generators of F2 . The map

evala � evalbW A!Cn
�Cn

is a vector space isomorphism.

Proof It should be clear that this defines a homomorphism between vector spaces by
definition of the operations in Proposition 3.9. It is an isomorphism because the images
of the generators determine the homomorphism; the inverse map sends .a;b/ to the
homomorphism determined by the following images of the generators of F2 :

(11) a 7! .a; �.a// and b 7! .b; �.b//:

Let conjW Cn �A!A be the action defined by postconjugation by Cn � Aff.n/,

(12) conjv.y�/.g/D .v; I / � y�.g/ � .�v; I / for all g 2 F2;

where I denotes the identity element of GL.n;C/. When A is viewed as isomorphic
to C2n , we see that each conjv acts by translation on A (ie conjv.y�/� y� does not
depend on y�):

Proposition 3.11 For each v 2Cn , each y� 2A and each g 2 F2 , we have

(13) .conjv.y�/� y�/.g/D
�
.I � �.g//v; �.g/

�
:

We call conjv.y�/� y� the translation vector of conjv .

Proof This follows from the computation in Aff.n/,

conjv.y�/.g/D .v; I /�.�1ıy�.g/; �.g//�.�v; I /D .vC�1ıy�.g/C�.g/.�v/; �.g//:

Let � denote the equivalence relation on A where

(14) y�1 � y�2 if there is a v 2Cn satisfying conjv.y�1/D y�2.

Corollary 3.12 The quotient A=� is a complex vector space with operations induced
by those of A.
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Proof It needs to be observed that the operations of addition and scalar multiplication
induce well-defined actions on A=�. This follows from linearity of the translation
vector of (13) in v 2Cn .

Recall that � is a fixed homomorphism. Recall the definition of � D �C t ��

in (7) from the proof of Proposition 3.3 and recall that � is an oriented characteristic
representation if and only if the projection of �D�C t�� to Aut.F2/ is surjective.

We view GL.n;C/ as a subgroup of Aff.n/. Conjugation by an element of GL.n;C/
induces an automorphism of Aff.n/.

We use GL.A/ to denote the group of linear automorphisms of A and GL.A/ to denote
the collection of conjugate-linear automorphisms. Together, GL.A/[GL.A/ forms a
group. We have the following:

Lemma 3.13 There is a homomorphism N W �! GL.A/[GL.A/ such that :

(+) If .M; / 2�C and y� 2A, then NM; 2 GL.A/ and

NM; .y�/.g/DM � .y� ı 
�1.g// �M�1 for all g 2 F2:

(–) If .M; / 2�� and y� 2A, then NM; 2 GL.A/ and

NM; .y�/.g/DM � .y� ı �1.g// �M
�1 for all g 2 F2:

Each NM; sends �–equivalence classes to �–equivalence classes and so induces an
automorphism N�M; 2 GL.A=�/[GL.A=�/. Furthermore , the induced map

N�W �! GL.A=�/[GL.A=�/ given by .M; / 7!N�M; 

is a homomorphism.

Proof Since M 2 GL.n;C/ and  2 Aut.F2/, it should be clear that the defini-
tions provided for NM; .y�/ give a homomorphism F2 ! Aff.n/. Writing y�.g/ D
.�1 ı y�.g/; �.g// (using affability of y�) we see that when .M; / 2�C we have

(15) NM; .y�/.g/D
�
M ��1 ı y� ı 

�1.g/;M � .� ı �1.g// �M�1
�

D .M ��1 ı y� ı 
�1.g/; �.g//

with the last step given by definition of �C in (7). To see linearity observe that
�1ıy�ı 

�1.g/ varies linearly in y� by Proposition 3.9 and we are simply postcomposing
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with the linear action of M 2 GL.n;C/. Similarly, if .M; / 2�� ,

(16) NM; .y�/.g/D .M ��1 ı y� ı �1.g/;M � � ı �1.g/ �M
�1/

D .M ��1 ı y� ı �1.g/; �.g//:

Observe that NM; is conjugate-linear in this case.

Now we must check that the linear action respects �–equivalence classes. Suppose
y�1 � y�2 . By Proposition 3.11, this is true if and only if there is a v 2Cn such that

(17) .y�1� y�2/.g/D
�
.I � �.g//v; �.g/

�
for all g 2 F2:

Fix such a v and let y�v 2A be defined as in the right side of (17). Then, by linearity
or conjugate-linearity of NM; , we have

NM; .y�1/�NM; .y�2/DNM; .y�v/:

By (15), if .M; / 2�C , we have

NM; .y�v/.g/D
�
M � .I � � ı �1.g//v; �.g/

�
D
�
.I � �.g//Mv; �.g/

�
;

where we are using the identity M �.�ı �1.g// �M�1D �.g/ again in the second step.
Then Proposition 3.11 tells us that NM; .y�1/�NM; .y�2/. Similarly, if .M; /2�� ,
we have

NM; .y�v/.g/D
�
M � .I � � ı �1.g//v; �.g/

�
D
�
.I � �.g//M xv; �.g/

�
;

and again Proposition 3.11 tells us that NM; .y�1/�NM; .y�2/.

It will be useful later to note that inner automorphisms act trivially on A=�:

Proposition 3.14 Let  h 2 Aut.F2/ denote the inner automorphism g 7! hgh�1 .
Then, for all z 2C X f0g, we have

.z�.h/;  h/ 2�C and N�z�.h/; h
.Œy��/D zŒy�� for all Œy�� 2A=�.

In particular, N�
�.h/; h

acts trivially on A=�.

Proof Fix z 2C X f0g and fix h 2 F2 . Recall that .z�.h/;  h/ 2�C if and only if

.z�.h// � .� ı �1h .g// � .z�.h//�1 D �.g/ for all g 2G:

The z and z�1 cancel and the left side simplifies as

.z�.h// � .� ı �1h .g// � .z�.h//�1 D �.h/�.h�1gh/�.h/�1 D �.g/:
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Now fix any y� 2A and observe y�ı �1
h
.g/D y�.h�1/y�.g/y�.h/. Choose v;w2Cn sat-

isfying y�.g/D .v; �.g// and y�.h/D .w; �.h//. Then y�.h/�1D .��.h/�1w; �.h/�1/
and thus

y� ı �1h .g/D .��.h/�1w; �.h/�1/ � .v; �.g// � .w; �.h//

D
�
�.h/�1.�.g/� I /wC �.h/�1v; �.h�1gh/

�
:

By definition,

Nz�.h/; h
.y�/.g/D .z�.h// � .y� ı �1h .g// � .z�.h//�1:

By combining with the above we see

ŒNz�.h/; h
.y�/� zy��.g/D

�
.I � �.g//.�zw/; �.g/

�
;

and so by Proposition 3.11 Nz�.h/; h
.y�/� zy� .

Fix an integer k � 2. Recall Pk � F2 denotes the subgroup generated by the kth

powers of primitive elements in F2 . Assume Pk � ker � . The collection of k–affable
representations is

(18) Ak D fy� 2A W Pk � ker y�g:

As a consequence of Proposition 3.9, Ak is a linear subspace of A: it is the intersection
of the kernels of the linear maps evalpk taken over all primitive p 2 F2 .

We have:

Proposition 3.15 (1) Each �–equivalence class is either contained in or disjoint
from Ak .

(2) For each .M; / 2�, Ak is invariant under NM; .

Proof Since Pk �F2 is characteristic, if f W A!A is such that kerf .y�/ differs from
ker y� by an automorphism of F2 for every affable y� , then Ak is invariant under f .
This holds in the cases of f given by conjv and NM; , and these cases cover the
respective cases of the proposition.

