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We define new differential graded algebras A(n, k, S) in the framework of Lipshitz,
Ozsvith and Thurston’s and Zarev’s strands algebras from bordered Floer homology.
The algebras A(n, k,S) are meant to be strands models for Ozsvath and Szabd’s
algebras B(n, k,S); indeed, we exhibit a quasi-isomorphism from B(n,k,S) to
A(n,k,S). We also show how Ozsvith and Szabd’s gradings on B(n, k, S) arise
naturally from the general framework of group-valued gradings on strands algebras.
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1 Introduction

Heegaard Floer homology is a package of invariants for 3—manifolds and 4-manifolds
introduced by Ozsvéth and Szab6 [22; 21] that has proven to be particularly powerful in
the last two decades. A variation of their construction — see [20] and Rasmussen [28] —
called knot Floer homology and abbreviated HFK, assigns a graded abelian group
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to a knot or link, and the Euler characteristic of this group recovers the Alexander
polynomial. Knot Floer homology has many applications in knot theory; for example,
it exactly characterizes elusive knot information like Seifert genus and fiberedness,
for which the knot polynomials provide only incomplete bounds, and it leads to the
definition of many interesting knot concordance invariants.

In the past ten years, there has been considerable interest in assigning Heegaard
Floer invariants to surfaces and 3—dimensional cobordisms between them. Lipshitz,
Ozsvéth and Thurston’s bordered Floer homology [11] initiated this project; Zarev [29]
introduced a generalization known as bordered sutured Floer homology. If one views
Heegaard Floer homology from the perspective of topological quantum field theories
(TQFTs), then bordered Floer homology begins the investigation of Heegaard Floer
homology as an “extended” TQFT. Extensions of TQFTs have been of particular interest
since Lurie’s proof [12] of the Baez—Dolan cobordism hypothesis classifying fully
extended TQFTs.

Bordered sutured Floer homology assigns an invariant to a surface F' by first choosing a
combinatorial representation of F, called an “arc diagram” by Zarev. Arc diagrams are
a special case of what are known as “chord diagrams” in eg Andersen, Fuji, Manabe,
Penner and Sulkowski [2] (see Definition 3.1 below). Chord diagrams may have
linear and/or circular “backbones” (see Figure 1); arc diagrams are the same as chord
diagrams with no circular backbones. To an arc diagram Z representing a surface F(Z2),
bordered sutured Floer homology associates a differential graded (dg) algebra A(Z2),
called the bordered strands algebra of Z because it can be visualized by pictures of
strands intersecting in [0, 1] x Z. Auroux [3] has shown that A(Z) is closely related
to Fukaya categories of symmetric powers of F(Z), in line with the original definition
of Heegaard Floer homology.

More recently, Ozsvéth and Szabé [24; 26; 25; 19] have used the ideas of bordered Floer
homology to define a new algorithmic method for computing HFK by decomposing a
knot into tangles. Their theory has striking computational properties [23], categorifies
aspects of the representation theory of U, (gl(1|1)) —see Manion [14]—and has
surprising connections with other such categorifications; see Manion [13]. We will
refer to their theory as the Kauffinan-states functor, since Kauffman states for a knot or
tangle projection (equivalently, spanning trees of the Tait graph) play a prominent role.

To a tangle diagram, the Kauffman-states functor assigns a bimodule whose definition
is motivated by holomorphic curve counting as in bordered Floer homology. However,
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Figure 1: The Heegaard diagram motivating the Kauffman-states functor,
and the chord diagram implied by it. Such a chord diagram has 2 linear
backbones and 3 circular backbones (all drawn in black).

the dg algebras B(n,S) over which the bimodule is defined are not among Zarev’s
bordered strands algebras. Indeed, for a single crossing, Ozsvith and Szabd count
curves in a particular Heegaard diagram from which a chord diagram Z(n) can be
inferred (see Figure 1), but some of the backbones of Z(n) are circular rather than
linear, so Z(n) is not an arc diagram and Zarev’s construction does not apply.

We begin by defining a reasonable candidate A(n, S) for the bordered strands algebra
of the chord diagram Z(n) in question, with a diagrammatic interpretation in terms
of intersecting strands as usual (the data S encodes orientations on tangle endpoints
and will be described below in Section 2). The algebra A(n, S) is larger than B(n, S),
with a more elaborate differential. See eg Figure 6 for an illustration. The dg algebras
A(n,S) and B(n,S) are both direct sums of dg algebras A(n,k,S) and B(n,k,S)
for 0 <k <n. Like B(n, k,S), the strands algebra A(n, k,S) comes with a Maslov
grading and various Alexander multigradings.

The bordered strands algebra A(n, k, S) and Ozsvith and Szabd’s algebra B(n, k, S)
are in fact closely related to each other. Using our generators-and-relations description
of B(n,k,S) from [16], we define a dg algebra homomorphism ®: B(n,k,S) —
A(n, k,S) and prove the following result:

Theorem 1.1 The map ®: B(n,k,S) — A(n, k,S) is a quasi-isomorphism.
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Since we computed the homology of B(n, k,S) in [16], we deduce the homology of
A(n, k,S) from Theorem 1.1.

Corollary 1.2 Applying ® to the basis for H«(B(n, k,S)) given in Theorem 2.20
yields a basis for H«(A(n, k,S)).

We can also transfer the formality properties for B(n, k,S) proved in [16] to the
quasi-isomorphic algebras A(n, k, S).

Corollary 1.3 The dg algebra A(n,k,S) is formal if and only if S = @ or k €
{0,n,n+1}.

We describe the gradings on A(n, k, S) combinatorially in Definition 6.1; their defini-
tion depends on S. However, bordered strands algebras A(Z) typically have gradings
by nonabelian groups G’(Z) and G(Z) which do not see the dependence on S. We
define these gradings in our setting too (both groups end up being abelian) and show
how they are related to the combinatorial gradings.

Theorem 1.4 Given S, we have an isomorphism
Os: G'(Z(n)) = Z o 72"

such that, given a homogeneous element a of A(n,k,S), the first component of
Os(deg’(a)) is the Maslov degree of a and the rest of the components form the
unrefined Alexander multidegree of a. Similarly, we have an isomorphism

Os: G(2(n)) = Z & (32)"

whose first component recovers the Maslov grading and whose second component
recovers the refined Alexander multigrading.

Theorem 1.4 helps to explain the appearance of the data S in the algebras A(n, k, S)
and B(n, k, S), since the orientation data for tangle endpoints is not visible from the
chord diagram Z(n). While the gradings by G’'(Z(n)) and G(Z(n)) are independent
of this orientation data, their interpretation as standard Maslov and Alexander gradings
is noncanonical and its choice forces a choice of S.

We note that this noncanonicity stems from the condition “j = ¢(«) mod 1” in Lipshitz,
Ozsvith and Thurston’s definition of their nonabelian gradings [11, Definition 3.33].
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Thus, we have a new motivation for this somewhat mysterious-seeming condition, since
in the end we do want A(n, k,S) and B(n,k,S) to depend on orientations. Note,
however, that A(n, k,S) and B(n, k,S) depend on S for more than just their gradings;
S also determines whether certain additional generators are allowed in the algebras.

Along with B(n,k,S), it is natural to consider certain idempotent-truncated alge-
bras B,(n,k,S), B;(n,k,S) and B'(n, k,S). Each has an associated chord diagram
Z,(n), Z;(n) or Z’'(n), and we define the corresponding strands algebras A, (n,k,S),
A;j(n,k,S) and A'(n, k,S) (they are idempotent truncations of A(n, k, S)). We prove
that ® gives a quasi-isomorphism between the truncated algebras as well, deducing
results about homology and formality for the truncated algebras from the analogous
results in [16].

Finally, we define symmetries on the strands algebras A(n, k, S) analogous to Ozsvéth
and Szabd’s symmetries R and o on the algebras B(n,k,S), and we show that ®
preserves these symmetries. The symmetries on A(n, k, S) have an appealing visual
interpretation as symmetries of the surface [0, 1] x Z(n) on which the strands pictures
are drawn.

Context and motivation

This paper is a sequel to [16], which lays much of the necessary groundwork for our
main results here. A third paper [15] in the series is planned, in which we define
bimodules over A(n, k,S) for crossings and prove that they are compatible with
Ozsviéth and Szabd’s bimodules in an appropriate sense.

We view our constructions as evidence for the existence of a generalized theory of
bordered sutured Floer homology, allowing chord diagrams with circular backbones and
correspondingly generalized Heegaard diagrams. Defining Heegaard Floer homology
analytically in this level of generality has not been attempted, and appears to be quite
difficult. However, various recent constructions should be special cases of such a
generalized theory, including Lipshitz, Ozsvéth and Thurston’s work in progress on a
bordered HF ™~ theory for 3—manifolds with torus boundary [8] as well as Zibrowius’s
constructions in [30]. Our work should enable Ozsvath and Szabd’s Kauffman-states
functor to be directly compared with such a generalized theory once it exists, unifying
the Kauffman-states functor with the rest of bordered Floer homology.

In [17], Rapha&l Rouquier and the first author will define generalized strands alge-
bras A(Z), including A(n,k,S) as a special case. These algebras are candidates
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for the algebras appearing in a generalized bordered sutured theory, possibly after
deformation as in [8]. The constructions of [17] will also give A(Z) the structure of a
2-representation of Khovanov’s categorified Z/l(;r (gl(1]1)). Thus, together with [17],
this paper fills in (the positive half of) a missing piece from the discussion of [14].
While [14] shows that the bimodules from the Kauffman-states functor categorify
Uy (gl(1]1))—intertwining maps between representations, no candidate was offered for
the categorification of the U, (gl(1|1)) actions on the representations. This paper allows
us to replace Ozsvath and Szabd’s algebra B(n, k,S) (when desired) with a strands
algebra A(n, k,S) on which a categorified quantum-group action is given in [17].
Alternatively, one could directly define a 2—action on B(n, k,S), and show that it
is compatible with the 2—action on A(n, k, S) via ®; the 2—action on B(n,k,S) is
constructed by Lauda and Manion [5] (for S = & although the construction generalizes).
The first author plans to clarify the relationship between these 2—actions once the general
framework of [17] is available.

This paper, along with [16], only discusses the algebras coming from Ozsvith and
Szabd’s first paper [24] on the Kauffman-states functor. A variant of these algebras
was introduced in [26], and further variants will be defined in [25; 19]. It would be
very interesting to find analogues of the results of this paper for any of these algebras,
especially the “Pong algebra” from [19]. As with Lipshitz, Ozsvath and Thurston’s
constructions in [8], the Pong algebra may give further insight into the algebraic
structure required for a generalized bordered sutured theory as mentioned above.

For the reasons discussed in [16], we will follow the standard conventions in bordered
Floer homology and work over F». While the bordered strands algebras have not been
defined over Z in general, to the authors’ knowledge it is plausible that the constructions
in this paper could be done over Z. However, it is likely that an analytic generalization
of bordered sutured Floer homology would be considerably more difficult over Z than
over [F5.

Remark 1.5 After this paper was posted, the authors discovered that similar construc-
tions have also been studied by Lekili and Polishchuk in [7], including an analogue
of our Theorem 1.1. The Ozsvath—Szabé algebra B(n, k, @) agrees with the algebra
A°° of [7], as one can check by comparing [7, Theorem 3.2.5] with [24, Section 3].
The “strands” dg algebra modeling €9 s.s7homw(Lg, Ls’), where W is the partially
wrapped Fukaya category of Symk (D2 \nb(p1,..., pn)) with two stops on dD? and
{L g} are the distinguished Lagrangians, is not given a precise definition in [3] or [7], but
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presumably our dg algebras A(n, k, @) (and the more general strands algebras of [17])
are the intended algebras for the results in [3; 7]. If so, Proposition 11 of [3], whose
proof is sketched in [3], implies that A(n, k, @) describes the partially wrapped Fukaya
category W as discussed in [7]. This Fukaya-categorical perspective raises the exciting
possibility of understanding Ozsvath and Szabd’s one-sided tangle invariants from
[24; 26; 25] as objects in certain derived Fukaya categories (perhaps with curvature),
and similarly for their two-sided invariants, ideally with geometric interpretations in
terms of Lagrangian correspondences (as mentioned in [7]). Our thoughts on this
question will be discussed in [15].

Remark 1.6 In [25], Ozsvath and Szab6 refer to what we call the Kauffiman-states
functor as bordered knot Floer homology.

Organization

We start with a brief review of some essential definitions and results from [16] in
Section 2. For motivation, we discuss chord diagrams and sutured surfaces in Section 3,
giving generalized versions of Zarev’s definitions.

In Section 4, we define the strands algebras .A(n, k, S) and give illustrations. Section 5
proves some properties that will be useful both here and in [15]; in particular, we
give an explicit calculus for products and differentials of certain basis elements of
A(n,k,S). In Section 6 we discuss gradings and prove Theorem 1.4; in Section 7, we
define symmetries on A(n, k, S).

In Section 8 we compute the homology of A(n, k, @). In Section 9 we define the
map ® from B(n, k,S) to A(n, k,S) and prove Theorem 1.1 by induction on |S|; the
base case of the induction (|S| = 0) follows from the computation of H«(A(n, k, @))
in Section 8. Finally, in Section 9.3 we show that ® preserves the algebra symmetries.
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2 Background on Ozsvath and Szabé’s algebras

We begin with a brief review of some important terminology and results from [24; 16].
As in [16, Appendix A], given a commutative ring k, we define a k—algebra to be a
ring A equipped with a ring homomorphism k — A. Given a quiver I' (ie a finite
directed graph, allowed to have loops and multiedges), one has a path algebra Path(I")
formally spanned over k by paths in I', with multiplication given by concatenation. If
V is the vertex set of T', one can view Path(T") as an algebra over I = kY, the ring of
functions from V into k. The homomorphism I — Path(I") sends the indicator function
of a vertex x to the empty path I, based at x. The composition k — I — Path(I")
has image in the center of Path(I").

Equivalently, one may work in terms of a k—linear category kI" whose set of objects
is V; see [16, Section 2.1 and Appendix A] for a detailed review of this algebraic
framework. Hom spaces in this category are given by Iy Path(I")I,, for x,y € V, and
we have a decomposition
Path(") = @5 I Path(I)1,.
x,yev

If R is a subset of Path(I"), we can also consider the quotient of Path(I") by the two-
sided ideal generated by R. We will call this quotient Quiv(IT", R); it is still an algebra
over I, and we can still view it as a k-linear category. Gradings and differentials on
Path(I") and Quiv(I", R) can be specified by defining them on the edges of I', as long
as the relations are homogeneous cycles, so that we can consider dg algebras defined
by quiver generators and relations.

Convention 2.1 In this paper, as in [16], the interval [a, b] will denote the set of
integers i with a <i <b.

Given a subset S C [1, n], we now recall the definition of Ozsvath and Szab6’s algebra
B(n,k,S) in the language of [16].

Definition 2.2 For n > 0 and 0 <k <n, let V(n, k) denote the set of k—element
subsets x C [0, n]. Elements of V(n, k) will sometimes be called I-states, following
[24, Section 3.1]. Taking k =F,, let I (n,k) = IFZV("’k).