Summarizing the results above, we see that Ak=� is a linear subspace of A=�, and
N�M; .Ak=�/DAk=� for all .M; / 2�.

Choose any subspace I � Ak=� which is invariant under the action of N�M; for
.M; / 2 �. Ideally we would take I D Ak=� to get the largest invariant space
possible. (Later in the proof of Theorem 3.18 we do not prove that our choice of I is
all of Ak=�.)
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Let mD dim I . Choose y�1; : : : ; y�m 2Ak such that the images in Ak=� form a basis
for I . In block matrix form we define

(19) z�W F2! GL.nCm;C/; g 7!

�
�.g/ Q.g/

0 I

�
2 GL.nCm;C/;

where
Q.g/D

�
�1 ı y�1.g/ �1 ı y�2.g/ : : : �1 ı y�m.g/

�
:

Here each �1 ı y�i .g/ is interpreted as the i th column vector of Q.g/. Then:

Theorem 3.16 Assume �W F2!GL.n;C/ is an oriented characteristic representation
with Pk � ker � . Define I , m, y�1 , . . . , y�m and z� as above. Then z� is also an oriented
characteristic representation with Pk � ker z� . Furthermore, there is a short exact
sequence of the form

1! z�.ker �/! F2=ker z�! F2=ker �! 1;

and z�.ker �/ is a torsion-free abelian group.

Proof First we will show that z� is a group homomorphism. Considering the block
form of the image, observe that it suffices to understand the top-right block (since
we are given that � is a homomorphism). Checking that z�.g1g2/D z�.g1/z�.g2/ then
reduces to checking that

Q.g1g2/DQ.g1/C �.g1/Q.g2/:

Checking this for column i amounts to checking that

�1 ı y�i .g1g2/D �1 ı y�i .g1/C �.g1/ ��1 ı y�i .g2/;

which is true because y�i is a homomorphism to Aff.n/, which has product rule as
in (10).

From (19) and by definition of Ak , we see that z�.gk/D I for each primitive g 2 F2 ,
guaranteeing that Pk � ker z� .

Exactness of the provided sequence should be clear. The group z�.ker �/ is torsion-free
and abelian because for each g 2 ker � we have

z�.g/D

�
I Q.g/

0 I

�
:

In particular, z�.ker �/ is an additive subgroup of Cmn .
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It remains to show that z� is an oriented characteristic representation. Choose any
 2 Aut.F2/. Let s 2 fC;�g be such that  2 Auts.F2/. Define

z�0W F2! GL.nCm;C/

by

z�0.g/D

(
z� ı �1.g/ if s DC;

z� ı �1.g/ if s D�:

We need to show that z�0 is conjugate by an element of GL.mCn;C/ to z� . We will
demonstrate this by applying a sequence of conjugations.

First, since � is an oriented characteristic representation, there is a matrix M 2GL.n;R/
such that .M; / 2�s . This guarantees that either

(20) M � Œ� ı �1.g/� �M�1 D �.g/ or M � � ı �1.g/ �M�1 D �.g/

for all g 2 F2 depending on the sign s . Define z�1 to be a conjugate of z�0 formed as
follows:

z�1.g/D

�
M 0

0 I

�
� z�0.g/ �

�
M�1 0

0 I

�
:

Recall from Lemma 3.13 there is an NM; in GL.A/ or GL.A/ (depending on s )
describing the conjugation action on A. Let Coli .X/ denote the i th column of a
matrix X. By (20) and the description of NM; , we have

z�1.g/D

�
�.g/ Q1.g/

0 I

�
; where Coli .Q1.g//D �1.NM; .y�i /.g//

for i 2 f1; : : : ; mg.

Let zI � Ak denote the preimage of I under the quotient map Ak ! Ak=�; this is
the union of the equivalence classes in I . Recall that I �Ak=� is N�M; –invariant.
In addition, �–equivalence classes are permuted by NM; ; see Lemma 3.13. It
follows that zI is NM; –invariant. We therefore have that NM; .y�i / lies in zI for
i 2 f1; : : : ; mg. Let IL D spanfy�1; : : : ; y�mg. From our choice of y�1; : : : ; y�m , the
space IL is a lift of I ; ie the quotient map Ak!Ak=� restricts to an isomorphism
IL! I . Recall that the �–equivalence classes are conjv orbits; see (14). Thus, for
each i 2 f1; : : : ; mg there is a unique vector vi such that

conjvi
ıNM; .y�i / 2 IL:
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We now define a homomorphism z�2W F2! GL.nCm;C/ conjugate to z�1 by

z�1.g/D

�
I V

0 I

�
� z�1.g/ �

�
I �V

0 I

�
; where V D

�
v1 : : : vm

�
:

By definition of conj in (12) we see that

z�2.g/D

�
�.g/ Q2.g/

0 I

�
; where Coli .Q2.g//D �1.conjvi

ıNM; .y�i //

for all i 2 f1; : : : ; mg.

Let p denote the isomorphism IL! I mentioned above. Since this is an isomorphism,
there is an NL 2GL.IL/[GL.IL/ such that pıNLDN�M; jI ıp . Then, in particular,
we have

conjvi
ıNM; .y�i /DNL.y�i / for all i 2 f1; : : : ; mg.

As a consequence we see that fconjvi
ıNM; .y�i / W i D 1; : : : ; mg is a basis for IL .

Thus there is a matrix RD .Ri;j / 2 GL.m;C/ such that

y�j D

mX
iD1

Ri;j conjvi
ıNM; .y�i / for all j 2 f1; : : : ; mg.

Then, by linearity of the evaluation maps (see Proposition 3.9), for each g 2 F2 we
have

(21) �1.y�j .g//D

mX
iD1

Ri;j�1.conjvi
ıNM; .y�i /.g// for all j 2 f1; : : : ; mg.

Recall the left side gives the columns of Q.g/, which is the top-right submatrix of z�.g/;
see (19). Thus, this equation expresses column j of Q.g/ as a linear combination of
columns of Q2.g/ with weights given by entries in the j th column of R . Thus we
have that Q2.g/ �RDQ.g/ for all g . We define the conjugate z�3 of z�2 by

z�3.g/D

�
I 0

0 R�1

�
� z�2.g/ �

�
I 0

0 R

�
D

�
�.g/ Q2.g/R

0 1

�
D z�.g/:

Since z�3 D z� , we have produced the desired conjugacy.

3.4 Case kD 6

We define �6 to be the tensor product �2˝ �3 , where �2 and �3 are defined as in (8)
and (9). Then �6 may be thought of as a homomorphism F2! GL.9;C/. Letting
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! D e2�i=3 , we have the formulas

�6.a/D diag.�1;�!;�!2I �1;�!;�!2I 1; !; !2/;

�6.b/D

0BBBBBBBBBBBBBB@

0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0

0 0 0 0 �1 0 0 0 0

0 0 0 0 0 �1 0 0 0

0 0 0 �1 0 0 0 0 0

0 0 0 0 0 0 0 �1 0

0 0 0 0 0 0 0 0 �1

0 0 0 0 0 0 �1 0 0

1CCCCCCCCCCCCCCA
:

Applying the improvement algorithm of Theorem 3.16 to �6 can be shown by calculation
to give rise to the representation z�6W F2! GL.12;C/ defined as block matrices as

z�6.a/D

�
�6.a/ 0

0 I

�
and z�6.b/D

�
�6.b/ B

0 I

�
; where B D

0BBBBBBBBBBBBB@

1 0 0

0 0 0

�1 0 0

0 1 0

0 0 0

0 �1 0

0 0 0

0 0 1

0 0 0

1CCCCCCCCCCCCCA
:

We will not present the computational proof that z�6 arises from �6 by applying
Theorem 3.16 with I D A6 . However we will demonstrate that it is an oriented
characteristic representation:

Proposition 3.17 The homomorphism z�6 is an oriented characteristic representation.
The kernel ker z�6 contains P6 and is of infinite index in F2 . Furthermore, there is a
short exact sequence of groups of the form

1! Z18! F2=ker z�6! C2 �C2 �H.Z=3Z/! 1:

Proof To see the representation is oriented characteristic, observe that the criterion of
Proposition 3.3 is satisfied with the choices of matrices M� D I and M1 and M2 as
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below:

M1 D

0BBBBBBBBBBBBBBBBBBBB@

0 0 0 0 0 0 1 1 1 0 0 �
1
2

0 0 0 0 0 0 1 ! !2 0 0 1

0 0 0 0 0 0 1 !2 ! 0 0 1

0 0 0 1 1 1 0 0 0 0 0 0

0 0 0 1 ! !2 0 0 0 0 �2! � 1 0

0 0 0 1 !2 ! 0 0 0 0 2!C 1 0

1 1 1 0 0 0 0 0 0 1 0 0

1 ! !2 0 0 0 0 0 0 �1 0 0

1 !2 ! 0 0 0 0 0 0 �1 0 0

0 0 0 0 0 0 0 0 0 0 0 �
3
2

0 0 0 0 0 0 0 0 0 0 �2! � 1 0

0 0 0 0 0 0 0 0 0 �2 0 0

1CCCCCCCCCCCCCCCCCCCCA

;

M2 D

0BBBBBBBBBBBBBBBBBBBB@

0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 !2 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0

0 0 !2 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 !2 0 0 0

0 0 0 0 0 0 0 0 0 0 �1 0

0 0 0 0 0 0 0 0 0 �1 0 0

0 0 0 0 0 0 0 0 0 0 0 !2

1CCCCCCCCCCCCCCCCCCCCA

:

Thus ker z�6 is a characteristic subgroup of F2 by Proposition 3.1. Observe that
z�6.a

6/D I, and thus P6 � ker z�6 .

The top-left 9�9 block is isomorphic to the representation �6 D �2˝�3 , where these
representations were taken from Section 3.2. Thus, the image �6.F2/ is isomorphic to
C2 �C2 �H.Z=3Z/, and therefore this map induces the surjective map F2=ker z�6!
C2�C2�H.Z=3Z/ in the short exact sequence. The kernel of this map is isomorphic
to the image z�6.ker �6/. Thus we get our exact sequence as described but with Z18

replaced by z�6.ker �6/. The group z�6.ker �6/ is an abelian group because matrices in
z�6.ker �6/ have a 2�2 block form with copies of the identity matrix along the diagonal
and a zero matrix in the lower-left block. In this subgroup, multiplication is the same as
addition in the top-right block, and thus z�6.ker �6/ is naturally a subgroup of ZŒ!�27
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since z�6 takes values in GL.12;ZŒ!�/. This shows that z�6.ker �6/ is a finite-rank free
abelian group. To figure out this rank, we observe using [18] that C2�C2�H.Z=3Z/
can be written as a quotient of the rank 2 free group ha; bi by

ker �6 D hha6; b6; Œa; b�3; Œa; Œa; b��; Œb; Œa; b��ii:

We already know that a6; b6 2 ker z�6 and can check that Œa; b�3 2 ker z�6 . Thus the
abelian image z�6.ker �6/ is generated by elements of the form

(22) z�6.gŒa; Œa; b��g
�1/ and z�6.gŒb; Œa; b��g

�1/

with g 2F2 . Note that if �6.g1/D �6.g2/, then g1g�12 2 ker �6 , and since z�6.ker �6/
is abelian, we have

z�6.g2Œa; Œa; b��g
�1
2 /D z�6.g1g

�1
2 /z�6.g2Œa; Œa; b��g

�1
2 /z�6.g1g

�1
2 /�1

D �6.g1Œa; Œa; b��g
�1
1 /:

Similarly, for such g1 and g2 , we have

z�6.g1Œb; Œa; b��g
�1
1 /D z�6.g2Œb; Œa; b��g

�1
2 /:

Since �6.F2/ŠC2�C2�H.Z=3Z/, to generate z�6.ker �6/ it suffices to take elements
from (22) with one g taken from each preimage ��16 .M/, where M varies over
elements of �6.F2/. Since �6.F2/Š C2 �C2 �H.Z=3Z/, this amounts to a list of
108 pairs of generators. This reduces the computation of the rank of z�6.ker �6/ to
a finite computation which can be done on the computer. Using SageMath [19], we
computed rank z�6.ker �6/D 18, so z�6.ker �6/Š Z18 .

3.5 Odd k� 5

Let k � 5 be odd and define �k W F2! GL.k;C/ as in (9). We define ! D e2�i=k .

We will define an extension z�k W F2 ! GL
�
k C 1

2
.k � 3/;C

�
, which we found by

applying the method of Theorem 3.16. (In the next proof, we will show that z�k arises
from �k by this method.) Let B denote the k� 1

2
.k�3/ matrix whose column vectors

are given by

(23) bj D ejC1� ek�j for integers j with 1� j � 1
2
.k� 3/;

where ei denotes the standard basis vector with a 1 in position i . We define z�k in
block form by

(24) z�k.a/D

�
�k.a/ 0

0 I

�
and z�k.b/D

�
�k.b/ B

0 I

�
:
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Theorem 3.18 For each odd k � 5 the homomorphism z�k is an oriented charac-
teristic representation. The kernel ker z�k contains Pk and is of infinite index in F2 .
Furthermore, there is a short exact sequence of groups of the form

1! Zd ! F2=ker z�k!H.Z=kZ/! 1;

where d D k � 1
2
.k� 3/ � ŒQ.!/ WQ�.

Proof Fix an odd k � 5. To simplify notation, we will use � to denote �k and use
z� to denote z�k as defined in (24). In this proof, we will show that z� is derivable
from � as described by Theorem 3.16. The theorem then implies that z� is an oriented
characteristic representation and that Pk � ker z� .

Verifying that the theorem applies requires working through Section 3.3. We will begin
by setting up notation and applying some results from Section 3.3 to our setting. We
will then define a subspace IL of the space A of affable representations. We will
check that IL is contained in Ak and that its quotient in Ak=� is N�M; –invariant.
Then we will observe that z� as defined above coincides with the definition in (19) used
in Theorem 3.16 with an appropriate choice of basis. Finally we must check that the
group z�.ker �/ is isomorphic to Zd with d as in the statement of the theorem.

Recall that evala � evalb gives an isomorphism A!Ck �Ck ; see Proposition 3.10.
We’ll find it useful to use coordinates provided by the inverse map

RD .evala � evalb/
�1
W Ck

�Ck
!A:

The image of .a;b/ is defined as in (11).

The subgroup Ck � Aff.k/ acts on A by conjugation. For v 2 Ck we used conjv
to denote this action, and wrote y�1 � y�2 if there is a v such that conjv.y�1/ D y�2 .
The space A=� is a vector space. By Proposition 3.11, we know that conjv acts by
translation on A and this translation vector depends linearly on v . Thus the natural
map C W A!A=� is linear and the kernel T D kerC is the collection of translation
vectors. By applying the formula in Proposition 3.11 to the standard basis vectors
e1; : : : ; ek 2Ck and our particular � , we see

(25) T D spanC

�
fR.0; e1� ek/g[ fR..1�!

j�1/ej ; ej � ej�1/ W 2� j � kg
�
:

In particular, for each y� 2A there is a unique v 2Ck satisfying

(26) conjv.y�/DR.c1e1; c2e2C c3e3C � � �C ckek/
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for some choice of c1; : : : ; ck 2 C . This gives a standard representative for each
conjugacy class. Let S � A denote those representations which can be written in
the form on the right side of (26). Then S is a section for C in the sense that the
restriction C jS W S! A=� is an isomorphism of vector spaces, and there is a linear
map P W A! S with kernel T (defined by S D C j�1S ıC ) which stabilizes points
in S . That is, P is the projection to S with leaves parallel to T .