Elements of V(n, k) are visualized as in Figure 2. Elements of [0, n] are thought of
as regions between n parallel horizontal lines, including the two unbounded regions

Algebraic & Geometric Topology, Volume 20 (2020)



Strands algebras and Ozsvdth and Szabé’s Kauffman-states functor 3615

e - —
2— - -
35— .
4—- — .
5 5

x = {0,2,5} y={2,3,4}

Figure 2: Elements x and y of V(5,3) viewed as dots occupying regions.
The left-most figure indicates the numbered labeling of the regions and the
lines between them.

above and below the lines. An I-state x is drawn by placing a dot in each region
corresponding to an element of x. Ozsvath and Szabé use a 90°—rotated visualization;

see Remark 2.11.

Definition 2.3 The directed graph I'(n, k, S) has set of vertices V(n, k). It has the
following edges:

Ifl<i<nmnandxN{i—1,i} ={i — 1}, then I'(n, k,S) has an edge from x
to (x \{i —1}) U{i} labeled R;.

Ifl<i<nandxN{i—1,i} ={i}, then I'(n, k,S) has an edge from x to
(x\{i}) U{i —1} labeled L;.

If 1 <i <nandx €V, k), then I'(n, k,S) has an edge from x to itself
labeled U; .

Ifi €S and x € V(n, k), then I'(n, k, S) has an edge from x to itself labeled C;.

For each path y in I'(n, k, S), we associate a noncommutative monomial (y) in the
letters {R;, L;, U;, C;} by taking the labels of the edges of y in order. We extend u
additively to the path algebra of I'(n, k, S).

Definition 2.4 For x,y € V(n, k), let ﬁx, y.,s be the set of elements

a € Iy Path(I'(n, k,S)) 1y

such that pu(a) is one of the following:

RiUj —UjR;, LiU;j —U;L; or UjU; —U;U; (the “U central relations”).
R;L; —U; or L; R; —U; (the “loop relations”).
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o R,'Rj —RjR,', Ll'LJ' —LjL,‘ or RiLj —LjR,' for |i —jl > 1 (the “distant
commutation relations”).
e R;R;j4q or Lj41L; (the “two-line pass relations”).

e U; when a is represented by a loop y at a vertex x of V(n,k) such that
xN{i—1,i} = @ (the “U vanishing relations”).

. Ci2 (the “C vanishing relations”).

e CiA—AC; forany label A€ {R;,L;,U;,C;} (the “C central relations”).

Let Rg = Ux,er(n,k) ﬁx,y,g. Let Quiv(I'(n,k,S), Rs) denote the quotient of the
path algebra of T'(n, k, S) by the two-sided ideal generated by elements of Rs. Define
a differential on Quiv(T'(n, k,S), Rs) by declaring that 3(C;) = U .

We have a homological grading on Quiv(I'(n, k, S), Rs) called the Maslov grading,
as well as three related types of intrinsic gradings called Alexander gradings. We recall
their definitions now.

Definition 2.5 [16, Section 3.3] The gradings on Quiv(I'(n, k, S), Rs) are defined
as follows:

o Let{ry,...,7n,B1,...,Bn} denote the standard basis of Z?". For an edge y of
I'(n,k,S), define the unrefined Alexander multidegree w"™(y) € (Z)*" to be

w'(y) = 1; if y has label R;,
- w"(y) = B; if y haslabel L;,
w"™(y) = 1; + B if y haslabel U; or C;.
Extend w"" additively to any path y € Path(I'(n, k, S)).
e Let {e1,...,en} denote the standard basis of Z". Define the refined Alexander
multigrading on Quiv(I'(n, k., S), Rs), a grading by (%Z)n , by applying the homomor-
phism Z2" — (%Z)n sending 7; and B; to %ei to the unrefined Alexander multidegrees.

For a € Quiv(I'(n, k, S), Rs) homogeneous, let w(a) denote the refined Alexander
multidegree of a. Explicitly, for an edge y of I'(n, k,S), we have

- w(y)= %ei if y has label R; or L;,
— w(y) =e¢; if y haslabel U; or C;.

Let w;(a) denote the coefficient of w(a) on the basis element e; .
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o Define the single Alexander grading on Quiv(T'(n, k,S), Rs), a grading by %Z,
by applying the homomorphism (%Z)n — %Z sending
1 if i
ej — 1 l £S5,
-1 ifies,

to the refined Alexander multidegrees. Let Alex(a) denote the single Alexander degree
of a. We have

Alex(a) =Y " wi(a)— Y w;(a).
i¢S i€S
Explicitly, for a single edge y, we have
— Alex(y) =3 if y haslabel R; or L; and i ¢ S,
Alex(y) = —% if y haslabel R; or L; andi € S,
Alex(y) =1 1if y haslabel U; and i ¢ S,
Alex(y) =—11if y haslabel U; or C; and i € S.

o Define the Maslov grading on Quiv(I'(n, k,S), Rs), a grading by Z, by declaring
m(y) =#c(y)—2)_ wi(y)
ies

for a path y in I'(n, k, S), where #c (y) is the number of edges in y labeled C; for
some i . Explicitly, for a single edge y, we have

- m(y)=0if y haslabel R;, L;,or U; and i ¢ S,

— m(y)=—1if y haslabel R;, L;,or C; and i € S,

— m(y) =-2if y haslabel U; and i € S.

Remark 2.6 Our use of the words “refined” and “unrefined” follows the standard
usage in bordered Floer homology, in contrast with [13] (see Section 6 below).

Definition 2.7 The dg algebra B(n, k, S) is defined to be Quiv(I'(n, k, S), Rs), with
any of the above three Alexander gradings as an intrinsic grading (preserved by d) and
the Maslov grading as a homological grading (decreased by 1 by d).

The above definition is justified by the following theorem:

Theorem 2.8 [16, Corollary 3.14] The dg algebra B(n,k,S) defined in [24] is
isomorphic to Quiv(['(n, k, S), ﬁg).

One can also consider idempotent truncations of the algebras B(n, k, S), which we
review below.

Algebraic & Geometric Topology, Volume 20 (2020)



3618 Andrew Manion, Marco Marengon and Michael Willis

Definition 2.9 For 0 <k <n, define B, (n,k,S) to be

( > Ix)B(n,k,S)( > Ix).

x:0¢x x:0¢x

Similarly, define B;(n, k, S) to be

( > IX)B(n,k,S)( > Ix).

X:né¢x xX:né¢x

For 0 <k <n—1, define B'(n,k,S) to be

( > Ix)B(n,k,S)( > Ix).
x:0,néx x:0,néx

One can also describe these algebras in terms of full subcategories of the dg category
corresponding to B(n, k,S); see [16, Definition 3.16].

Remark 2.10 As defined, Quiv(I'(n, k,S), Rs) is a dg algebra over I (n, k). How-
ever, we can view it as an algebra over F,[Uj, ..., U,,]V(”’k) via the ring homomor-
phism

Fa[Uy, ..., U]V % — Quiv(T'(n,k, S), Rs)

sending pIy, where p is a monomial in the U; variables, to a path at x consisting of
a U; loop for each factor of p (in any order). The U central relations in Rs ensure
that this homomorphism is well-defined and that the natural map

Fa[Us, ..., Up] = Fa[Us, ..., U,V ®%) = Quiv(I'(n, k, S), Rs)

has image in the center of Quiv(I'(n, k, S), Rs), s0 we may view Quiv(I'(n, k, S), Rs)
as an F»[Uq, ..., Uy]-linear category. With this algebra structure understood, Theorem
2.8 gives us an isomorphism of Fo[Uy, ..., U,]V @5 _algebras.

Remark 2.11 In Ozsvath and Szabd’s conventions, the algebra B(n, k,S) arises
when one has an oriented tangle diagram with n bottom (or top) endpoints, such that
endpoint i is oriented upward if and only if i € S. In our conventions, these diagrams
will be rotated 90° clockwise, and endpoint i will be oriented rightward if and only if
i €S8 (see[16, Remark 2.13]).

Next, we recall some structural definitions for Ozsvath and Szabd’s algebras that were
first introduced in [24, Section 3.2].
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For x € V(n,k) and a € [1,k], we let x, denote the a™ element of x in increasing
order. For x,y € V(n, k), define

vi(x,y) = [y N[i,n]| =[x N[ n]
Let |v]; (x,y) := |vi(x,y)].

Definition 2.12 [24, Definition 3.5] For x,y € V(n,k), we say that x and y are
far if there is some a € [1, k] with |x, — y,| > 1. Otherwise, we say that x and y are
not far.

It follows from [24, Proposition 3.7] that if x and y are far then I, B(n,k,S)I, =0.

Definition 2.13 If x and y are not far, we say that i € [1,n] is a crossed line if
v; (x,y) # 0. We denote the set of crossed lines from x to y by CLy y.

Definition 2.14 Given x, y € V(n, k), we say that a coordinate i € [0, n] is fully used
if i € x N y. Otherwise, we say that i is not fully used.

Definition 2.15 [24, Definition 3.6] Let x,y € V(n,k) be not far. We say that
[j + 1,j +1] is a generating interval for x and y if

e j and j 4/ are not fully used coordinates,

e forallie[j+1,j+[—1],i is afully used coordinate, and

e forallie[j+1,j+]!],i isnota crossed line.

We say that [[1,/] is a left edge interval for x and y if coordinate [/ is not fully used,
but coordinate 7 is fully used for all 7 € [0,/ —1]. Similarly, we say that [n—/+1,n] is
a right edge interval for x and y if coordinate n —/ is not fully used, but coordinate i
is fully used for all i € [n —[ + 1, n]. In all of the above cases, we say that the length
of the generating or edge interval is /. Finally, if x = y = [0, n], we say that [[1,n] is
a two-faced edge interval for x and y of length n.

We have the following proposition from [16]:

Proposition 2.16 [16, Proposition 4.9] Given x,y € V(n,k) not far, for each i €
[1,n] exactly one of the following is true:

(1) i €CLyx,y (linei is crossed);
(2) there exists a unique generating interval G such that i € G;

(3) there exists a unique (left, right or two-faced) edge interval G such that i € G.
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For generating intervals, we use the following shorthand notation:

Definition 2.17 If G =[j 4+ 1, j + ] is a generating interval for x and y, then we
let pg denote the monomial Uj 41 ---U; 4, an element of F5[Uy, ..., Uy].

Given x, y € V(n, k) that are not far, Proposition 3.7 of [24] implies that Iy B(n, k,S)I,
decomposes as a tensor product of chain complexes, with factors for the generating and
edge intervals for x and y (see [16, Corollary 4.16]). The factors are themselves certain
special cases of the algebras B(n, k, S), which we called generating and edge algebras
in [16], although the tensor product decomposition does not respect the multiplicative
structure. See [16, Section 4.3] for more details.

In [16] we used this tensor product decomposition to compute the homology of
B(n,k,S); we review the result of this computation. First, we recall the definition of
certain paths yy y in I'(n, k, S).

Definition 2.18 [16, Definition 2.28] Let x,y € V(n, k) be not far. Define a path
Yx,y from x to y in I'(n, k, S) by recursion on k —|x N y| as follows:
e If k—[xNy|=0,then x = y;define yx,y to be the empty path based at x =y .

e If x4 <y, for some a € [1, k], let a be the largest such index. We have an edge
y from x to x" = (x \ {x4}) U {xs + 1} with label Ry, 4. Since x and y are
not far, we have y, = x/,,s0 k —|x'Ny| =k —|x Ny|— 1. It follows that
Yx’,y 18 defined. Let yx y =y - yx/ y.

e If xg >y, forall a €[l,k] and x,; > y, for some a, let a be the smallest such
index. We have an edge y from x to x" = (x \ {x4}) U{x, — 1} with label Ly, .
As before, we have y, = xJ,. Thus, k —|x'Ny|=k—|xNy|—1 and yy y is
defined. Let yx y = y - yyx/,y as above.

Remark 2.19 In fact, the paths yx , can be defined even when x and y are far; in
[16, Section 2.4], we use them to prove the validity of a quiver description of Ozsvith
and Szabd’s algebra By(n, k).

Theorem 2.20 [16, Theorem 5.4] For x,y € V(n, k) that are not tar, let

Ui+ 1o+l .. s+ 1 Jjo + ]

be the generating intervals from x to y, and let py, ..., pp be their monomials pg .
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Choose an element iz € [jo + 1, jo + 5] NS for all a such that this intersection is
nonempty. We have a basis for Iy H«(B(n,k,S))Iy in bijection with elements

b
p (Cial’a )Sa
a=1 Ui“
where p is a monomial in {U; | i € [1,n]\ S} not divisible by p, for any a and

eq €10, 1} is zero for a such that [j, + 1, jo + 4] NS = @. The bijection sends the
element specified by p =1 and ¢, = 0 for all a to the element

[Vx,y]l € Ix He(B(n,k,S)) 1y,

where yyx y is the path of Definition 2.18. It sends a more general element to the
corresponding product of [yx,y] with U; and C; loops, in any order.

We recall that the values of n, k and S for which B(n, k,S) is formal (when given
the refined or unrefined Alexander multigrading) were determined in [16, Section 5.2].
Given the results of this paper, the algebra A(n, k,S) will be formal for the same
values of n, k and S, as stated in more detail in Corollary 9.11.

Finally, the algebras B(n, k, S) have certain symmetries as described in Section 3.6
of [24]. In our notation, these symmetries are called p and o (our p is Ozsvath and
Szabd’s R).

Definition 2.21 On the vertex set V(n,k) of I'(n, k,S), define p(x) ={n—i|i € x}
and o(x) = x. For S C[1,n], define p(S) ={n+1—i|i € S}. Define

o: B(n,k,S) — B(n,k, p(S))

by sending Iy to I () and sending edges labeled R;, L;, U; and C; to edges labeled
Lyyi1-i, Rn+1—i, Up+1—i and C,41—;, respectively. Define

0: B(n,k,S) — Bn,k,S)®
by sending I, to I, and sending edges labeled R;, L;, U;, and C; to edges labeled

Li, R;, U; and C;, respectively. We have both p?> = id and 0? = id, properly
interpreted. Restricting to the truncated algebras, we get

p: Br(n’k’s) i) Bl(nvk’ P(S))’
p: Bi(n,k,S) = Br(n,k, p(5)),
p: B'(n,k,S) == B, k,p(S))
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as well as ~
o: B(n,k,S) = B,(n,k,S)”,

o: Bi(n,k,S) = B;(n,k,S),
o: B(n,k,S) =B (n,k,S)°.

We will relate the symmetries p and o to symmetries on the strands algebras A(n, k, S)
and their truncations, with visual interpretations, in Section 9.3 (see also Section 7).

3 Chord diagrams and sutured surfaces

We now introduce a common generalization of Zarev’s arc diagrams and of our example
of interest (see Section 3.3).

3.1 Definitions

Definition 3.1 A chord diagram Z = (Z, B, M) is a triple consisting of

e acompact oriented 1-manifold Z;
e a finite subset B C Z of basepoints, consisting of 2m points;

e aninvolution M on B with no fixed points, called a matching, which matches
the basepoints in pairs.

The connected components of Z are called backbones, and more specifically circular
backbones if they are closed and linear backbones if they are not.

Example 3.2 Four examples of chord diagrams are represented visually in Figure 3.
The backbones are shown in black; pairs of points matched by M are connected by
red arcs. The set B of basepoints is the set of endpoints of the red arcs. The first three
diagrams only have linear backbones; the fourth diagram has a linear backbone and
two circular backbones. By convention, we will assume that all linear backbones drawn
vertically in the plane are oriented upwards.