Now consider the subspace Ak �A consisting of those y� 2A such that Pk � ker y� ,
as originally defined in (18). Define

(27) IL D spanC

˚
R.0;bj / W 1� j �

1
2
.k� 3/

	
;

where the vectors bj are defined as in (23). Note IL � S . Define I D C.IL/. Then
I D IL=� is a subspace of A=�. We make the following claims:

Claim 1 I is N�M; –invariant for all .M; / 2�.

Claim 2 I �Ak .

This will verify the hypotheses of Theorem 3.16 providing a new oriented characteristic
representation z� with Pk � ker z� . Let

(28) y�j DR.0;bj / for j 2
˚
1; : : : ; 1

2
.k� 3/

	
:

We obtain the matrix representation for z� using (19).

We will see that I has algebraic significance which explains the invariance in Claim 1.

First consider the kernel of the natural projection �2W �! Aut.F2/. This subgroup
consists of those pairs .M; id/ such that M commutes with every �.g/. Since � is
irreducible (Corollary 3.8), Schur’s lemma implies that only the center of GL.k;C/
commutes with all of �.F2/. Thus,

(29) ker�2 D
˚
.zI; id/ W z 2C X f0g

	
:

Let � 02 denote the natural map �! Out.F2/. If .M; / 2 ker� 02, then there is an h
such that  .g/D hgh�1 for all g 2 F2 . Fix this  for this discussion. Observe that
one M which satisfies .M; / 2� is �.h/ (see Proposition 3.14). The other solutions
differ by multiplication by an element of ker�2 , so we have .M; / 2� if and only if
M D z�.h/ for some z 2C X f0g. Then, by recalling Proposition 3.14, we conclude
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that for any .M; / 2� with  an inner automorphism, there is a z 2C X f0g such
that

(30) N�M; .Œy��/D zŒy�� for all Œy�� 2A=�.

Let  1 2 Aut.F2/ be as in (6). Let M1 2 GL.k;C/ be the matrix in Proposition 3.6.
Then we have .M1;  1/ 2 �. We claim that every element of N�� preserves the
eigenspaces of N�.M1;  1/

2 . (In this proof, we will use N�.M; / to denote N�M; 
and N.M; / to denote NM; to avoid double subscripts.) This has to do with the
fact that the outer automorphism class of  21 represents �I in the identification of
Out.F2/ with GL.2;Z/, and thus lies in the center of Out.F2/. To understand these
eigenspaces are invariant, first recall that  41 is the trivial automorphism of F2 . Thus,
by (29), M 4

1 is a nonzero scalar multiple of the identity. Note that N�.M1;  1/
4 also

scales by the same amount. It follows (say by considering Jordan canonical form)
that N�.M1;  1/

2 is diagonalizable and has eigenvalues in the set f˙z1g for some
z1 2CXf0g. Let dC and d� denote the dimensions of the eigenspaces with eigenvalue
z1 and �z1 , respectively. Since dim.A=�/D k (which follows from (26)), we have
dCCd�D k . Since k is odd it follows that dC¤ d� . To verify that these eigenspaces
are preserved, pick any .M; / 2 �. Since the image of  21 in Out.F2/ is central,
we know that the commutator Œ �1;  �21 � is an inner automorphism. Thus, by (30),
N�.Œ �1;  �21 �; ŒM�1;M�21 �/ scales elements of A=� by some z 2 C X f0g, and
by simplifying we get

(31) N�.M; / ıN�.M1;  1/
2
ıN�.M; /�1 D zN�.M 2

1 ;  
2
1 /:

Observe that the left side above is conjugate to N�.M1;  1/
2 and so has eigenspaces of

dimension d˙ with corresponding eigenvalues of ˙z1 . The right-hand side, however,
has eigenvalues of dimension d˙ with corresponding eigenvalues of ˙zz1 . It follows
that z D 1, and then (31) gives centrality of N�.M1;  1/

2 in N�� and this centrality
implies that the eigenspaces of N�.M1;  1/

2 must be preserved by elements of N�� .

We will now find a basis of eigenvectors for N�.M1;  1/
2 to show that I is an

eigenspace. Observe that  21 W F2! F2 is the automorphism satisfying

 21 .a/D a
�1 and  21 .b/D b

�1

and thus  21 is an involution. Also, the entries of M 2
1 are given by

.M 2
1 /i;j D

kX
`D1

!.i�1/.`�1/!.`�1/.j�1/
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D

kX
`D1

!.jCi�2/.`�1/

D

�
k if j C i � 2� 0 .mod k/;
0 otherwise.

In particular,

(32) M 2
1 ej D kei ; where i is such that j C i � 2� 0 .mod k/:

Recalling the notation in the paragraph including (25) and (26), we define the map
N 2
1 W S! S by

(33) N 2
1 D C j

�1
S ıN

�.M1;  1/
2
ıC jS D P ıN.M1;  1/

2
jS :

Equality of these two expressions follows from the facts that

C ıN.M1;  1/
2
DN�.M1;  1/

2
ıC

(ie that N�.M1;  1/
2 is the action on A=� induced by N.M1;  1/

2 ) and that P D
C j�1S ıC, as noted in the paragraph cited above. We will evaluate N 2

1 using the rightmost
identity in (33), by applying N.M1;  1/

2 followed by the projection P W A! S which
has fibers parallel to T . We will show that a list of eigenvalues and eigenvectors of N 2

1

is given by:

(a) The vectors y�j D R.0;bj / for j 2
˚
1; : : : ; 1

2
.k � 3/

	
are eigenvectors with

eigenvalue k .

(b) The vectors R.0; ejC1Cek�j / for j 2
˚
1; : : : ; 1

2
.k�3/

	
are eigenvectors with

eigenvalue �k .

(c) The vectors R.e1; 0/, R.0; e.kC1/=2/ and R.0; ek/ are eigenvectors with eigen-
value �k .

The reader will observe that the vectors listed above span S and the eigenspace formed
by the span of the eigenvectors in case (a) coincides with IL . Thus, by proving these
statements we will have verified Claim 1.