Remark 3.3 Chord diagrams, in several variants, appear in many places in mathe-
matics. Perhaps the most common meaning of “chord diagram” is the special case of
Definition 3.1 in which Z consists of a single circle; such chord diagrams appear (for
example) in the study of Vassiliev knot invariants (see [4]).

Like fatgraphs (a related notion), chord diagrams are often used to represent surfaces.
Penner has a detailed language for referring to features of these diagrams, and we follow
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-O
-O

Figure 3: Examples of chord diagrams.

his terminology. The “backbones” terminology is part of this language; see eg [1] for a
discussion of chord diagrams with multiple backbones appearing in Teichmiiller theory
and the combinatorics of RNA in biology.

In Heegaard Floer homology, chord diagrams are often called arc diagrams, following
Zarev [29]. The connection between surface representations in bordered Floer homology
and chord diagrams as studied eg by Penner has already been noted in [10, Remark 3.1].

Zarev considers only chord diagrams with no circular backbones; he interprets the
basepoints on Lipshitz, Ozsvath and Thurston’s pointed matched circles as places to
cut the circle open, obtaining linear backbones. Recent work of Ozsvéth and Szab6 and
Lipshitz, Ozsvéth and Thurston defining “minus versions” of bordered Heegaard Floer
homology in various cases, including the constructions of [24; 26] forming the subject of
our study, have made use of diagrams with circular backbones (and without basepoints).

Following [9, Construction 8.18], a chord diagram Z has a dual Z* = (Z*, B*, M *),
where Z* is obtained by performing 1-dimensional O—surgery on Z along B according
to M, B* is the union of the boundaries of the cocores {%} x [0, 1] of the surgery
handles (each surgery replaces S® x D! in Z with D! x S% in Z* and the surgery
handle is D! x D), and M* matches the two points of B* coming from each surgery
handle. An example is shown in Figure 4.

&>

-O
-O

Figure 4: The dual of a chord diagram.

Z*
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A chord diagram Z is called nondegenerate if Z* has no circular backbones. In
Heegaard Floer homology, this condition has been most studied in the case where Z
also has no circular backbones. A nice feature of the class of all chord diagrams, with
both linear and circular backbones, is that the duality Z <> Z* gives an involution on
this set of diagrams with no nondegeneracy conditions required.

3.2 Sutured surfaces

Chord diagrams, viewed up to a natural equivalence relation given by chord-slides
(sometimes called arc-slides), are a diagrammatic way of representing what Zarev
calls sutured surfaces, in analogy with Gabai’s sutured 3—manifolds. Sutured surfaces
share many similarities with bordered surfaces as in [27] as well as with open—closed
cobordisms as in [6]. For topological motivation, we review how to get a sutured
surface from a chord diagram in this section.

The following definition of sutured surface is slightly different from that of [29] in that
we allow Sy and S_ to have closed components.

Definition 3.4 A sutured surface is a triple (F, A, S4) consisting of the following
data:
e a compact oriented surface F;

* a finite collection A C dF of disjoint open intervals, each of which contains a
point called a suture;

e asplitting of dF \ A into compact submanifolds S4 LI S— such that for each
component C of A, dC intersects both S and S_.

If F=(F, A, S4+) is a sutured surface, its dual is the sutured surface 7* = (F, A, S—)
in which the roles of S+ and S_ have been interchanged.

Definition 3.5 Given a chord diagram Z = (Z, B, M), we can build a sutured surface
F(Z)=(F(Z),\) associated to it as follows:

e F(Z) is obtained from Z x [0, 1] by attaching a 1-handle between (z1, 1)
and (zp, 1) for every pair of matched basepoints z; and z; in an orientation-
preserving manner;

e A =0Zx(0,1), with sutures given by 02 x {%}
° S+:ZX{O}
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A sutured surface F' can be represented by a chord diagram if and only if each
component of F (not oF ) intersects S+ and S—_ nontrivially.

We have F(Z*) = (F(Z))*. Thus, the nondegeneracy condition that Z* has no
circular backbones is equivalent to requiring that S_ has no closed components in the
sutured surface (F, A, S4+) associated to Z.

3.3 The example of interest

Definition 3.6 We define the chord diagram Z(n) = (£(n), B, M) as
Zn):=[0,1]usu---ustujo,1],

where we take n copies of S! :=[0,2]/(0 ~ 2). We can label the copies of S'!
from 1 to n, and we denote the i™ copy of S! (ie the i™ circular backbone) by Sl.l.
By analogy, we denote the two linear backbones by [0, 1]o and [0, 1],,+1. For each

i=1,....nletz; :=[0] € Sl-1 and Zi+ =[1] € Sl.1 be two distinct basepoints in Sl-l.
We also fix points z(‘)" € Int([0, 1]o) and z,, ; € Int([0, 1],+1). We define a matching
M on the set of basepoints B = {z(')",zli, e ,z;—L, Z, 1 by matching zl.‘" with z;7, |,
ie
J’_ _ —_
M) =z
= =

Figure 5: The chord diagram Z(3) and the sutured surface 7 (Z(3)). Follow-
ing Zarev’s conventions from [29], S is colored orange and S_ is colored
black. The intervals A are colored green, with sutures indicated by green
marks.
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Notice that we write our circles S! as [0,2]/~, rather than [0, 1]/~ this allows each
basepoint on each Sl-1 to occupy an integer value, easing notation throughout the paper.
Note that, in particular, the length of S! is 2.

The sutured surface F(Z(n)) is a connected genus-zero surface with n + 1 boundary
components. One boundary component has four sutures; the rest have no sutures and
are contained in S4. The chord diagram Z(3) and the sutured surface F(Z(3)) are
shown in Figure 5.

4 The strands algebras

Given the chord diagram Z(n) of Definition 3.6 together with a subset S C [1, n],
we would like to define a dg algebra A(n, k,S) (or equivalently a dg category; see
[16, Section A.3]) called a strands algebra. Intuitively, a general strands algebra A(Z)
assigned to a chord diagram Z should be generated by collections of homotopy classes
of oriented continuous paths in Z that both start and end at distinct basepoints. The
graphs of such paths are visualized as “strands” drawn on [0, 1] X Z, with multiplication
defined via concatenation and the differential defined via resolutions of strand crossings.

In the upcoming paper [17], Rouquier and the first author will define strands categories
for singular curves functorially. For a chord diagram Z, this construction yields an
algebra A(Z) defined along the above lines. Here, though, we will follow [11; 29],
using a more combinatorial description that avoids some of the complications present
in the general setting. The key point is that, in our chord diagram Z(n), any homotopy
class of paths has a preferred representative, namely the constant-speed representative.
Such paths can be manipulated combinatorially, as we will see below.

4.1 k-strands and the prestrands algebra

Definition 4.1 A k-strand s = {s1,...,5r} on [0, 1] x Z(n) is a collection of k
smooth functions
Sq: [0,1] = Z(n),
called strands, satisfying the following conditions:
e 5(0):={51(0),...,5:(0)} consists of k distinct points in B,
e s(1):={s1(1),...,s,(1)} consists of k distinct points in B, and

e forallz€[0,1] and 1 <a <k, 0;t54(¢t) = ag > 0 for some constant speed o .
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We also say that s is a k—strand from s(0) to s(1). By a slight abuse of notation, we
will use the notation s, for the graph of the strand s, .

Note that each strand is entirely determined by its starting point and its speed. Also
note that, since S! = [0, 2]/~ has length 2, the speed «, is always a nonnegative
integer.

Definition 4.2 Given a subset S C [1, 1], we define the prestrands algebra A(n, k., S)
as the algebra generated over I, by all pairs (s, ¢) where s is a k—strand on [0, 1]x Z(n)
and ¢ is an element of {0, 1}*. The multiplication on the generators of the algebra is
defined via concatenation and addition as follows:

e If s(1) # ¢(0), then (s,¢) - (t,c?) = 0 (we say the strands s and ¢t were not
concatenable).

o If C(i) + c?(i) = 2 for any i € S, then (s,¢C) - (t,c?) = 0 (we say that the
multiplication produced a degenerate annulus).

e Suppose s contains two strands s, and sp with speeds a, and o on one
component of Z(n), and ¢ also contains two strands #, and 7; with speeds B,
and B4 such that s4(1) =#.(0) and s, (1) = ;(0). If (g —p)(Be — Bg) <O,
then (s, ¢) - (¢, d ) = 0 (we say that the multiplication produced a degenerate
bigon).

If none of the three conditions above hold, we define (s,¢) - (¢, d ) to be the pair
(s-t,c+d) where, for all a € [1, k], if b is such that s, (1) =1,(0), we define the speed
of (s-1)q to be agq + Bp. Multiplication is then extended to all of A(n, k, S) linearly.

In the case when S is the empty set, we often drop it from the notation and write the
algebra as A(n, k).

Remark 4.3 In[11, Section 3.1.3], k—strands are defined algebraically as a bijection of
sets ¢: 5(0) — s(1) such that ¢ (b,) > b, for all basepoints b, € s(0). This definition
is equivalent to ours when all backbones are linear because, once both endpoints
are chosen for a strand on a linear backbone, the constant speed is also determined.
However, for our circular backbones, the extra data of the speed is necessary to account
for strands with nonzero wrapping number. In this sense, our definition for An, k) is
a direct generalization of that of [11].

Remark 4.4 In [11, Section 3.1.3], Lipshitz, Ozsvath and Thurston give another
interpretation of the prestrands algebras in terms of Reeb chords in contact 1-manifolds,
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Figure 6: Some examples of k —strands, with and without closed loops. For
visual appeal, speeds are not drawn as entirely constant.

with the set of endpoints viewed as a Legendrian submanifold. This perspective is related
to the interaction between strands algebras and holomorphic curve counts in bordered
Floer homology. From this point of view, one can think of nonzero components ¢ (i)
of ¢ as closed Reeb orbits; we thank Ko Honda for pointing out this connection, as
well as the use of closed loops in the visual interpretation below.

4.2 Visual interpretation of the prestrands algebra

We visualize k—strands by their graph on [0, 1] X Z(n), drawn “horizontally” as in the
examples in Figure 6. The definition implies that intersections between two strands
Sq and sp in s are transverse. Furthermore, there are no points of triple (or more)
intersection between strands in a k —strand, since there can be no more than two strands
on any component of [0, 1] x Z(n). Meanwhile, we draw a single closed loop on the
cylinder S} if and only if ¢(i) = 1.

We multiply by first concatenating the various s, and 73 if possible. As long as we
have not created an annulus or bigon in this way, we then homotope the result into a
diagram of constant-speed strands. See Figure 7 for an example of a nonzero product
and Figure 8 for examples of degenerate annuli and bigons.

4.3 A differential on the prestrands algebra

Definition 4.5 Suppose (s, ¢) € A(n,k,S). For all i €[1,n], we define the element
d(s.c) € A(n,k,S) as follows. If either i ¢ S or ¢(i) = 0, then d(s.¢) = 0.
Otherwise we have ¢(i) = 1 and then we define 9¢(s,¢) to be the sum over the
following contributions:
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Figure 7: Multiplication in A(n, k, S).

e For any strand s, of s on the backbone Sl.1 such that s has no strands of strictly
greater speed than s, on S/}, 9¢(s,¢) has a contribution (s, ¢’), where s’ is
obtained from s by increasing the speed of s, by two and ¢’ is obtained from ¢
by setting ¢'(i) = 0.

In particular, of (s, ¢) is a sum of two distinct terms if and only if s has two strands of
equal speed on Sl-l.

We also define the element 8?(s, ¢) as follows. If s contains 0, 1 or 2 strands of equal
speed on Sil , then 8? (s,¢) = 0. Otherwise s contains two strands of differing speeds
p > q on the backbone Sl-1 and we have two cases:

e If p—g =2, then 8?(s, ¢) = (s',¢), where s’ is the k—strand obtained from s
by replacing the two strands on Si1 by two new strands having (equal) speeds
p—1=qg+1.

e If p—g=>4,then 8?(s, ¢) is a sum of two terms involving k—strands obtained
from s by replacing the two strands on Sl-1 by two new strands having (unequal)
speeds p—1 and g + 1. There are two ways to do this, hence a sum of two terms.

Figure 8: Degenerate annuli and bigons
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We then define the i differential of (s,c) to be
3i (s,¢) 1= 3%(s, &) + ¢ (s, 7)
and define the differential of (s, c) to be

0(s.0) =Y 8i(s.0).

i€[1,n]

Visually, the case of nonzero 9; (s, ¢) is precisely the case where we have strands
and/or closed loops along Sl.1 that intersect. We compute the differential by resolving
crossings in the usual way. The operator 8? considers crossings between two strands
of s on Sl.1 . If p —q =2, there is only one crossing to resolve. If p —q > 4, there are
many crossings, but resolving any one other than the first or last will create a bigon,
and such terms are set to zero, so we are left with two terms (which correspond to the
two orderings of the new speeds p —1 and g + 1).

The operator 95 considers crossings between strands of s and a closed loop on Sl.1 ;
resolving a crossing between s, and a loop is equivalent to having the strand s, wrap
once more around Sl.1 (corresponding to adding two to the overall speed of the strand).
If there are no other strands, this resolution cannot create any degeneracies. If there
is another strand sp, the newly added “wrapping” of s, must intersect s; at infinite
speed (before any homotopies); this resolution creates a degenerate bigon if and only if
there are other crossings between s, and s where the speed of s is the greater of the
two. Thus with two strands of differing speeds on Sil , we keep only the resolution of
the crossing between the loop and the faster strand.

In all of these nonzero cases, a simple homotopy takes the result of the resolution to a
set of constant-speed functions, as desired. See Figure 9 for an illustration of 3° and
Figures 10 and 11 for illustrations of d¢. Figures 10 and 11 in particular demonstrate
that, although the result of the crossing resolutions defining d¢ could a priori depend on
the position of the closed loop, in fact the result is always given by our combinatorial
formula.

Lemma 4.6 We have 0> = 0 for the differential on the prestrands algebra.
Proof It is clear that 0; and d; commute, so it is enough (over I) to check that

81.2 = 0 for any i. The term (8?)2 is trivially zero due to the condition on ¢(i). The
reader may check that (8?)2 = 0 in both of the nontrivial cases (notice that, in the case
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Figure 9: The component 3° of the differential on the prestrands algebra.

of having two terms for 3? (s,¢), these two have equal image under 8?). Finally, the

fact that 9¢ and 8? commute is also a case-by-case check, for which it is helpful to note
that neither d¢ nor 8? can change the number of strands of s that are present on S l-l . O

4.4 The strands algebra

We now begin to incorporate the matching M for our chord diagram (see Section 3)

into our definitions. We begin with some notation. For any subset of basepoints X C B,

Figure 10: The component d¢ of the differential on the prestrands algebra.
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/

Figure 11: The component d¢ in another example.

let M(X) denote the transformation of this set under the matching M. That is, if
X ={x1,...,xx} C B, then M(X) ={M(x1),..., M(xp)}.

Now let s be a k—strand, and label the basepoints of s(0) = {wy,...,w} in such a
way that w, is the starting point of the strand s, .

Definition 4.7 Let I C B denote the set of elements w, € s(0) such that s, is a con-
stant strand. For any subset { C I, define the further notation s(0); = (s(0)\i)UM (i)
and s(1); = (s(1)\i)UM(i) (note that i C I C s(0) implies i C s(1) as well).