Before proving (a)–(c) we need to understand the action of N.M1;  1/
2 . Let .a;b/ 2

Ck �Ck and y�DR.a;b/. We have, by definition of N,

N.M1;  1/
2.y�/.a/DM 2

1 � .��.a
�1/a; �.a�1// �M�21

D .�M 2
1 �.a

�1/a;M 2
1 �.a

�1/M�21 /:
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Since .M 2
1 ;  

2
1 / 2�, we know that M 2

1 �.a
�1/M�21 D �.a/ and thus

N.M1;  1/
2.y�/.a/D .��.a/M 2

1 a; �.a//:

Similarly, we have N.M1;  1/
2.y�/.b/ D .��.b/M 2

1 b; �.a//. Putting these two to-
gether, we see that

N.M1;  1/
2
ıR.a;b/DR.��.a/M 2

1 a;��.b/M 2
1 b/:

We specialize this using our understanding of M 2
1 and �.a/ and �.b/ into some useful

special cases. We have

(34) N.M1;  1/
2
ıR.e1; 0/DR.��.a/M

2
1 e1; 0/DR.�k�.a/e1; 0/DR.�ke1; 0/:

For j > 1, we have

(35) N.M1;  1/
2
ıR.0; ej /DR.0;��.b/M

2
1 ej /DR.0;�k�.b/ekC2�j /

DR.0;�kekC1�j /:

Now we will check (a)–(c). First consider (c). That N 2
1 ı R.e1; 0/ D �kR.e1; 0/

follows from (34). Similarly, that R.0; e.kC1/=2/ has eigenvalue �k follows from (35)
with j D 1

2
.kC1/. Again by (35), N 2

1 ıR.0; ek/ is the projection of R.0;�ke1/ to S
along T . Since R.0; e1�ek/2 T , we have N 2

1 ıR.0; ek/DR.0;�kek/, finishing the
proof of (c). Now consider (a). Recall that bj D ejC1�ek�j for j D 1; : : : ; 1

2
.k�3/,

and using (35), we observe

N.M1;  1/
2
ıR.0;bj /DR.0;�kek�j C kejC1/D kR.0;bj /;

which verifies (a). Finally consider (b). For j 2
˚
1; : : : ; 1

2
.k� 3/

	
, we have

N.M1;  1/
2
ıR.0; ejC1Cek�j /DR.0;�kek�j �kejC1/D�kR.0; ejC1Cek�j /:

This completes the proof of Claim 1.

Finally, we need to prove Claim 2 that I �Ak=�. From the above we know that I is
N�–invariant, so it suffices to prove that y�.ak/D 1 for each y� 2 IL . We clearly have
this since each y�DR.0; v/ for some v 2Ck ; see (27). This proves Claim 2.

Since we have proven the claims, we obtain the representation z� as discussed sur-
rounding (28). It remains to show that z�.ker �/Š Zd with d D k � 1

2
.k � 3/ �n with

nD ŒQ.!/ WQ� as stated in the theorem. Observe that z� is a representation from F2

into GL
�
k C 1

2
.k � 3/;ZŒ!�

�
. For g 2 ker � , the matrix z�.g/ has a block form as

in (19), with the identity appearing in the diagonal blocks, zero in the bottom left, and
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a k � 1
2
.k� 3/ matrix Q.g/ in the top right. We will show that the rank d is as large

as possible: as large as the rank k � 1
2
.k� 3/ �n of the additive group of k � 1

2
.k� 3/

matrices with entries in ZŒ!�. We claim that it suffices to find a g 2 ker � such that the
top-right block Q.g/ has linearly independent columns. We will prove this suffices,
and then give such a g below. Observe that given any h 2 F2 , we have hgh�1 2 ker �
and a computation shows that Q.hgh�1/D �.h/Q.g/. It follows that

Q.ker �/�ƒQ.g/;

where ƒ is the additive group of matrices generated by �.F2/. Proposition 3.7 guaran-
tees that the additive group M of k�k matrices with entries in ZŒ!� contains ƒ as a
finite-index subgroup. Thus we can find matrices M1; : : : ;Mk2n 2ƒ which generate
the space of k�k matrices with entries in Q.!/ as a Q–vector space. Define the map
ˆ to send a k � k matrix M with entries in Q.!/ to the product MQ.g/. Then ˆ is
Q.!/–linear, so we have

dimQ.!/.kerˆ/C dimQ.!/.imgˆ/D dimQ.!/M D k2:

The kernel of ˆ consists of those M 2M such that the rows of M are perpendicular
to each column of Q.g/. Since the columns of Q.g/ are linearly independent, the
rows of matrices in kerˆ can be taken from a Q.!/–linear subspace of codimension
1
2
.k� 3/. We conclude dimQ.!/.kerˆ/D k

�
k� 1

2
.k� 3/

�
and it follows that

dimQ.!/.imgˆ/D k � 1
2
.k� 3/ and so dimQ.imgˆ/D k � 1

2
.k� 3/ �n:

The images ˆ.M1/; : : : ; ˆ.Mk2n/ of our Q–basis of matrices span the image of ˆ
as a Q–vector space, so we can find k � 1

2
.k � 3/ � n such images which are linearly

independent over Q. These images freely generate a free abelian group, which lies
in ƒQ.g/ and therefore also in Q.ker �/. We conclude that the rank of Q.ker �/ is at
least k � 1

2
.k� 3/ �n, as desired.

We carry out this calculation for gD Œa�1; Œa; b�1��D aba�1b�1a�1bab�1 2 ker.�/.
The columns of Q.g/ are given by �1 ı y�j .g/ for j 2

˚
1; : : : ; 1

2
.k � 3/

	
. It may be

computed that

y�j .aba
�1b�1/D ..!j �!�1/ejC1C .!

�1
�!�j�1/ek�j ; !

�1I /;

y�j .a
�1bab�1/D ..!�j �!1/ejC1C .!

1
�!jC1/ek�j ; !I /;

y�j .g/D ..!
j
� 1/.1�!�j�1/.ejC1� ek�j /; I /:
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(This calculation was done by hand and independently verified using [19] for several
values of k .) Observe that the coefficient .!j � 1/.1�!�j�1/ is never zero for the
range of j under consideration. Also the vectors are linearly independent since the
positions of nonzero entries never coincide. Thus the above argument gives us the rank
we claimed.

3.6 Case kD 4

We define �4W F2! GL.2;C/ by

�4.a/D

�
i 0

0 �i

�
and �4.b/D

�
0 1

�1 0

�
:

Proposition 3.19 The image �4.F2/ is isomorphic to the quaternion group Q of
order 8. The representation �4 is oriented characteristic and P4 � ker �4 . The additive
subgroup of 2� 2 matrices generated by the image of �4 consists of those matrices of
the form

Mx;y D

�
x �xy

y xx

�
with x; y 2 ZŒi �:

Proof Let M DfMx;y W x; y 2Cg and observe that M is closed under multiplication.
Thus SL.2;C/\M is a multiplicative group containing �4.a/ and �4.b/. Furthermore,
detMx;y D jxj

2Cjyj2 , so there are exactly eight matrices in SL.2;C/\M . Observe
by inspection that SL.2;C/\M is isomorphic to Q and that �4.a/ and �4.b/ generate.
Also observe that the matrices M1;0;Mi;0;M0;1;M0;i 2 �4.F2/ generate M as an
additive group. To see �4 is oriented characteristic, observe it satisfies Proposition 3.3
with the choice of matrices

M1 D

�
1 i

i 1

�
; M2 D

�
i 0

0 1

�
and M� D I:

Also we have P4 � ker �4 since the kernel is characteristic and �4.a/4 D I.

Let z�4W F2! GL.4;C/ be defined by

z�4.a/D

0BBB@
i 0 0 0

0 �i 0 0

0 0 1 0

0 0 0 1

1CCCA and z�4.b/D

0BBB@
0 1 1 0

�1 0 0 1

0 0 1 0

0 0 0 1

1CCCA :
This representation was produced by following the argument of Theorem 3.16 with
I DA4=�, though we will not prove this. We do show:

Algebraic & Geometric Topology, Volume 20 (2020)



The extrinsic primitive torsion problem 3365

Proposition 3.20 The homomorphism z�4 is an oriented characteristic representation.
The kernel of z�4 contains P4 and is of infinite index in F2 . We have

z�4.ker �4/D

8̂̂̂<̂
ˆ̂:
0BBB@
1 0 z �Sw

0 1 w xz

0 0 1 0

0 0 0 1

1CCCA W .w; z/ 2ƒ
9>>>=>>>; ;

where ƒ is the kernel of the map

ZŒi �2! Z=2Z given by .aC ib; cC id/ 7! aC bC cC d .mod 2/:

Thus there is a short exact sequence of groups of the form

1! Z4! F2=ker z�4!Q! 1:

Proof To see z� is oriented characteristic, apply Proposition 3.3 with M� D I,

M1 D

0BBB@
2 2i i � 1 �i � 1

2i 2 �i C 1 �i � 1

0 0 2i � 2 0

0 0 0 �2i � 2

1CCCA and M2 D

0BBB@
i 0 0 0

0 1 0 0

0 0 1 0

0 0 0 i

1CCCA :
Then, to see that P4 � ker z�4 , it suffices to observe that z�4.a4/D I.