Lemma 4.8 If s is a k—strand as above with s(0) N M (s(0)) =s(1)NM(s(1)) = @,
then for any subset i C I, there is a well-defined k —strand s; from s(0); to s(1);

defined by S g ¢
(5i)a = y L .
Constpr(yw,) If wg €1,

for all w, € 5(0), where Constps(y,,) is the constant strand at M (wg).
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Proof Clearly the functions (s;), are all still of constant speed. The fact that
s(0)NM(s(0)) = @ ensures that s(0); still has k elements, while s(1) "M (s(1)) =@
ensures that (s;)q(1) # (s;)p(1) for any a # b in [1,k]. O

Note that, with this notation, we have s; (0) = 5(0); and s; (1) = s(1); forany i C I
by definition.

Now, given a generator (s,¢) € Z(n, k,S), we can use Lemma 4.8 to introduce the

further notation
if s(0)NM(s(0)) =s(1)NM(s(1)) =2,

(4-1)  E(s,0) = 2icr(si©) |
0 otherwise.

We then extend E linearly to a map E: A, k,8) — An, k., S).
Lemma 4.9 Let s,s’ be k—strands such that
s(0) N M (s(0)) = s(1) N M(s(1)) = s"(0) N M(s"(0)) = s"(1) N M(s'(1)) = 2,

and let ¢,¢’ € {0, 1}5 be arbitrary. Then we have E(s,¢) = E(s',¢') in A(n, k,S) if
and only if ¢ = ¢’ and s’ = s for some subset j C I C s(0) of basepoints that are
starting points of constant strands in s.

Proof The necessity of ¢ =’ is clear from the definition. Note also thatif E(s’,¢’) =
E(s,¢), then (s’,¢’) must be equal to one of the summands of E(s,¢), implying that
s" =sj for some j C I, as desired.

For the other direction, we write I ; for the set of starting points of constant strands
ins"=s;.Given i C I, we candefine k = (i \ j)UM(j \i),asubsetof I;. The
map sending i to k is a bijection

{subsets of I} => {subsets of I;}

with inverse sending k C Ij to i = (k\ M(j))U (j \ M(k)) C 1. Thus, there is
a bijective correspondence between the summands of E(s, ¢) and those of E(sj,c).
One can then check that

(si.¢) = ((s)k., ©),

finishing the proof. a
Lemma 4.10 The set
{E(s.6) [ s(0) N M(s(0)) = s(1) N M(s(1)) = &}

is a linearly independent subset of A(n, k,S).
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Proof It is sufficient to note that any element of the form E (s, ) can be expanded,
in view of (4-1), as the sum of basis vectors of E(n, k,S), and, by Lemma 4.9, if
E(s,¢) # E(s',¢"), then their expansions do not contain any common basis vector
(t.d)eAn.k.S). o

Definition 4.11 As a vector space over [F», we define A(n, k, S) to be the subspace
im(E) C A(n,k,S) spanned by the elements E(s,) (in the case when S is the
empty set, we again drop it from the notation and write A(n, k) for A(n, k, &)). By
Lemma 4.10, the set

(E(5,8) | € € {0, 1}5, 5(0) N M(s(0)) = s(1) N M(s(1)) = @}

is an additive basis for A(n, k, S) over [F». We call it the standard basis. Propositions
4.12, 4.15 and 4.17 below will endow A(n, k, S) with a dg algebra structure over [,
with gradings described in Section 6. We will refer to A(n, k, S) as the strands algebra.

Proposition 4.12 The vector space A(n,k,S) is closed under the multiplication
inherited from A(n,k,S).

Proof Consider two basis elements E(s,c¢) and E(z, d ) in A(n,k,S). If there is
some index i € S with ¢(i) + J(i) =2, then E(s,¢)- E(t, J) = 0 regardless of s
and ¢ (every concatenable term in the sum forms a degenerate annulus). Thus we only
need to check the case where ¢ +d € {0,1}5.

Let I C s(0) and J C #(0) denote the sets of basepoints that are starting points for
constant strands in s and #, respectively, so that

E(s,¢)-E(1,d) = (Zm,a)) ( Z(r,-,d)) =3 (5i.0)-(tj.d).
icl jcJ icljcJ
We see that, if 5; (1) #¢;(0) forall i C I and j C J, then all of the strands s; and ¢;
are nonconcatenable and the entire sum is zero. Otherwise there are some i and j

such that s; (1) = ¢; (0). After using Lemma 4.9 to replace s with s; and ¢ with ¢;,
we can assume that s(1) = ¢(0).

For the summand (s;,¢)- (¢;. a7) to be concatenable, we must have s(1); = s; (1) =
tj(0) =1(0)j, and since s(1) = £(0), it follows that i = j . Thus we have

(4-2) E(s.0)-E(t.d)=Y_ Y (5i.0)-(tj.d)

icljcJ
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= Y (5.0 (t.d)
icnJd)
= Z (s; -t;, ¢+ j )
icnJ)
§; -tj nondegenerate
(we have already ruled out the possibility of a degenerate annulus due to ¢ and d ).
We claim that the concatenation s; - #; has a degenerate bigon if and only if s -# does.
Indeed, neither edge of a degenerate bigon can be a constant strand. Thus, a degenerate
bigon in s - ¢ is bounded by two strands that are also included in s; - #; and vice versa.
It follows that this sum is zero if and only if s -¢ is degenerate.

For nondegenerate s -7, we have s; -#; = (s-t); foralli CINJ,and I NJ isthe
set of starting basepoints of constant-speed strands for s -¢ (speeds add, and a +b5 > 0
with equality only when ¢ = b = 0). Thus the sum in (4-2) is the basis element for
s-tand &+d , ie we have proven that

(4-3) E(s,0)-E(t,d) = E((s,)-(t,d)) = E(s-t,é + d)

for nondegenerate s - . a

We envision the basis elements E(s,c) as single diagrams, called basis diagrams,
comprising nonconstant solid strands in [0, 1] x Z(n) (corresponding to the nonconstant
strands of s) together with pairs of constant dashed strands in [0, 1] x Z(n) whose
endpoints are matched by M (corresponding to the constant strands of s which lead to
choices for i in the sum for E). In this way, a single pair of matched dashed strands
indicates a sum of two strands diagrams. In each diagram we remove one of the two
dashed strands and replace the other one with a solid strand. See Figure 12.

The concatenation of basis elements b1 and by € A(n, k, S) can be described pictorially
in terms of basis diagrams. When a pair of dashed strands matches another pair of
dashed strands, then they appear in the basis diagram of b1b, as well. When a pair

Figure 12: Dotted-line pictures of basis elements of A(n,k,S).

Algebraic & Geometric Topology, Volume 20 (2020)



3636 Andrew Manion, Marco Marengon and Michael Willis

R
Y

r\gl
—

Y

— ]

N

T

—

Y

SR pwp e reE oy Wy

Figure 13: Multiplying basis elements of A(n, k,S).

of dashed strands matches a single solid strand, then the dashed strand matched with
the solid strand is treated as solid, whereas the other one disappears (see Figure 13).
Finally, whenever a solid strand (or a pair of matched strands) of 1 does not match
any (solid or pair of dashed) strands of b5, the product b1b, vanishes.

Considering basis diagrams makes the visual interpretation of the differential clear as
well. Viewing a as a single basis diagram of solid and dashed strands as above, we
express b = da as a sum of crossing resolutions of a. Terms coming from resolving
a crossing between solid strands clearly give further basis diagrams (the orientation-
preserving property of strands ensures that a nonconstant strand cannot suddenly become
constant after a crossing resolution). Meanwhile, crossings between solid and dashed
strands can only contribute terms when the intersecting dashed strand is considered
solid, and its matched partner is missing, giving a basis diagram after resolution with
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Figure 14: Differentiating basis elements of A(n, k, S).

one fewer pair of dashed lines (note that after resolution, the formerly constant solid
strand is no longer constant, and neither is the other solid strand). See Figure 14 for an
illustration. This argument indicates that A(n, k, S) should inherit the differential of
A(n, k,S), which we prove using the following sequence of lemmas, whose proofs
are structurally very similar to each other. We will continue to use the notation of
Definition 4.7 throughout.

Lemma 4.13 For any a € A(n,k,S), we have 8;541 € A(n,k,S) forall j €[1,n].

Proof By linearity, we can suppose that a = E(s,¢), where s(0) N M(s(0)) =
s(1)N M(s(1)) = @. If s has any nonconstant strands on the backbone S jl , then all
constant strands of s remain constant in any summand of BJC. (s,¢). In such a case, I is
the set of starting points for constant strands in any summand of 85 (s,C). Thus, we
have
05 (E(s.0)) = a;?(Z(si,z)) =Y 05(si.0) = E(05(s.0)) € A(n. k. S).
icl icl

Now we consider the case where s has no strands of speeds greater than zero on the
backbone Sj.l. If s5; has no strands at all on S jl for all i C I, then every term 8;7 (si,¢)
in the sum for 8JC.E (s,C) is zero. Similarly, if ¢(j) = 0, every term in the sum is zero
as well. Thus, we can assume that ¢(j) = 1 and there is some i C I such that s; has
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at least one constant strand on S jl . After replacing s with some s; if necessary, we
can also assume that the number of (constant) strands of s on S jl is maximal among
elements of {s; | i C I}. From here we consider two further subcases:

(1) (one dashed strand and one loop) If s contains only one constant strand on S jl ,
with starting (and ending) basepoint zJ‘? (here o can be a + or a —), we compute

BEGs. =0 Y (560 + (g5 9)
ic(I\{z7})
= Y @56 O+ (siuE. )
ic(I\{z7})
= > (5.8) 40,
ic(I\{z7})
where s; and ¢’ are defined as in Definition 4.5. The zero term in the last line follows
from the fact that s; ¢ 2% cannot have any strands on S J.l . Meanwhile, the terms (s}, c’)
will be nonzero by assumption, and since s" in Definition 4.5 replaces the formerly
constant strand at Zj‘.’ by one with speed 2 (but does not change any other strands), the
set I\ {Zj‘-’} is precisely the set of starting basepoints of constant strands for s’. Thus
we have

BJC-E(S,E) =E(s'.¢)) = E(E)f(s,E)) € A(n,k,S)
just as in the case when we had nonconstant strands.

(2) (two dashed strands and one loop) If s contains two constant strands on S jl , with
starting basepoints z; and Z;r , we begin in the same way:

BE =0 3, (6.0 + 61071 O+ Syurp O+ Gup 2510 6)
icU\z; .z}
= D OO+ 0 0iuey O + 955500y O +0),
icU\zy .z}
where we get the zero term using the same reasoning as before. Now we write
9 (si» ¢) = (s;.¢')+ (siJr ,¢’), where sijE is the k—strand defined by replacing the
constant strand at z J#E by a new strand of speed 2, while maintaining the other strands
(including the constant strand at Z;F ). We can then write our sum as

BHED = D, (8 + Sy )+ 678+ (] 4y ).
icU\iz; .z D)
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where s} (z+y are defined as in Definition 4.5. The key point is to recognize that
J

( ¢’) and (s}, {z7p ¢’) are complementary in the sense that both have a strand of

speed 2 starting and ending at z7, and indeed have the same strands everywhere except

that (s ;»¢') has a constant strand at z;, while (s} =) ¢’) has a constant strand at

+

z =M (Zj_). This reasoning implies that

+ = 2y + =
) (G R AN D B CN )
ic(\{z; .z} icU\z})
and similarly we have

2. (G @)+ N= ) 6.
ic(\{z7 .z} ic(I\{z; })

Since I\ {zji} is the set of constant strand starting points for s*, we have
KEs.OH= Y GF.éh+ D 67.7)
ic(I\{zj}) ic(I\{z;'})
=E(sT,¢)+ E(s™.¢)
= E(37(s,0)) € A(n,k,S).

Thus, in all cases we see that, after replacing s with some s; if necessary as described
above,

4-4) 8§(E(s, c)) = E(aj(s, 0)) € An, k,S),
proving the lemma. a
Lemma 4.14 For any a € A(n,k,S), we have 8;-)a € An,k,S) forall j €[1,n].

Proof As in the proof of Lemma 4.13, we can suppose that a = E(s,¢), where
sONM(s0)=s(h)NM(s(1)) =2. If 3;-)(s,-,5) =0 forall i C I, then we have
8?61 =0¢€ A(n, k,S) trivially. Thus it is enough to consider the case where there is
some subset i C I such that 8}) (87,¢) # 0. By Lemma 4.9 we can replace s by this s;
without changing a, and so we may assume without loss of generality that s itself
satisfies 8?(5, ¢)#0.

In particular, we may assume that s contains two strands on the backbone § /-1 having
unequal speeds p > ¢g. We now split into two further subcases:

(1) (g # 0 —two solid strands) In this case, neither strand on S jl is constant, so
every term in the sum 8;.)a = ic 1(8;) (s;,C)) is nonzero, and is a sum of one term
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@if p—q = 2) or two terms (if p —¢g > 2) with nonconstant strands. Furthermore,
since 8;) does not affect any strand away from the backbone S, constant strands of s
remain constant in any summand of 8;’ (s,C). Thus the set I of constant-strand starting
points for s is the set of constant-strand starting points for any summand of 8}’ (s,€) in
this case. For i C I, we may write 8;’ (s;,C) = (8;) (s,€))i , s0 our sum becomes

0%a = Z(aj?(s,a)),- = E8)(s.0)) € A(n.k.S),

icl

extending (-); linearly.
(2) (¢ = 0 —one dashed strand) In this case, s has a constant strand on some
basepoint Z]‘.3 € S}, where o € {4+, —}. Thus for any i C I containing z°, s; does not
contain this constant strand, so 8}) (s;,¢) = 0. It follows that the only terms in the sum
that matter are those that come from subsets not containing zj‘.’. For such subsets i , we
may again write 8}’(s,- ,C) = (Bg(s, 0));.
Meanwhile, the terms in 8}’ (s, ¢) will contain strands of speeds p —1 and 1 on S jl.
There will be two such terms if p % 2 and one such term if p =2. All other strands of s
are maintained. We cannot have p =1 since the strands of s end on distinct basepoints

in s(1). Thus, the set of constant-strand starting points for 8;.) (s, ) is precisely I \{z7 )
Altogether, we can write our sum as

Ba= Y @Gi.= ) @760 =E@).0)eAnk.S).

iCI\{z$} ic(I\{z7})
where we have again extended (-); linearly.
As in Lemma 4.13, we have
(4-5) 0V (E(s.¢)) = E(8}(s.7)) € An. k. S)
in all cases, again after replacing s with some s; if necessary, proving the lemma. O

Proposition 4.15 The subspace A(n, k,S) of A(n,k,S) is preserved by the differen-
tial on A(n,k,S).

Proof Since 0 = } e[y 05 + 85.’, this proposition follows from Lemmas 4.13
and 4.14. O

4.5 Idempotents and the unit

At this point, we can almost say that A(n, k, S) is a differential algebra (we will see in
Section 6 that it is in fact a dg algebra). One subtlety is that the unit of A(n, k, S) is
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not an element of A(n, k, S). However, A(n, k, S) has its own unit, which we define
below.

Let B be the set of basepoints in Z(n) as above, and let M be the matching on B. We
write B/M := B/(z ~ M(z)) and consider the quotient map q: B — B/M. We can
identify B/M with [0, n] by sending {zl.'",zijrl} € B/M to the index i € [0, n].

Let x be a k—element subset x of B/M = [0, n], ie an element of V(n, k) in the
notation of Definition 2.2 (we will resume using this notation below). Following
Lipshitz, Ozsvéth and Thurston, we will call a subset S C B a section of x if S is
the image of a section of the quotient map g over x.

Definition 4.16 For x € V(n, k), let Jy be the element E (Consts,()) of A(n,k,S),
where S is any section of x and Constg is the k—strand of constant strands at each
basepoint in S. Note that this definition is independent of the choice of § by Lemma 4.9.
Define

Lames) = > Jx.
xeV(n,k)

A section § of x can always be chosen by the rule that i € x if and only if Zl~+ es.
Regardless of the choice of section, however, the element Jy is visually interpreted
as the diagram consisting of a constant dashed strand at each point of ¢~ !(x) C B.
The elements Jy for x € V(n, k) constitute a set of pairwise orthogonal idempotents
in A(n,k,S).

Proposition 4.17 The element 1 4,  s) is an identity element for A(n,k,S).

Proof Let E(s,¢) denote a standard basis element of A(n,k,S). Let y,z € V(n, k)
denote the images of ¢ (s(0)) and ¢g(s(1)), respectively, under the identification of B/ M
with [0, n]. Note that, if x # y, then Jy - E(s,¢) = 0 because no summand of Jy
is concatenable with any summand of E(s,¢), while Jy - E(s,¢) = E(s,¢) (see the
proof of Proposition 4.12, where it is shown that E(z, c?) E(s,0) = E(t-s.d + )
after ¢ and s are chosen appropriately). Similarly, E(s,¢) - Jy = 0 for x # z, while
E(s,¢)-J; = E(s,¢). Thus we have
Lagn,s)  E(5.6)=Jy - E(s.8)+ Y Jx - E(s.8) = E(s.0).
x#y
E(s.0) Lank,s) = E(s.0)- Jz + Y E(5.8)-Jx = E(s.0). O
x#z
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We see that A(n, k,S) is a differential algebra over [, (gradings will be discussed
in Section 6). Moreover, A(n, k, S) can be viewed as an algebra over the idempotent
ring I (n, k) = IFZV @5 via the ring homomorphism sending the indicator function of
x €V(n,k) to Jx € A(n,k,S), and we have a natural splitting

(4-6) An. k.= @ JeAn.k.S)J,
x,yeV(n,k)

(see [16, Lemma A.17] for more details).

Each element of the basis for A(n, k, S) from Definition 4.11 is homogeneous with
respect to the decomposition of (4-6). The basis element E (s, ¢) liesin Jx A(n, k,S)Jy
if and only if x and y are the projections of s(0),s(1) C B to k—element subsets of
(B/M) = [0, n], respectively (in other words, x and y are the unique I-states such
that s(0) is a section of x and s(1) is a section of y). Thus, we have the following
lemma:

Lemma 4.18 Let x,y € V(n, k). An F,—basis of the summand Jx A(n,k,S)J, of
A(n,k,S) consists of all standard basis elements of A(n,k,S) of the form E(s,¢),
where s(0) and s(1) are sections of x and y, respectively.

4.6 Far states and the strands algebra

Recall that for x, y € V(n, k) that are “far” in the sense of Definition 2.12, we have
I.B(n,k,S)I, =0. Below we prove a similar result for the strands algebra.

Lemma4.19 Letx,y € V(n,k). If x and y are far, then Jy A(n,k,S)Jy =0.

Proof We show the contrapositive. Let x = {x; <---<xp}and y ={y; <--- <y}
and suppose that Jx A(n, k, S)Jy # 0. Then there exists a k—strand s from a section S
of x to a section T of y, which in turn gives a bijection ¢: x — y with the property
that for all a € [1, k] we have

lp(xq) —xq| < 1.

We wish to show that this condition implies |y, — x| <1 for all a as well (and hence
x and y are not far). To prove that y, — x, < 1, assume by contradiction that the
set {a € [1,k]| ya —xq > 1} is nonempty, and let m be its minimum. Then, for all
b=1,...,m—1, we have that

o(xp) < 14+xp < ym.
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Moreover, @(Xm) —xXm <1 < Vi —Xm, S0 @(Xm) < Ym too. Then ¢ is injective from
{Xt,....,xm}to {y1,..., Ym—1}, which is a contradiction. To prove that y, —x, > —1,
we can apply the same reasoning to the maximum of the set {a € [1, k]| yo — x4 <—1}.
Thus we must have that |y, —x;| <1, so x and y are not far. a

4.7 Idempotent-truncated strands algebras

As in [16, Section 3.4], one can define truncated versions of A(n, k,S) (see also
[24, Section 12]).

Definition 4.20 For 0 < k < n, define A,(n,k,S) to be

( > Jx)A(n,k,S)( > Jx).

x:0¢x x:0¢x
Similarly, define A;(n, k,S) to be

( > Jx)A(n,k,S)( > Jx).

X:n¢x X:néx
For 0 <k <n—1, define A'(n,k,S) to be
( > Jx)A(n,k,S)( > Jx).
x:0,n¢x x:0,né¢x

As with the truncations of B(n, k, S), one can also describe these algebras in terms of
full subcategories of the dg category corresponding to A(n, k, S); see Definition 3.16
of [16].

In fact, as with A(n, k, S), the truncated algebras are special cases of strands algebras
for chord diagrams that will be defined in [17]. We describe these diagrams below.

Definition 4.21 We define the chord diagram Z,(n) to be (Z,(n), B, M), where
Z.(n):=S'u---ustulo,1].

Fori=2,...,n,let z; :=[0] € Sl.l and zl.+ =[1] € Sl.1 be two distinct basepoints

in Sl.l. We also fix points Zfr € Sl1 and z,7, | €Int([0, 1],41). We define a matching M

on the set of basepoints B = {ZfL, ch, cee, z,jf, Z, 1) by matching Zl~+ with z;, |, ie
M(z") =z

We define Z;(n) and Z'(n) similarly, with
Zi(n):=[0,1]usS'u---uS! and Z'@m):=8'u-.-ust.
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Figure 15: The chord diagrams Z;(3), Z,(3) and Z’(3) and the sutured
surfaces F(Z,(3)), F(Z;(3)) and F(Z'(3)).

Both F(Z,(n)) and F(Z;(n)) are a connected genus-zero sutured surface with n + 1
boundary components. One boundary component has two sutures; the rest have no
sutures and are contained in Sy . The sutured surface F(Z’(n)) is a connected genus-
zero surface with n+ 1 boundary components and no sutures. All boundary components
are contained in ST except the outermost one, which is contained in S~ .
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The chord diagrams Z,(3), Z;(3) and Z’(3) and the sutured surfaces F(Z,(3)),
F(Z;(3)) and F(Z'(3)) are shown in Figure 15.

5 Structure of the strands algebras

5.1 Notation and explicit bases for summands of A(n, k, S)

As mentioned below Definition 4.1, a k—strand can be described entirely by specifying
the starting points and (constant) speeds of each strand. When we pass to the sub-
algebra A(n, k, S) within .Z(n, k,S), we treat constant strands somewhat differently
from nonconstant strands, but basis elements E (s, ¢) should still be determined by
starting points and speeds of each strand of s (together with ¢), where a speed of zero
corresponds visually to a dashed strand rather than a solid strand.

Because the majority of the results in this paper hinge upon the splitting
An.k.8)= P JeAn.k.S)Jy,
x,yeV(n,k)
we allow our notation to take the starting idempotent x as a given. That is, given a
starting idempotent, we seek a notation that allows an immediate combinatorial and
visual grasp of any given basis element E(s,¢) for any section s(0) of x. With all

of this in mind, we present the following definition, starting from pairs (s, ¢) in the
prestrands algebra.

Definition 5.1 Suppose (s, ¢) € A(n, k,S). Let Ar(s, ¢) denote the following combi-
nation of a squarefree monomial in variables C; for i € S together with an array of

Ar(s,E);=]_[cf(")(p1) (pz) ...(1’") ,
ies q1 /1\42 /> 4n /n

where each p; and ¢; is defined as follows:

vectors:

e If z; is the starting point of a nonconstant strand s, of s, then p; is the (constant)
speed of this strand; otherwise we set p; equal to 0.

o If Zl.Jr is the starting point of a nonconstant strand s of s, then g; is the (constant)
speed of this strand; otherwise we set ¢; equal to 0.

We may also omit columns of all zeros from the array. In particular, the following
notation will be used often:

e ()= ) O (D0 (),
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Recall that we have defined our circles Si1 and basepoints Zl-i so that our speeds are
integers, and a speed of 2 indicates a degree one map to the circle. In particular, a
strand starts and ends at the same basepoint if and only if its speed is even.

Lemma 5.2 Fix some starting idempotent x € V(n, k). For any two basis elements
(s.¢) and (s',¢") of Jx A(n,k,S) with s(0) N M(s(0)) = s(1) N M(s(1)) = @ and
s"(0)NM(s'(0)) =s"(1)NM(s'(1)) = &, we have E(s,¢) = E(s’,¢’) if and only if
Ar(s,c) = Ar(s’, ).

Proof 1t is clear that if ¢ # ¢/, then we have both E(s,¢) # E(s’,¢’) and Ar(s,¢) #
Ar(s’,¢’). If ¢ = ¢/, Lemma 4.9 shows that E(s,¢) = E(s’,¢’) if and only if s' = s;
for some i C I, where I is the set of basepoints that are starting points for constant
strands of s as usual.

We claim that s’ = s; for some i C I if and only if Ar(s,¢) = Ar(s’, ¢). Indeed, if
s’ = s; , then the only difference between s and s’ is the placement of certain constant
strands, which the notation of Definition 5.1 ignores.

Conversely, if Ar(s,c¢) = Ar(s’, ¢), the nonzero entries of the arrays demand that s
and s’ have the same nonconstant strands, so that they (possibly) differ only in the
placement of their constant strands. Then, since s(0) and s’(0) are both sections of x,
we must have s’ = s; for some i C I. O

Lemma 5.2 shows that Ar(s, ¢) descends to a well-defined notation for basis elements
E(s,¢) in Jxy A(n, k,S) once x has been fixed. Notice that an entry of zero in Ar(s, ¢)
can mean two different things for the corresponding k —strand s — it can mean that
there is no strand at all at the given basepoint, or it can mean that there is a constant
(ie speed 0) strand at the given basepoint. In particular, the case ¢; = p;j4+1 = 0 can
mean there are no strands present at all, or that there is a single constant strand starting
at either Zl-+ or z;,y, but it cannot mean that there are constant strands at both Zi+

and z;, ; since we have s(0) N M(s(0)) = &.

Lemma 5.2 views this ambiguity as a helpful feature of the notation due to the ambiguity
inherent in Lemma 4.9. However, one might object that the notation alone does not
distinguish between a constant-strand starting point, an empty basepoint that is matched
to a constant-strand starting point, and an empty basepoint that is not matched to a
constant-strand starting point. (As an extreme example, every idempotent element Jy
is written as an array of all zeros, regardless of x.) To address this objection, we always
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Figure 16: The basis element C2C4C5(;)1(8)2(2)3(8)4(})5 of A(5,6,S),

also denoted C,C4C5s (;)1(2)3(1) 5 starting at the idempotent J,, where

x=1{0,1,2,3,4,5} and S C [1, 5] contains {2, 4,5}.

work with a fixed starting I-state x, implying the existence (or lack thereof) of strands
starting from certain matched pairs of basepoints. We summarize this point with the
following remark:

Remark 5.3 The notation of Definition 5.1 is only well-defined for basis elements
of JyA(n,k,S) for some fixed beginning I-state x. It is therefore not helpful as a
notation for general basis elements in A(#n, k, S). For computations in this paper using
this notation, we will focus on a single summand Jx A(n, k, S) of A(n,k,S) at a time.

Visually, once we have fixed a starting I-state x, the notation C;, --- C;, (f;l‘ )1 e (é’:)n

indicates a specific basis diagram in which solid strands are drawn according to their
speeds (the placement of p; above ¢; in the notation is a reminder that p; is the speed

Figure 17: Reference diagram for the proof of Lemma 5.4.
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starting from the upper basepoint, while g; starts from the lower basepoint). Constant
dashed strands are drawn on any matched pair of basepoints that are contained in x
but have no solid strands coming from them. Closed loops are drawn on any cylinder
whose C; variable appears in the monomial. See Figure 16 for an example.

It should be clear that only certain arrays can appear in valid basis elements for a given
summand Jy A(n, k, S) of the strands algebra. Furthermore, given a valid array, the
ending idempotent of the corresponding strands algebra element is also determined.
Visually all that is required is that no two solid strands start on matched basepoints,
and that no two strands (whether solid or dashed) end on basepoints that are either the
same or matched. The following lemma describes the precise combinatorics involved;
see Figure 17 for reference.

Lemma 5.4 For x € V(n,k), the map (s,c) — Ar(s,¢) of Definition 5.1 descends
to a one-to-one correspondence between basis elements E(s,¢) of Jy A(n,k,S) and

Ci1~'-Ci1(pl) (p”)
ql 1 ‘]n n

satisfying the following conditions:

expressions

(i) The indices iy, ...,i; are distinct elements of S.

(ii) Foreveryi €[l,n—1], gi pi+1 =0 (ie g¢; and p;+1 cannot both be nonzero).

(iii) Foreveryi €[0,n]\x, ¢; = pi+1 =0.

(iv) Foreveryi €[l,n—1], piqi+1 is even (ie p; and q;+1 cannot both be odd).

(v) Foreveryi €[1,n],if p; and g; are both nonzero, then p; = q; (mod 2).

(vi) Supposei €[l,n] and {i —1,i} C x. If p; is odd and q; = 0, then we must
have p;y1 odd (and thus g;+1 = 0 by (iv)—(v)). Symmetrically, if p; =0 and
gi is odd, then we must have ¢;—1 odd (and thus p;—1 = 0 by (iv)—(v)).

By convention, we always set g9 = pp+1 = 0.

Given an array expression satisfying the above conditions, let E(s,¢) denote the
corresponding basis element of Jy A(n,k,S). We have E(s,¢) € JxA(n,k,S)J,
where y € V(n, k) is the unique vertex satisfying the following conditions for i € [0, n]:

e Ifiex and g; isodd, theni —1 € y.

e Ifiex and p;j4+1 isodd,theni +1¢€y.

e Ifiex and q; and p;4+1 are both even, theni € y.

Note that if g; or p;+1 is odd, then i € x follows from condition (iii) above.
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Proof Lemma 5.2 implies that the map under consideration is well-defined and
injective into the set of all possible array expressions. We want to show that the image
of this map lies in the subset consisting of array expressions satisfying conditions
(1)—(vi), and that the map is surjective onto this subset.

Indeed, condition (i) follows from the requirement that ¢(i) € {0,1} for all i € S.
Condition (ii) follows from s(0) N M(s(0)) = &, and condition (iii) follows from the
fact that s(0) is a section of x. Condition (iv) follows from s(1) N M(s(1)) = @.
Condition (v) follows from the fact that s(1) is a set of k distinct basepoints, since
s is a k—strand. Finally, condition (vi) also follows from s(1) N M(s(1)) = & and
the fact that s is a k—strand. Thus, array expressions in the image of the map under
consideration satisfy the listed conditions.