Define 
 W ZŒi �2! GL.4;C/ by

(36) 
.z; w/D

0BBB@
1 0 z �Sw

0 1 w xz

0 0 1 0

0 0 0 1

1CCCA :
The proposition claims that z�4.ker �4/D 
.ƒ/. Recall that the quaternion group has a
presentation of the form

QD ha; b j a4 D b4 D a2b2 D ab�1ab D 1i:

Since z�4.a4/D z�4.b4/D I, it follows that z�4.ker �4/ is generated by images under z�4
of conjugates of a2b2 and ab�1ab . We compute

z�4.a
2b2/D 
.�1; 1/ and z�4.ab

�1ab/D 
.0; i C 1/:

Now we will consider z�4.ga2b2g�1/ for g 2 F2 . Let P be the top-right 2 � 2
submatrix of z�4.a2b2/ above. Conjugates z�4.ga2b2g�1/ have top-right submatrix
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given by �4.g/ �P. Thus z�4.ker �4/ contains all the matrices Mx;yP where Mx;y is
in the additive group generated by �4.g/ which was described by Proposition 3.19 in
terms of a vector .x; y/ 2 ZŒi �2 . We have

(37) Mx;yP D

�
x �xy

y xx

�
�

�
�1 �1

1 �1

�
D

�
�x� xy �xC xy

�yC xx �y � xx

�
:

Varying .x; y/ over f.1; 0/; .i; 0/; .0; 1/; .0; i/g gives generators for the normal sub-
group of z�4.F2/

N1 D hz�4.ga
2b2g�1/ j g 2 F2i:

Namely we see that

N1 D 
.ƒ1/; where ƒ1 D h.�1; 1/; .�i;�i/; .�1;�1/; .i;�i/i � ZŒi �2:

A similar calculation shows that the normal subgroup

N2 D hz�4.gab
�1abg�1/ j g 2 F2i

is given by

N2 D 
.ƒ2/; where ƒ1 D h.0; i C 1/; .0; 1� i/; .�1� i; 0/; .�1C i; 0/i � ZŒi �2:

A simple calculation shows that

hƒ1; ƒ2i D h.�1; 1/; .�i;�i/; .�1;�1/; .0; i C 1/i;

which is a subgroup of ZŒi �2 with index 2. Observe that ƒD hƒ1; ƒ2i and from the
discussion above we have z�4.ker �4/D 
.ƒ/.

The short exact sequence follows from the fact that 
.ƒ/ is a free abelian group of
rank 4.

Given z�4 and �4 as above we may consider the tensor product z� 04 D x�4˝ z�4 , which
is also an oriented characteristic representation by Proposition 3.2. We have ker z� 04 D
ker z�4 and we can view z� 04 as a homomorphism to GL.8;C/.

Define the homomorphism zz�4W F2! GL.9;C/ so that

zz�4.a/D diag.1;�1;�i;�i I �1; 1; i; i I 1/;(38)
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zz�4.b/D

0BBBBBBBBBBBBBB@

0 0 0 0 0 1 1 0 0

0 0 0 0 �1 0 0 1 0

0 0 0 0 0 0 1 0 1

0 0 0 0 0 0 0 1 0

0 �1 �1 0 0 0 0 0 0

1 0 0 �1 0 0 0 0 0

0 0 �1 0 0 0 0 0 0

0 0 0 �1 0 0 0 0 �1

0 0 0 0 0 0 0 0 1

1CCCCCCCCCCCCCCA
:(39)

The top-left 8� 8 submatrices of images of zz�4 realize z� 04. The representation zz�4 was
found by applying the approach of Theorem 3.16 to z� 04 but we will not prove this. We
have:

Proposition 3.21 The homomorphism zz�4 is an oriented characteristic representation.
The kernel of zz�4 contains P4 . Furthermore, there is a short exact sequence of groups
of the form

1! Zd ! F2=ker zz�4! F2=ker z�4! 1;

where d � 1.

It will follow from later work that ker zz�4 D P4 and that d D 1 in the statement above.
See Theorem 4.2.

Proof That zz�4 is oriented characteristic follows from Proposition 3.3 with

M1 D

0BBBBBBBBBBBBBB@

2 2i i � 1 �i � 1 �2i 2 i C 1 i � 1 i � 1

2i 2 �i C 1 �i � 1 2 �2i �i � 1 i � 1 i � 1

0 0 2i � 2 0 0 0 2i C 2 0 2

0 0 0 �2i � 2 0 0 0 2i � 2 �2

�2i 2 i C 1 i � 1 2 2i i � 1 �i � 1 �i � 1

2 �2i �i � 1 i � 1 2i 2 �i C 1 �i � 1 i C 1

0 0 2i C 2 0 0 0 2i � 2 0 �2

0 0 0 2i � 2 0 0 0 �2i � 2 �2

0 0 0 0 0 0 0 0 4

1CCCCCCCCCCCCCCA
;

M2 D diag.1;�i;�i; 1; i; 1; 1; i; 1/

and M� D I. Again we have P4 � ker zz�4 because ker zz�4.a4/D I.

It may be observed that the upper-left 8�8 submatrix of zz�.g/ is a matrix representation
of x�4.g/˝z�4.g/. Since ker z�4� ker �4 , we have that ker.x�4˝z�4/D ker z�4 . Matrices
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in zz�.ker z�4/ therefore have the block form�
I v

0 1

�
;

where I is the 8�8 identity matrix and v is an 8�1 matrix with entries in ZŒi �. Thus
zz�.ker z�4/ is isomorphic to an additive subgroup of ZŒi �8 . Let d D rank zz�.ker z�4/. We
compute

(40) zz�4.Œa; b�
2/D

0BBBBBBBBBBBBBB@

1 0 0 0 0 0 0 0 2i

0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 2i

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1

1CCCCCCCCCCCCCCA
:

Thus Œa; b�2 lies in ker z�4 and its image generates a copy of Z in zz�4.F2/. This shows
d � 1. Finally observe that we have the natural short exact sequence

1! zz�.ker z�4/! zz�4.F2/! .x�4˝ z�4/.F2/! 1:

Here, the map zz�4.F2/! .x�4˝ z�4/.F2/ is the map that takes a matrix in zz�4.F2/ to its
top-left 8� 8 block. We have zz�4.F2/Š F2=ker zz�4 , and .x�4˝ z�4/.F2/Š F2=ker z�4
from the discussion above. This yields the exact sequence in the proposition.

4 Characterizing F2=P4

A polycyclic group is a group that admits a subnormal series with cyclic factors. Any
group that is virtually nilpotent is polycyclic. The Hirsch length of a polycyclic group
is the number of infinite factors in any subnormal series with cyclic factors. For any
polycyclic group G, we will refer to the Hirsch length as the dimension of the group,
and denote it by dim.G/. A fact that we will use repeatedly in this section is that for
any normal subgroup N �G, we have (see for instance [3, Theorem 4.7] for a proof)

dim.G/� dim.N /D dim.G=N/:

In particular, if G is torsion-free and N is nontrivial, then dim.G/ > dim.G=N/.
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For this section let G D F2=P4 . The following proposition tells us that G is virtually
torsion-free nilpotent of dimension equal to 5. We will use this result to prove that
the representation zz�4 is faithful. For this, we will need to record the generators of the
torsion free subgroup we find.