For surjectivity, given an array expression satisfying the conditions, we can form a
putative k—strand s by interpreting p; (respectively g; ) as the speed of a strand starting
at z;~ (respectively zl-+ ), filling in constant strands compatibly with x, and translating
the monomial C;, ---C;, into a function ¢ € {0, 1}° (this last step is possible by
condition (i)). By construction, s(0) consists of k distinct basepoints; the same is true
for s(1) by conditions (v) and (vi), so s is a k—strand. We have s(0) N M (s(0)) = @
by condition (ii), and we have s(1) N M(s(1)) = @ by conditions (iv) and (vi). Finally,
5(0) is a section of x by condition (iii) and the fact that constant strands of s were
chosen to be compatible with x.

It follows that the map under consideration is indeed a one-to-one correspondence. The
determination of y from x and the parity of the speeds p; and ¢; is a straightforward
computation; we leave it to the reader. a

5.1.1 An important special case The following special case of the summands
JxA(n,k,S)J, will be important below.

Definition 5.5 For n > 1, we define the generating algebra to be
An,S) == Iy p—1]Am.n—1,8)Jp1 pn—1]-
While A(n,S) is naturally a dg algebra, we will focus below on its structure as a chain
complex over 5.
Lemma 5.6 A basis over [y of A(n,S) is given by squarefree monomials in the C;

variables as usual times all arrays (s:)l (sz)n such that

(1) forie[l,n—1], gipi+1 =0 (ie ¢; and p;4+1 cannot both be nonzero);
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(2) p1=¢n=0;
(3) forall i €[1,n], pi =¢; (mod?2).

Proof Condition (1) here is the same as (ii) from the general Lemma 5.4. In Al n,S)
where x = [1,n — 1], condition (2) here is equivalent to (iii) from that lemma. It
remains to see that conditions (iv), (v) and (vi) from the general lemma are equivalent
in A(n,S) to condition (3) here.

We show this by considering negations, assuming the first two conditions here. Suppose
condition (iv) from the general lemma is false, so there exists some i with p; and g; 4+
both odd. Then since at least one of ¢; and p;4; must be zero by (1), we have some
index j where p; and g; have opposite parity, so condition (3) here is false.

Note also that if condition (v) or condition (vi) from the general lemma is false, then
condition (3) here is false.

Conversely, suppose that condition (3) here is false, so there exists an index i €
[1,n] where p; and g; have opposite parity. By condition (v), we must have either
pi = 0 or g; = 0; without loss of generality, we may assume that p; is odd and
g; is zero. Let i be the maximal such index. By condition (vi), we have i = n.
Since p, is odd, we have n € y for the right idempotent J,, of the basis element
under consideration, contradicting the fact that the basis element lives in A(n, S) :=
J[l,n—l]A(na”_I,S)J[l,n—l]- O

We will also need to consider the following three variants of A(n,S):

Definition 5.7 For n > 1, we define the edge algebras
o A3(n.8):=Jpn-11A0.n,8) 0 n-1],
i pr(n,S) = J[l,n]A(nvn’S)J[l,n], and
o A3p(n,8):=Amn,n+1,8).

The following three lemmas are analogous to Lemma 5.6, and their proofs are omitted.

Lemma 5.8 A basis over F, of A (n,S) is given by squarefree monomials in the C;

as usual times all arrays (51‘)1 (fl’:)n such that

(1) forie[l,n—1], gipi+1 =0;
() 4qn=0;
(3) fori €|l,n], pi =¢q; (mod?2).
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Lemma 5.9 A basis over F, of A, o(n,S) is given by squarefree monomials in the C;

as usual times all arrays (51’11)1 (fl’:’l)n such that

(1) forie[l,n—1], qgipi+1 =0;
(2) p1=0;
(3) fori €[l,n], pi =q; (mod?2).

Lemma 5.10 A basis over F, of A, Ap(n,S) is given by squarefree monomials in

the C; as usual times all arrays (fl’l‘)l (é’:)n such that

(1) forie[l,n—1], gipi+1 =0;
(2) fori €[l,n], pi =¢q; (mod?2).

5.2 Products and differentials of explicit basis elements

In this section we wish to derive formulas for products and differentials of explicit
basis elements written in the notation of Definition 5.1. Since A(n, k,S) is closed
under multiplication and the differential, such products and differentials are sums of
basis elements; we wish to write these sums explicitly in the same notation.

5.2.1 Products of basis elements As seen in the proof of Proposition 4.12, in order
for the product of two basis elements E(s,¢) - E(t, d ) to be nonzero, we must have
some i C I and j C J such that s(1); = #(0); (see that proof for an explanation
of the notation). If we recall that g: B — B/M = [1,n] denotes the quotient map,
this requirement implies that g(s(1)) = ¢(¢(0)) as k—element subsets of [1,n] (the
converse is not true, as we will explore shortly).

Because E(s,c)- E(t, j) # 0 at least requires g(s(1)) = ¢(¢(0)), we only write down
formulas for the product of a,a’ € A(n, k,S) in the case where a € Jy A(n.k,S)Jy
and a’ € Jy' A(n,k,S) with x’ = y. All other cases have trivial product. Note that
this assumption enforces certain conventions in our formulas regarding the meaning
of zeros in the second (or third, etc) factor in a product. For instance, as elements of
Jx A2,2,8) with x = {0, 2}, the formula

(0),(0),(0), (), = (6), ),

presumes that the starting I-state of (8)1(2)2 is y := {1,2}, and thus the entries

g1 = p2 = 0 for this term are forced to represent constant dashed strands, while the
entry p; = 0 is forced to represent an empty space. See Figure 18. In short, fixing x
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Figure 18: A figure illustrating the formula (3, (3), (9);(3), = (5),(3), in
the case when the starting idempotent was x = {0, 2}, with dots placed on
occupied matchings.

fixes the meaning of the notation for a € Jy A(n, k, S), which in turn fixes y, which
then fixes the meaning of the notation for a’ € Jy A(n,k,S) when considering a
product a - a’.

However, the condition x’ = y above does not guarantee that E(s,¢)- E(t, d ) #0,
or even that there exist i and j with s(1); = 7(0);. The elements may still be not
concatenable, and even if they are, we may still create degenerate annuli or bigons upon
concatenation (see Definition 4.2 and the discussion below (4-3)). If we translate all
of our monomials in C; variables and (p;, g;)—arrays into graphs of solid and dashed
strands with closed loops, these situations become visually clear. The following lemma
presents the combinatorics that result from this analysis, including the formulas for the
nonzero products:

Lemma 5.11 Let a € JxyA(n,k,S)Jy and a' € Jy A(n,k,S) be basis elements,
represented by expressions

/ /
a=Ci|"'Ci1(p1) (pn) and a/=Ci/~--Cl-//(p/l) (p;i)
q1 /1 dn Jn ! ! q1 /1 n /n

Then a-a’ # 0 if and only if forall i = 1,...,n the following conditions hold:
(D) if p; is odd, then plfH =0;
(I) if p; #0 and is even, then q;_; = 0;

({I) if g; is odd, then qlf_l =0;

(IV) if g; # 0 and is even, then p;_ ; = 0;

(V) if p; and g; are both even, then (p; —q;)(p} —q}) > 0;

(VD) if p; and g; are both odd, then (p; —q;)(p} —q}) < 0;

(VII) no C; variable appears in the monomial for both a and a’.
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Moreover, when a -a’ # 0, we also have the formulas

a'a,=Ci1"'Cizci;"'cilf/(rl) (l’n) e J A
S] 1 Sn n

where
pi+q; if p;isodd,
ri =1 pi+p; if p;isevenand g; is even,
0 if p; =0 and g; is odd,
and
qi +p; if g; is odd,
sii=14qi+q; if q; isevenand p; is even,
0 if g¢; =0 and p; is odd.

In the above lemma, by convention we always set ¢o = pn+1 = ¢y = P), +1=0.1In
the definition of r;, note that if p; is even and ¢; is odd, then we must have p; =0,
hence we cover all the cases (and similarly for s; ).

Proof We first prove the “only if”” direction. We write @ = E(s,¢) and a’ = E(s’,¢)
with I and J denoting the starting basepoints of constant strands from s and s/,
respectively, as in the proof of Proposition 4.12.

Suppose that item (I) fails for some fixed index 7. Since p; is odd, the point Zi+ is the
endpoint of a nonconstant strand of s, so z; [ ;| = M (Zl-+ ) is not in s(1), and indeed
not in s(1); for any i C I. Meanwhile, if p; 41 # 0, then there is a nonconstant strand
departing from z;_, | in s’, meaning z 1€ s'(0); forall j C J. Thus each product
in the double sum for a -a’ is not concatenable, so a-a’ = 0. Items (II), (III) and (IV)
are similar. Visually, these four items cover the cases when a solid strand in ¢’ has no

strand (solid or dashed) in a to concatenate with.

To show that item (V) holds, first suppose that {i —1,i} is not a subset of x. If the
quantity in (V) is negative, then either p; and ¢; are both nonzero or g; and p; are
both nonzero. Since p; and ¢; are even, both cases contradict the assumption that
the right idempotent of a is the left idempotent of a’. If {i —1,i} C x and a-a’ # 0,
then there exist representatives (s, ¢), (z, d ) for a and @’ such that s and ¢ have two
strands each on the backbone Sl.l. These representatives satisfy the “no degenerate
bigon” condition of Definition 4.2, implying item (V).

The argument for item (VI) is similar (note that when p; and ¢; are odd, the relative
positions of the starting points of the strands swap, causing a flip in the sign of p; — g/
relative to the phrasing in Definition 4.2). Finally, negating item (VII) means that we
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have ¢(i) +¢’(i) = 2 for some i, so a-a’ is zero. Visually, negating item (V) or (VI)
results in a degenerate bigon after concatenation, while negating item (VII) results in a
degenerate annulus.

In the other direction, the proof of Proposition 4.12 shows that a -a’ # 0 so long as
there exist some i C I and j C J with s(1); =s’(0); and such that the concatenation
Si -s;. has no degenerate bigons or annuli. Annulus creation violates item (VII). Bigon
creation between two strands must take place on some fixed backbone S l.l ; the reader
may verify that the result violates one of items (V) or (VI) depending on the parity of
pi and g;. Thus it is enough to show that, if we assume items (I), (II), (IIT) and (IV)
(along with g(s(1)) = ¢(s’(0)) = y), then we can find the requisite i and j making
s; and s;. concatenable.

Suppose s(1) # 5’(0), so there exists some basepoint Zl.jE €s(1)\s'(0). Since g(s(1)) =
q(s’(0)), the matched basepoint M (Zl-:l:) must be an element of s’(0). If the basepoint

P

7= € s(1) is the endpoint of a nonconstant strand, then we are in one of the cases
covered by items (1), (I), (III) and (IV), forcing M (Zl-:l:) to be the starting point of a
constant strand in s”. This means we can choose j = {M (Zl-:t)}; using Lemma 4.9, we
can replace s’ by s;. and begin again with one fewer element in s(1) \ s/(0). On the
other hand, if ziﬂ: € s(1) was the endpoint of a constant strand, then we have zl-i € s(0)
as well and we can choose i = {zl.i} to accomplish the same goal after replacing s
with s; . In either case, we decrease the size of s(1) \ s'(0). This process does not
change the elements a and a’, so it preserves the entire list of conditions above. Since
the sets s(1) and s’(0) are finite, we must eventually make s and s’ concatenable,

proving the characterization of nonzero products a - a’.

Assuming that a-a’ # 0, choose (s, ¢) and (s’,¢’) with a = E(s,¢) and @’ = E(s’,¢”)
such that s -5’ is nondegenerate. Equation (4-3) shows us that to compute a - a’, we
need only take the product of (s, ¢) and (s”,¢’) in A(n, k, S), where speeds of various
strands add. With this observation in mind, the formulas above follow so long as one
recalls that strands with odd speeds start and end at opposite basepoints, essentially
reversing the role of p; and g¢/. O

5.2.2 Differentials of basis elements According to Proposition 4.15, the differential
of Definition 4.5 descends to the strands algebra A(n, k, S); the proofs of Lemmas 4.13
and 4.14 show how to compute the differential on A(n, k, S). Therefore, we will refrain
from a detailed proof of the resulting formulas when applying this reasoning to basis
elements written in our (p;, g;)—notation.
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a:Cil"'Ci](pl) ...(pn)
ql 1 Qn n

be a basis element of the summand Jx A(n,k,S). For1 <i <n, H?a is the element
of JxyA(n,k,S) given by

Lemma 5.12 Let

(5-2) Na=0 if{i—1,i}¢x,
and otherwise, defining m; := min(p;, q;) and M; := max(p;, q;),

(5-3) a=
Ciyoo Gy (B), - (i), o (1) +Ciy = G (B1) - (WD) -+ (2),
if gi—1 = pi+1=0and M;—m; > 4,
Ci,---Cj, (511)1 (nﬁzf,t})l (ZZ)n if gi—1=pi+1=0and M;—m; =2,
0 if either of gi_y or p;+1 is # 0.,
orif (M;j—m;)=0.

The ellipses of (5-3) are meant to indicate that all entries of the array for a have been
kept the same except for those in the i™ column.

Proof If {i —1,i} ¢ x, write a = E(s,¢). For each term (s;, ¢) in the sum defining
E(s,¢), the k—strand s; can have at most one strand on the backbone Sl.1 , SO 8?61 =0.
Similarly, if either of ¢;—1 or p;+1 is # 0, each s; can have at most one strand on Sl.1 s
) B?a = 0. Also, M; —m; = 0 if and only if p; = ¢;, again indicating that B?a =0.
The only cases remaining are those where {i —1,i} C x, gi—1 = pi+1 =0 and p; #gq;.
In these cases, if both p; and ¢; are nonzero, we have the formula immediately from
Definition 4.5. If p; =0 and ¢; # 0, recall that g;_; =0 and i — 1 € x; if ¢; = 0 and
pi # 0, recall that p;+1 =0 and i € x. The proof of item (2)enumz in Lemma 4.14
now implies the stated formula. a

() ()
q1 /1 qn /Jn

be a basis element of the summand Jx A(n,k,S). For 1 <i <n, dYa is the element
of Jxy A(n,k,S) given by

Lemma 5.13 Let

(5-4) Bfa =0 if C; does not appear in the monomial C;, ---Cj;
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otherwise, as long as p; and q; are not both zero,
i+2
(Cil"'Ciz/Ci)(g:)l“ (p ) ( )
. +(Ciy - Ciy /() '“(q o), ( ") - if pi =qi #0,

(5-5) aia = D1 p, _|_2 i " .

(Ciy - Ciy /(1) - (P0), - () if pi > gqi,

(Ci, - Ciy /D)), “'(q[p-f—Z)i (5,’1),1 if pi <qi.
If p; = q; =0, we have a potential sum of terms depending on x and the entries q;_1
and p;4i as follows:

(5-6) af(c”---c, (1’1) (0) (P))
41 /1 0/; qn /n
:8._1(&1...&,(1?1) (2) (Pn))
l Ci 41 /1 0/; dn Jn
) Cil"'Cf] )41 0 DPn
ca(® (), G- ())

51 1 ifi—1lexandg;i—1 =0, . e 1 ifiexand piy+1 =0,
=170 otherwise, T

where §; _1 and ¢; are defined as

0 otherwise.