Proposition 4.1 Let N be the subgroup of G generated by

a1 DE
�2; a2 D A

4D2; a3 D AE
�2A�4BA�1B�1;

a4 D A
9CA�1C�1BAB�1A�1;

where
AD ba�1b�1a; B D b�1aba�1; C D b�1a�1ba;

D D a2b.a�1b�1/2a�1ba; E D b�1.ab/2a�3b�1a:

Then N is a 5–dimensional torsion-free nilpotent subgroup of index 212 in F2=P4
that is isomorphic to H.Z/�H.Z/ with one nontrivial added relator.

Proof Let G2 be the second term of the derived series for G, where G is described
in terms of the relations provided by the table in Figure 4. Using GAP [18], we can
confirm that G2 is a subgroup of finite index in G. Moreover, GAP gives us the
following presentation for G2 (the Fi notation follows GAP’s output):˝
F1; F2; F3; F4; F5 jF

�1
3 F�11 F3F1DF

�1
2 F�13 F2F3DF

�1
2 F4F2F

�1
4 D 1;

F�11 F2F1F
�1
2 DF4F5F

�1
4 F�15 DF

�1
5 F2F5F

�1
2 D 1;

F4F
�1
1 F5F

�1
4 F1F

�1
5 DF

�1
4 F�15 F3F5F4F

�1
3

DF�15 F3F1F5F3F
�1
1 D 1;

F4F1F3F
�1
4 F�11 F�13 DF

�1
3 F2F

�1
1 F4F3F

�1
2 F1F

�1
4 D 1;

F�15 F3F5F
�1
3 F5F3F

�1
5 F�13 D 1;

F�11 F�12 F5F
�1
3 F�15 F1F

�2
2 F3F

�1
2 DF2F4F1F

�1
4 F 32 F

�1
1 D 1

˛
:

From this presentation and computations in [18], we see that G2 satisfies the following:

(1) The first homology of G2 is Z=4Z�Z4 .

(2) G2 has index 1024.

Let N be the group generated by F1 , F3 , F4 and F5 . Using GAP [18], we can check
that N has index 212 and has the desired generators. Moreover, GAP gives that N
has a presentation of the form

N D ha1; a2; a3; a4 jRi;
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where

RD
˚
Œa1; a2�; Œa3; a4�; Œa1; a3�; Œa

2
4a3; a

�1
1 a2�; Œa2; a4�; Œa4a3; a

�2
1 a2�;

Œa4a3; .a
�1
1 a2/

�1a4.a
�1
1 a2/�

	
:

This is a quotient of the right-angled Artin group F2�F2 with the three added relators

Œa24a3; a
�1
1 a2�; Œa4a3; a

�2
1 a2�; Œa4a3; .a

�1
1 a2/

�1a4.a
�1
1 a2/�:

Viewing the group as F2 �F2 D ha1; a4i � ha2; a3i, we can simplify the relations to

.Œa24; a
�1
1 �; Œa3; a2�/; .Œa4; a

�2
1 �; Œa3; a2�/; 
 WD .Œa4; a1a4a

�1
1 �; 1/:

Using suitable conjugations, we further simplify the relations to

.Œa1; a
2
4�; Œa3; a2�/; .Œa21; a4�; Œa3; a2�/; 
 WD .Œa4; a1a4a

�1
1 �; 1/:

Then N is the group .F2 �F2/=K, where K is the normal subgroup generated by the
elements above.

The last relator gives that Œa1; a4� and a4 commute. By the two other relators, we have
.Œa1; a

2
4�; 1/D .Œa

2
1; a4�; 1/. This equality is equivalent to

Œa1; a4�Œa1; a4�
a4 D Œa1; a4�

a1 Œa1; a4�:

Hence, .Œa1; a4�; 1/ is central in N. Moreover, since .Œa1; a24�; Œa3; a2�/ is a relator,
.1; Œa3; a2�/ is also central in N.

Let H1 be the image of F2� 1 in N and H2 the image of 1�F2 . Since .Œa1; a4�; 1/
and .1; Œa3; a2�/ are central, the groups H1 and H2 are both quotients of H.Z/ (in
fact, they are both isomorphic to H.Z/). It follows that N must be H.Z/�H.Z/
with a relation identifying the square of a central generator of H.Z/� 1 with one of
1�H.Z/. It is now clear that N has infinite center. Thus, N has Hirsch length equal
to 5 and is torsion-free, as desired.

Recall the definition of zz�4W F2 ! GL.9;C/ described by (38) and (39). From
Proposition 3.21, P4 � ker zz�4 , thus we can consider zz�4 to be a homomorphism
from G to GL.9;C/.

Theorem 4.2 The representation zz�4W F2=P4! GL.9;C/ is faithful. We have d D 1
in Proposition 3.21.
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Proof First we will show that d D 1 using a dimension argument. For this proof,
consider �4 , z�4 and zz�4 to be homomorphisms from F2=P4 and their kernels to be
subgroups of F2=P4 . We can compute that the generators of N lie in ker �4 , and we
conclude N � ker �4 . Propositions 3.20 and 3.21 tell us that z�4.ker �4/ is isomorphic
to Z4 and zz�4.ker �4/ is a further Zd –extension for d � 1. It follows that zz�4.ker �4/
is polycyclic. Moreover, dim zz�4.ker �4/ D 4C d � 5. Since dimension nonstrictly
drops under surjective homomorphisms, we have dimN � dim zz�4.N /, and since N is
of finite index inside of F2=P4 , we have dim zz�4.N /D dim zz�4.F2=P4/. Putting this
all together we have

5D dimN � dim zz�4.N /D dim zz�4.F2=P4/D 4C d � 5:

We conclude that all expressions in the above line are 5, and therefore d D 1. Since
nontrivial quotients of N have strictly smaller dimension, we also get that the restriction
of zz�4 to N is injective. Thus the faithfulness claimed in the theorem will follow if we
can prove that subgroup indices satisfy

Œzz�4.F2=P4/ W zz�4.N /�D ŒF2=P4 WN�:

We already know that ŒF2=P4 WN�D 212 . It suffices to prove that Œzz�4.G/W zz�4.N /�� 212

since index cannot grow under group homomorphisms.

First observe that Œ�4.G/ W�4.N /�D 23 since N � ker �4 and �4.G/ is isomorphic to
the quaternion group.

Now consider the index Œz�4.G/ W z�4.N /�. Let a1 , a2 , a3 and a4 denote the gener-
ators for N listed in Proposition 4.1. Define 
 W ZŒi �2 ! GL.4;C/ as in (36). By
Proposition 3.20, z�4.ker �4/D 
.ƒ/, where ƒ� ZŒi �2 is a subgroup of index 2. We
compute

(41)
z�4.a1/D 
.�2i � 2;�2i C 2/; z�4.a2/D 
.2i � 2; 2i C 2/;

z�4.a3/D 
.4; 0/; z�4.a4/D 
.0; 4i/:

Thus z�4.N /D 
.ƒ0/, where

ƒ0 D h.�2� 2i;�2i C 2/; .2i � 2; 2i C 2/; .4; 0/; .0; 4i/i:

Based on this, we observe ƒ0 �ƒ and we can compute that ŒZŒi �2 Wƒ0�D 27 and thus
Œƒ Wƒ0�D 26 . It follows that

Œz�4.ker �4/ W z�4.N /�D 26 and Œz�4.F2=P4/ W z�4.N /�D 2
6C3:
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Finally, we consider the index Œzz�4.G/ W zz�4.N /�. From the above, we know that
F2=ker zz�4 is a Z–extension of F2=ker z�4 . We have Œa; b�2 2ker z�4 but zz�4.Œa; b�2/¤ I
(see (40)). Since the images under z�4 of the four generators ai freely generate the image
z�4.N /, which is isomorphic to Z4 ŠN=ŒN;N �, it follows that N \ ker z�4 D ŒN;N �.
Since N is two-step nilpotent, this commutator subgroup is generated by commutators
of the generators of N. We compute

zz�4.Œa1; a2�/D zz�4.Œa3; a4�/D I:

For other pairs of generators of N we have

zz�4.Œa3; a1�/D zz�4.Œa4; a1�/D zz�4.Œa2; a3�/D zz�4.Œa4; a2�/D zz�4.Œa; b�
2/8:

Thus the central copy of Z in zz�4.F2=P4/ contains zz�4.N \ ker z�4/ with index at
least 23 . Consequently, Œzz�4.F2=P4/ W zz�4.N /�� 23C6C3 , as desired.

Appendix Relation to square-tiled surfaces

A translation surface is a surface equipped with an atlas of coordinate charts to the
plane such that all transition functions are restrictions of translations.

Let T denote the 2–torus R2=Z2 and Tı D T X f0g be the once-punctured torus.
A square-tiled surface (or origami) is a cover of Tı endowed with the pullback
translation structure. Here we allow the cover to be finite or infinite. See [20] for a
survey discussing translation surfaces including square-tiled surfaces.

Fix a translation surface S. Given a vector .u; v/2R2 the straight-line flow determined
by .u; v/ is the flow F t W S ! S given in local coordinates by

F t .x; y/D .x; y/C t .u; v/:

The straight-line flow of a point will not be defined for all time if under the projection
to T the flow hits the puncture at 0. We call such a straight-line trajectory singular.

Let .u; v/ 2 Z2 and assume u and v are relatively prime. Then the straight-line flow
determined by .u; v/ on the torus T is periodic with all points having period 1. Let S
be a square-tiled surface. For a positive integer k we say S is k–periodic if for all
relatively prime .u; v/ 2 Z2 , every nonsingular straight-line trajectory determined by
.u; v/ is periodic with period dividing k .
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We take
�
1
2
; 1
2

�
to be the basepoint of Tı and say that a square-tiled surface with

basepoint is a square-tiled surface S with the choice of a basepoint s such that the
covering map to Tı maps s to

�
1
2
; 1
2

�
. If S1 and S2 are two square-tiled surfaces

with basepoints s1 and s2 , respectively, and �i W Si ! Tı are the associated covering
maps, we say that S1 covers S2 if there is a covering map � W S1 ! S2 satisfying
�.s1/D �.s2/ and �2 ı� D �1 .

This paper originated with the following observation:

Proposition A.1 For any k � 1 there is a k–periodic square-tiled surface with base-
point Uk such that Uk covers any other k–periodic square-tiled surface with basepoint.

We call Uk the universal k–periodic square-tiled surface.

Covering space theory associates a square-tiled surface S with basepoint to a subgroup
�S of the fundamental group �1

�
Tı;

�
1
2
; 1
2

��
. Note that this fundamental group is iso-

morphic to the free group F2 . For purposes of this appendix consider �1
�
Tı;

�
1
2
; 1
2

��
to

be the same as F2 . Following Herrlich we call S characteristic if �S is a characteristic
subgroup of F2 . Characteristic square-tiled surfaces S are maximally symmetric: they
have a deck group acting transitively on the lifts of any point of Tı and each element
of GL.2;Z/ stabilizes S (through the action of GL.2;R/ on the space of translation
surfaces).

Some finite characteristic square-tiled surfaces which are k–periodic have attained
an almost mythical status in the subject of translation surfaces, serving up numerous
counterexamples in the field. Especially famous are the fantastically named eierlegende
Wollmilchsau discovered independently in [6] and [11] and the ornithorynque first
described in [7]. These surfaces were studied further in [8; 16]. If this article were
written more geometrically, the Heisenberg origamis studied by Herrlich in [10] would
play a leading role.

Two facts combine to give a proof of Proposition A.1:

(1) From basic covering space theory, the square-tiled surface with basepoint S1
covers the square-tiled surface S2 with basepoint if and only if �S2

� �S1
.

(2) A conjugacy class in F2 represents a homotopy class of curves containing closed
geodesics on Tı if and only if the conjugacy class consists of primitive elements
in F2 . This observation dates back to Nielsen’s 1913 thesis.
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It follows that a square-tiled surface with basepoint S is k–periodic if and only if it
is covered by the square-tiled surface Uk defined so that �Uk

D Pk , where Pk � F2
denotes the subgroup generated by kth powers of primitive elements as in this paper.

From work in this paper we obtain an understanding of U1; : : : ; U4 :

(1) We have U1 D Tı .

(2) The surface U2 is .R=2Z/2 punctured at the integer points.

(3) The surface U3 is the Heisenberg origami denoted by O3;3 in [10] jointly
discovered by Herrlich, Möller and Weitze-Schmithüsen.

The eierlegende Wollmilchsau mentioned above is the square-tiled surface W defined
so that �W is the kernel of the surjective homomorphism F2!Q , where Q is the
quaternion group. The surface W is 4–periodic. From our understanding in this paper
of P4 and in particular knowledge of the representation zz�4 of Section 3.6, which is
faithful by Theorem 4.2, we see:

Theorem A.2 The surface U4 is an infinite area square-tiled surface and is a torsion-
free 5–dimensional 2–step nilpotent cover of the eierlegende Wollmilchsau.

It is particularly interesting that U4 is a geometrically natural example of an infinite
nilpotent cover of a compact translation surface, because some methods are available
to study the dynamics of the straight-line flow on such a surface; see for instance [4].
It is a consequence of [12, Theorem G.3, Remark 4.1] and GL.2;Z/–invariance of U4
that:

Corollary A.3 There is a dense subset E of the unit circle in R2 with Hausdorff
dimension larger than 1

2
such that for any .u; v/ 2E the straight-line flow determined

by .u; v/ on U4 is ergodic.

As a consequence of the universality of U4 it follows that the straight-line flow deter-
mined by each .u; v/ 2 E is ergodic on each 4–periodic square-tiled surface. This
motivates:

Question 4 Is the straight-line flow determined by .u; v/ ergodic on U4 whenever
u
v
…Q?

The kernels of the representations z�k for odd k � 5 determine characteristic k–
periodic origamis Ok which are infinite free abelian covers of the Heisenberg origamis
of Herrlich. The conclusions of Corollary A.3 then hold for the surfaces Ok and we
similarly wonder what the answer to Question 4 would be in these cases.

Algebraic & Geometric Topology, Volume 20 (2020)



The extrinsic primitive torsion problem 3375

This paper shows that Pk is of infinite index in F2 when k � 4 and it follows that for
k � 4 the surface Uk is infinite. Virtual nilpotence of F2=Pk is necessary to apply
[12, Theorem G.3], so an affirmative answer to Question 1(b) in the case of r D 2 and
k � 5 would extend Corollary A.3 to cover the corresponding Uk . Even in the absence
of this, the method of Section 3 can be iterated to produce other characteristic multistep
nilpotent covers of compact square-tiled surfaces when applied multiple times in the
cases of k � 5 as with our construction of the representation zz�4W F2=P4! GL.9;C/.
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