Proof Equations (5-4) and (5-5) are straightforward translations of Definition 4.5 into
this notation (note that the ambiguity of a zero entry is irrelevant for 97 if there is
another strand of positive speed on Sl.1 ). Meanwhile, equation (5-6) splits d¢ into a
sum of terms — the first term appears if and only if the entry p; = O refers to a dashed
strand at z;~ in the visual representation for a, While the second term appears if and
only if the entry g; = O refers to a dashed strand at Z . One can check that (5-6) also
follows from Definition 4.5. |

5.3 More results on the strands algebra

Because the idempotents J, € A(n, k,S) are indexed by subsets x € V(n, k), we can
extend some of the terminology of Section 2 to our current setting. By Lemma 4.19,
we already know that Jx A(n, k,S)Jy =0 when x and y are far as in Definition 2.12.
The following lemma relates our (p;, g; )—notation to the entries v; (x, y) of the rel-
ative weight vectors (Definition 2.2) and the notion of crossed lines from x to y
(Definition 2.13).
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Lemma 514 Let a = G, ---Cyy(J}), -+ (7)€ JxA(n.k.S)Jy be a standard

basis element of the strands algebra. Then x and y are not far (in the sense of
Definition 2.12), and the following conditions are equivalent:

(1) linei from x to y is crossed;

(2) for any k —strand s such that a = E(s,c), s has only one strand mapping to the

ith circular backbone, and this strand connects either zj to zi+ or zl.+ toz;;

(3) pi #qi (mod2).
Moreover, in such a case, the following are equivalent too:

(1) vi(x,y)=1 (resp. vi(x,y) =—1);

(2) the strand of s on the i" circular backbone connects z; to Zl.Jr (resp. Zl~+ toz;");

(3) ¢i =0 (resp. p; = 0).

Proof The claim that x and y are not far follows from Lemma 4.19. If we write
a = E(s,¢), we see that for any i € [1,n] we have

N fin]l =150 Nz 250z 2]
and

y i)l =Is() Nzt 25,z 2 )
The strands of s on the circular backbones S jl for j > i + 1 (and the final linear
backbone) give a one-to-one correspondence between

SO) Nz 2y 2y and s(D Nz Lz 2 )
so there are only three possibilities for v; (x, y) = |y N[i,n]| —|x N[i,n]|:

e If z+ €s(0)\s(1), then v;(x,y) =—1 (line i is crossed) in such a case, there
must be only a single strand on ! starting from Z and ending at z;~, which
is equivalent to p; =0 and ¢; odd.

e If Z;“ € s(1)\ s(0), then v;(x,y) =1 (line i is crossed); in such a case, there
must be only a single strand on Si1 ending at Zl-+ and starting from z;~, which
is equivalent to ¢; = 0 and p; odd.

o IfzF €5(0)Ns(1) or z;F ¢ 5(0)Us(1), then v;(x, y) =0. If ;" € 5(0) Ns(1),
then either s has a single strand from zl.+ to Zi+ (pi =0 and ¢; even), or s has
at least two strands on the i™ cylinder (p; = ¢; (mod 2)). If zl.+ ¢ s(0)Us(1),
then s can have no strand starting from or ending in zl.+ (¢gi =0 and p; even).

The assertions of the lemma follow. O
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Figure 19: The elements fy , of Path(K(5,4)) and g4, , of A(5,4) for
x=1{0,1,2,5} and y ={0, 2, 3, 4}.

Corollary 5.15 Let x,y € V(n, k). If

/ /
a:Cil"'Cil(pl) (pn) and a,:Ci/...Ci//(p/I) (p7)
q1 /1 qn Jn ! "\ q1 /1 45 )n

are basis elements of Jxy A(n,k,S)Jy, then, forall i =1,...,n, we have p; +q; =
pi+q} (mod2).

Proof By Lemma 5.14, the parity of p; + ¢; is determined by whether or not line i
is crossed, which depends only on x and y. |

For I-states x and y that are not far, there is a unique minimally winding basis
element of A(n, k, S), which should be viewed as an analogue to the generator fx y
of B(n,k,S) as in [16, Definition 2.11]. Visually, this element is found by placing
speed zero strands for each stationary dot (in the sense of the motions of dots in
[16, Section 2.3]), and placing speed one strands for each moving dot. The following
lemma presents the combinatorics of this construction; see Figure 19 for an example.

Lemma 5.16 If x and y are not far, then there exists a unique basis element

gx’y:(pl) ...(p”) € JxAn,k,8)J,
q1 /1 dn /n

with the following properties:
e pi=1lifvi(x,y)=1;
e ¢gi=1ifvi(x,y)=-1;
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e pi and g; are 0 in all other cases.

Moreover, if Ci, -+-Cj, (;i)l ~-(r")n is a basis element of Jx A(n,k,S)Jy, then, for

Sn
alli=1,...,n,wehaver; > p; and s; > q; .

Proof The three properties listed above completely determine all entries p; and ¢; .
We need to check that such an array of vectors defines an element of Jy A(n,k,S)Jy,
ie that it satisfies the properties of Lemma 5.4. Condition (i) is automatic.

If gi # 0, then v;(x,y) = —1, so vit+1(x,y) must be —1 or 0, hence p;+; = 0.
Thus ¢; pi+1 = 0, and condition (ii) holds.

If p; is odd, then v;(x,y) =1, s0 v;4+1(x,y) mustbe 1 or 0, hence g; +1 = 0. Thus
piqi+1 = 0 is even, and condition (iv) holds.

If i ¢ x, then there are two cases. If i ¢ y, then v; (x, y) =v;+1(x, y) =0, otherwise
x and y would be far. If i € y, then v;(x,y) =vi+1(x,y)+ 1,50 v;(x,y) # —1
and v;4+1(x,y) # 1. In all these cases, we have ¢; = p;+1 = 0 and condition (iii)
holds. Condition (v) is immediate because p; and ¢; are never both nonzero.

Finally, if p; is odd and ¢; = 0 (respectively p; = 0 and ¢; is odd), we have
vi(x,y) =1 (respectively v;(x,y) = —1). Assuming {i — 1,i} C x, we then have
vi+1(x,y) =1 (respectively v;_;(x,y) =—1), so that p; 1 =1 is odd (respectively
gi—1 = 1 is odd). Thus, condition (vi) is also satisfied.

Thus, gx,y € JxA(n,k,S). Let y’ denote the ending I-state of gx y, so that gx , €
JyA(n,k,8)Jy . If i € x and p; 41 is odd, then i + 1 € y’. On the other hand, p; 41
is odd if and only if v;41(x, y) = 1, which, by the closeness of x and y, implies
that i € x and i + 1 € y. Analogously, if i € x and ¢; is odd, then we deduce both
i—ley andi—1€ey.

If i € x and ¢g; and p;4; are both even, then v;(x,y) >0 and v;+1(x,y) <0. By
the fact that

0=<vi(x,y)—vit+1(x,y) =8iey —Siex =Jiey — L,
we deduce that i € y. Thus, by Lemma 5.4, y and y’ coincide.

Lastly, to check that r; > p; and s; > ¢; for the general basis element of Jx A(n,k,S)J
we use Lemma 5.14. If v;j(x,y) = 1, then r; £ 0 (mod2),so r; > 1= p;. If
vi(x,y)=—1,then s; #0 (mod2),s0 s; >1=g¢q;. O

Corollary 5.17 The summand Jx A(n,k,S)Jy of the strands algebra is nonzero if
and only if x and y are not far.
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6 Gradings

In this section we endow our strands algebra A(n, k, S) with several gradings, defined
combinatorially in terms of the ( p;, g; )—notation of Definition 5.1. We then illustrate the
relationship between our gradings and the group-valued gradings of [11] in Sections 6.2
and 6.3. Throughout this section, we extend the function ¢ € {0, 1}° to a function
¢ € {0, 11111 by declaring that ¢(i) =0 if i ¢ S.

6.1 The gradings, combinatorially

Definition 6.1 Let a = E(s,¢) € Jx A(n, k, S) be a basis element; we can write a as

a:cw)...can)(m) ...(Pn) ,
! " q1 /1 dn Jn

Let ys: [1,n] — {0, 1} be the indicator function of SC[1,n] (0ifi ¢S and 1 if i €S).
As in Definition 2.5, let 1, f1, ..., Tn, Bn denote the standard basis of 72" while
e1,...,en denotes the standard basis of Z". We have the following four notions of a
degree for a:

(1) The Maslov grading m: A(n,k,S) — Z is defined by

n

m(@) =Y (3lpi —qil — (pi + i) + (DX D @E@) + 3 (pi +40)))-

i=1

(2) The unrefined Alexander grading w"™: A(n,k,S) — Z?" is defined by

n
w'a) ==Y W (@)1 + wi™ @)Bi),
where =t

w™ (@)= () + | Lpi |+ [Lar] and W™ (a):=EG)+[Lpi]+ | Lai ).
(3) The refined Alexander grading w: A(n,k,S) — (%Z)n is defined by

n
w(a) =Y (¢()+ 3(pi +4qi))e.
i=1
As in Definition 2.5, w is recovered from w"" by the homomorphism sending
both 7; and f§; to %ei.

(4) The single Alexander grading Alex: A(n,k,S) — %Z is defined by

Alex(a) = Z(—l)XS(i)(E(i) + %(Pi +4i)).
i=1
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Visually, the entries of the unrefined Alexander grading count how often any strand
traverses each arc between basepoints on the circular backbones (there are 2n such
arcs), while the entries of the refined Alexander grading count the total winding number
of all strands on each circular backbone. The Maslov grading is a bit more complicated.

With these definitions in place, the reader can use Lemmas 5.11 and 5.12 to verify the
homogeneity of both multiplication and differentiation, as described by the following
proposition:

Proposition 6.2 For a € A(n, k,S) homogeneous with respect to any of the following
gradings, we have

m(da) =m(a)—1, w"(0a) =w"(a), w(da)=w(a), Alex(da)= Alex(a).

Moreover, all of these gradings are additive with respect to multiplication in the algebra:
fora,b € A(n,k,S) g—homogeneous (where g is any of the gradings introduced so
far) and such that a -b # 0, we have

gla-b) =g(a)+g(b).
6.2 Where the unrefined gradings come from, topologically

Lipshitz, Ozsvéth and Thurston discuss gradings on the strands algebra associated to a
pointed matched circle in [11, Section 3.3]. Their ideas are easily carried over to the
case of a general chord diagram Z = (Z, B, M). The unrefined gradings of [11] take
values in a subgroup of a central extension by %Z of Hi(Z, B) determined by M ;
in general, such an extension gives a nonabelian group. We will see that, in the case
of our specific chord diagram Z(n) = (Z(n), B, M), this extension is in fact trivial,
leading to the unrefined grading group of Definition 6.1. We begin with a definition.

Definition 6.3 (cf[11]) Let Z = (Z, B, M) be a chord diagram as in Definition 3.1.
For p € B and @ € H{(Z, B), the multiplicity m(a, p) of p in « is the average
multiplicity with which « covers the two arcs on either side of p. Extend m to a map
H\(Z, B) x Ho(B) — 1Z bilinearly.

Using the multiplicity m, Lipshitz, Ozsvath and Thurston [11] define a bilinear “linking”
function L: Hy(2, B) x Hi(2,B) — 17 as

L(Oll,Olz) = m(Olz, 8a1),
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where 9 is the connecting homomorphism d: Hq(Z, B) — Ho(B) from the long exact
sequence for the pair (Z, B). Note that L is antisymmetric; equivalently, L (o, ) =0
for any «. Using L, we can define a group G'(Z) as follows:

Definition 6.4 [11, Definition 3.33] Define &: H(Z, B) — (3Z)/Z by
ela) = %#(parity changes in «) mod 1,

where a parity change in « is a point p € B such that m(c, p) is a half-integer. The
unrefined grading group G’'(Z) is the subset of %Z x H1(Z, B) consisting of pairs
(J,«) satistying

j=eée(@) mod 1.

The multiplication on G’(Z) is given by
(J1.a1) - (2, 02) == (1 + 2 + L1, @2), a1 + a2);

one can check that the condition j = e() mod 1 is satisfied for the product.
For our chord diagram Z(n), the linking function is trivial, as shown below:

Lemma 6.5 Consider the chord diagram Z(n) = (Z(n), B, M) of Definition 3.6. For
any ay,0 € Hi(Z(n), B), we have L(ay,a3) =0.

Proof Any standard basis element a1 € H{(Z(n), B) = Z>" will lie entirely on
some Si1 , and so will have either do; =0 or do; = j:(zl-Jr — Zl-_). Since the arcs on
either side of zi'" are the same as the arcs on either side of z;~, we have m(az, day) =0
in all cases. o

Corollary 6.6 For the chord diagram Z(n), the unrefined grading group G'(Z(n))
of [11] is isomorphic to the subgroup of %Z x Hi(Z(n), B) =~ %Z x Z*" consisting
of pairs (j,«) with j = e(a) mod 1.

The next lemma shows that G’(Z(n)) is noncanonically isomorphic to Z x Z2".

Lemma 6.7 Write 11, By, ..., Ty, Bn for the generators of Hy(Z(n), B) = Z>". For
1 <i <n, choose j, jl.ﬂ € %Z\Z. The elements

2=(1,0,GE 1) GPL B, . G ), GEL B

form a basis of G'(Z(n)) as a free abelian group.
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Proof The set is independent, so it suffices to show these elements generate G'(Z(n)).
Indeed, let (j, &) be an arbitrary element of G'(Z(n)), where ¢ =Y, (af v; —I—af Bi)
for some integers af and afg . We have

n
- v B
[TUr w9 G g% = (' o)
i=1
for some j' € %Z, and since j = ¢(a) = j’ mod 1, we have (j,a) = A%(j’, a) for
some a € Z. |

We will use S to choose the half-integers j; above.

Definition 6.8 1f i €S, pick j7 =P =L inLemma6.7. 1t i ¢ S, pick j7 = j# =—
We get an isomorphism ®gs from G'(Z(n)) to Z x Z>" by sending

1
3 -

e A=(1,0)~ (1,0);
® (jirvti)H(()’Tl');
e GF.B) (0. 8).

We now define a grading by G'(Z(n)) on A(n,k,S), following [11, Definition 3.38].
Applying ®g to this grading, we will get the combinatorially defined Maslov and
unrefined Alexander gradings from Section 6.1. We require one further definition.

Definition 6.9 Let (s,¢) be a generator of the prestrands algebra A(n, k,S). The
number of inversions of (s,¢), denoted by inv(s, ¢), is defined as

n
inv(s,c) = Z inv; (s, ¢),

i=1
where inv; (s, ¢) is defined as follows:
o If 5(0)N{z*} = @, then inv;(s,¢) := 0.
o If [s(0) N{zE}| = 1, then inv; (s, ¢) := &(i).

e If |s(0O)N {zl?t}l = 2 and the two strands of s on Sl.l have speeds p; and g¢;,
then

inv; (s, ¢) := 3| pi —qi| + 26(i).
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Note that inv(s,¢) is only well-defined for elements (s,¢) of A(n,k,S), not for
elements of A(n, k, S). Visually speaking, inv(s, ¢) counts the number of crossings
between strands in a pictorial representative of (s, ¢) where the positions of the closed
loops are chosen to avoid triple intersections. The terms ¢ (i) and 2¢(i) then account
for crossings between strands of s and closed loops.

Definition 6.10 Let (s,¢) be a basis element of A(n,k,S). Let 71, B1,...,Tn. Bn
denote the generators of H1(Z(n), B) = Z". The homology class of (s,c), denoted
by [s,¢] € Hi(Z(n), B), is the sum of the relative homology classes represented by
the strands of s viewed as paths in Z(n), together with the additional term
n

DBEOICEY:D

i=1
accounting for closed loops.

As in [11, Definition 3.38], we can use the homology classes [s, ¢] and the multiplicity
function m to “correct” the quantity inv(s, ¢), allowing it to descend to A(n,k, S).

Lemma 6.11 Let (s,¢) be a basis element of the prestrands algebra A(n, k,S). We
have

[s.¢]=[s".¢] and inv(s.¢)—m([s.c], [s(0)]) = inv(s,¢) —m([s". C]. [s(0)]),

where s’ is obtained from s by removing all constant strands.

Proof The first claim is true because constant strands of s represent 0 in H1(Z(n), B).
The second claim is similar to that of [11, Proposition 3.40], but we give details for
completeness.

We can write inv(s,¢)—inv(s’,¢) as the sum of ¢(i) over i €[1, n] with |s(0)ﬂ{zii}| =1
such that the strand of s on Sl.1 is constant, plus the sum of %| pi —qi| +&c(i) over

i €[1,n] with |s(0) N {Zl-:l:}| = 2 such that at least one of the two strands of s on Sl.1
is constant, where & is the number of constant strands of s on Sl-l.

On the other hand, [s, ¢] = [s’, ¢], and we can write m([s, €], [s(0)]) —m ([s, ¢]. [s"(0)])
as the sum of two terms. The first term is

m(Z &) (i + i), [s(O)]) —m(Z &) (i + o). [s’(O)]),

1 1

agreeing with the contribution of ¢ to inv(s, ¢) —inv(s’, ¢).
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The second term is the sum over a € [1,k] of m([sa]. [s(0)]) —m([sa]. [s'(0)]). For
a given index a, this difference is the sum of m([sa] [sp (0)]) over b such that s is
constant. There can be at most one nonzero term m([sq]. [sp (0)]) and if this term is
nonzero then s, and s are different strands on the same backbone Sl.1 for some i . In
such a case, we have m([ al [5p (())]) 3 L\ pi —qi| (recall that at least one of p; and g¢;
vanishes). It follows that inv(s, &) —inv(s’, &) = m([s. ¢]. [s(0)]) — m([s’. ¢]. [s"(0)]),
proving the lemma. a

Definition 6.12 For a basis element a = E(s,¢) of A(n,k,S), we define

deg'(a) = (inv(s, ) —m([s. ], [s(0)]). [s. €]) € G'(Z(n)).

Note that deg’(a) is well-defined by Lemma 6.11, since all terms of E(s,) give
the same element (s’, ¢) when constant strands are removed. For the condition j =
e(a) mod 1, note that inv(s, ¢) is an integer and we can ignore integer contributions
to m([s.c],[s(0)]). For an index b with s5(0) = s55(1), there are no half-integer
contributions to m([s cl, [s (0)]) from sp, and there is also no contribution to &(c)
from 5. For b with s5;(0) # s5(1), we get a contribution of  to m([s, ], [s(0)]) as
well as to (o), since « has two parity changes from 5. See also [11, Proposition 3.39].

Warning 6.13 Lipshitz, Ozsvath, and Thurston refer to inv(s, ¢) — m([s, cl.[s (O)]) as
the “Maslov component” and [s, ¢] as the “Spin® component” of deg’(a). However,
this Maslov component (a half-integer in general) is different from the Maslov grading
by Z that we will extract from deg’.

The quantity inv(s, ¢) —m([s, ¢], [s(0)]) is independent of ¢, as we prove below.

Lemma 6.14 For a basis element (s, ¢) of A(n, k,S), we have

inv(s, ) —m([s. ¢]. [s(0)]) = inv(s, 0) —m([s, 0], [5(0)]).

Proof For 1 <i <n, the contributions 0, ¢(i) or 2¢(i) to inv(s, ¢) in Definition 6.9
are canceled by the contribution

E(iym(z + i, [s(0) N {zE})
to m([s. c]. [s(0)]). O
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Lemma 6.15 Let a = E(s,¢) € Jx A(n, k,S) be a basis element; write a as
cay P1 Pn
() (2),

[s,c] = Z(a T +a; ,3)

i=1

We have

where
af =&+ |3pi] +[hai] and af =@ +T3p]+ 349

Proof The terms ¢ (i) are present by the definition of [s, ¢]. For the other terms, note
that the strands of s representing nonzero homology classes correspond to nonzero
entries p; or ¢; in the representation of a. Anentry p; > 0 represents a homology class
of a path traversing Sl-1 for p; half-turns, with the segment 8; being traversed one more
time than 7; if p; is odd (where we identify t; and 8; with the oriented segments on Z
in their respective relative homology classes). An entry g; >0 is similar, except that 7; is
traversed one more time than f; if ¢; is odd. Counting up how many times the segments
7; and f; are traversed by all strands of s, we get the formulas of the lemma. |

Lemma 6.16 Let a = E(s,¢) € Jx A(n, k,S) be a basis element; write a as

meita(0), - (),
n

n

inv(s, &) —m([s. . [s)]) = Y _(51pi —ail — (pi +41)).

i=1

We have

Proof By Lemma 6.11, we may assume that s has no horizontal strands, and by
Lemma 6.14, we may assume that ¢ = 0. For 1 <i <n, we consider three cases:

e Ifs(0)N {zl.i} = &, then inv; (s,f)) =0 and [s, 6] has coefficient zero on t;
and f;, so m([s, 0], [s(O)]) has no contribution from the cylinder [0, 1] x Sl.l.
We also have p; =¢g; =0.

e If [s(0)N {zii}| = 1, then inv; (s,6) = 0. Assume first that p; > 0 and ¢; = 0.
We have m(ri, [s(O)]) = m(,Bi, [s(())]) = l. Thus, by Lemma 6.15, we have

m([s.01.[s) N {z3) = 3 ([0 ] + |30 ]) = 3 1.
It follows that
invi (5. €) —m([s.€]. [s(0) N{z})) = =3 pi = 31pi 0| = (pi +0).

The case where p; =0 and ¢; > 0 is similar.
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e If {z*} C 5(0), then inv; (s, 0) = 1| pi —qi|. We have
m(zi. [s(O)]) = m(Bi. [s(0)]) =1,
so by Lemma 6.15, we have
(s 00, 1sO) = [3pi ] + [0 1+ [3p0] + (30 ) = pi + 4
It follows that
inv; (s, ) —m([s, €], [s(0) N4z = | pi — il — (pi + i)

The lemma follows from summing over i . a

Proposition 6.17 For a basis element a = E(s,c) of A(n,k,S), we have

Os(deg'(a)) = (m(a), w"(a)),

where ®g is as defined in Definition 6.8.

Proof Let af and al’g be defined as in Lemma 6.15. By definition, ®s sends the

element
n

D (~pxsO+L(ar +af),afv +dP ;)
i=1

to an element of Z x Z?" with first component zero. Thus, the first component of
Os(deg'(a)) is

inv(s. &) —m([s. €. [sO)]) + Y _(~=)*sDL(@af +af).

i=1
By Lemmas 6.16 and 6.15, this quantity equals
n
> Gl —ail = (pi + qi) + (=D O E@) + 3 (pi +41))).
i=1
which is m(a) by Definition 6.1.

For the rest of the components, we have 772, (®s(J, «)) = o, where we are identifying
H1(Z(n), B) with Z2" asusual. Thus, Lemma 6.15 implies that 772x (®g(deg’(a))) =
w'(a). a

6.3 Where the refined gradings come from, topologically

Let Z = (Z, B, M) be a chord diagram and let g: B — B/M be the quotient map
defined in Section 4.5.
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Definition 6.18 [11, Section 3.3.2] The refined grading group G(Z) of Z is the
subgroup of G’(Z) consisting of elements (j, ) with g« o d(a) = 0, where

gx09: Hi(2,B)— Ho(B/M)

is the composition of g, with d: H{(Z, B) — Ho(B).

Recall from Definition 3.5 that a chord diagram Z = (Z, B, M) determines a sutured
surface F(Z) that is built by attaching 1-handles to Z x [0, 1] according to the
matching M. Lipshitz, Ozsvéath and Thurston [11, Section 3.3.2] show how to identify
the kernel of g« o d with the homology group H;(F(Z)). Correspondingly, they
identify G(Z) (noncanonically) with a central extension of H;(F(Z)) by Z, where
gh = hg 281Nl for ¢ h e G(Z). Here [g] denotes the image of g in Hi(F(Z)).

Remark 6.19 One can also describe G(Z) in terms of nonvanishing vector fields as
in Seiberg—Witten theory; see [11, Remark 3.48].

As discussed in Section 3.3, the surface F(Z(n)) is an n—punctured disc; the circular
backbones of Z(n) provide a basis for H; (F z (n))) The intersection pairing on
Hl(F(Z(n))) is trivial, so G(Z(n)) is abelian (in fact, G(Z(n)) is a subgroup of
G'(Z(n)) and G'(Z(n)) is already abelian).

In [11, Remark 3.47], Lipshitz, Ozsvath and Thurston mention that in some cases one
can obtain a grading by G(Z) from a grading by G’(Z) by applying a homomorphism
from G'(Z) to G(Z) fixing G(Z) as a subgroup of G'(Z) (extension of scalars is
usually required to define such a homomorphism, and even then it does not always exist).

In our case, the homomorphism exists and the extension of scalars is unproblematic,
so we do not need to make choices for each idempotent as in [11, Section 3.3.2].
Indeed, the isomorphism ®g from Definition 6.8 sends G(Z(n)) to the subgroup of
Z x 72" generated by (1,0) and (0, 7; + f;) for all i, regardless of S. This subgroup
is isomorphic to Z x Z", where we identify (0, t; + 8;) with (0, e;). We can thus
extend scalars by replacing G(Z(n)) with Z x (%Z)n We have a homomorphism W
from Z x Z*" to Z x (%Z)n sending

e (1,0O)—(1,0),

e (0.7)~ (O, %ei), and

« (0,8i) (0, 3e).
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Conjugating by the isomorphisms ®s, we get a homomorphism ¥s: G'(Z(n)) —
G(Z(n)) such that the diagram

G'(2(n)) —= 7 x 227

‘I'SJ/ llll
G(Z(n) — = Zx (5Z)"
commutes. The generators (1,0) and (0, 7; 4 B;) of Os(G(Z(n))) C Os(G'(Z(n)))

are sent to themselves by W, so Wg fixes the original (unextended) G(Z(n)) as a
subgroup of G’(Z(n)). Note that W5 is independent of S.

Definition 6.20 For a basis element a of A(n,k,S), define deg(a) := Vs(deg'(a)),
an element of the (extended) grading group G(Z(n)) = Z x (%Z)n Since V¥ (and
thus Wg) is a group homomorphism preserving A = (1, 0), this grading is well-defined.

Corollary 6.21 For a basis element a = E(s,¢) of A(n,k,S), we have Og(deg(a)) =
(m(a), w(a)).

Proof By definition, ®g(deg(a)) = ‘I’(@S (deg/(a))), which equals ¥ (m(a), w"(a))
by Proposition 6.17. Since W sends both t; and B; to %e,- , we have V(m(a), w"(a)) =

(m(a), w(a)). O

7 Symmetries

Now we will define analogues of the symmetries p and o from [16, Section 4.5]
for the strands algebras A(n, k, S) (see Definition 2.21 for a brief review, as well as
[24, Section 3.6] where these symmetries were first introduced). We use the notation
of [16, Section 4.5] and Definition 2.21.

Proposition 7.1 For a generator a of Jy A(n,k,S)Jy , write

o=y (M) (%)
q1 /1 dn /Jn

as in Lemma 5.4. Define an array of vectors (Zi) by p; =qny1—i and q] = ppy1-i.
11

/ /

p p
Cn+1—i1"'Cn+1—i,( ,1) ( 7)
Q1 1 dn /n

represents a valid generator of J () A(n, k, p(S))J p(y)-

The expression
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Proof The conditions of Lemma 5.4 are invariant under replacing C; with Cy, 41—,
pi with gn+1—i, ¢i with p,41-;, x with p(x), y with p(y), and S with p(S). For
example, to see that the new condition (iii) is satisfied, note that if i ¢ p(x), then

n—i¢x,s0 gun—i = pn+1—i = 0 by the old condition (iii). The rest of the conditions

are similar. Also note that p(y) is the element of V(n, k) that Lemma 5.4 constructs
: p/l . Pi/z

given p(x) and the array of vectors (q/1 )1 (qé)n' a

Definition 7.2 For a generator a of Jy A(n,k,S)Jy, define

p(a) € Jpx)An, k, p(S) I p(y)

to be the generator constructed in Proposition 7.1.

We thus have an I (n, k)-linear map p: A(n,k,S) — A(n, k, p(S)), where the action
of I(n,k) on A(n,k,p(S)) is modified so that J acts via the usual action by J ().
We claim that p is an involution of dg algebras over I (n, k), after suitable modifications
to the gradings.

Proposition 7.3 As in [16, Section 4.5], modify the unrefined Alexander multigrading
on A(n, k, p(S)) by postcomposing the degree function with the involution of 7.>"
sending t; to Bp+1—i and sending B; to ty+1—i. Then the map p is a homomorphism
of dg algebras from A(n,k,S) to A(n,k, p(S)) and satisfies p> = id. Similar grading
statements hold for the refined and single Alexander gradings.

Proof The equation p? = id is immediate from the definition of p. To see that p
respects multiplication, let a € Jx A(n,k,S)Jy and a’ € Jy A(n, k, S)J;. The product
a-a’ is given by Lemma 5.11. If it is zero, then one can check that p(a) - p(a’) is
also zero. Otherwise, p(a) - p(a’) has the same idempotents, C; variables and array of
vectors as p(a-a’), so p(a)-p(a’) = p(a-a’). Similarly, Lemma 5.12 implies that p
respects the differential. One can check that p respects the gradings of Definition 6.1
after the above modification. a

Next we define a symmetry o on our strands algebras.

Proposition 7.4 For a generator a of Jy A(n,k,S)Jy , write
o=y (M) (™)
q1 /1 dn Jn
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as in Lemma 5.4. The expression

Cil"'Cil(ql) (q”)
P1/1 Pn/n

represents a valid generator of Jy A(n,k,S)Jx .

Proof As with Proposition 7.1, one can check that the conditions of Lemma 5.4 for
the old expression imply the conditions for the new expression, and that x € V(n, k)
is the vertex selected by Lemma 5.4 given y and the new array of vectors. a

Definition 7.5 For a generator a of Jy A(n,k,S)Jy, define
o(a) e JyAn,k,S)Jx

to be the generator constructed in Proposition 7.4.

We thus have a I (n, k)-linear map o: A(n,k,S) — A(n,k,S), where the I(n, k)—
algebra structure on the target side is unmodified (unlike for p). We claim that o
respects multiplication, differential and gradings when we take the opposite algebra on
the target side.

Proposition 7.6 Modify the unrefined Alexander multigrading on (A(n, k,S))°? by
postcomposing the degree function with the involution of Z?" sending t; to B; and
sending B; to t;. The map o is a homomorphism of dg algebras from A(n,k,S) to
(A(n, k,S))°P and satisfies 0> = id. Similar statements hold for the refined and single
Alexander gradings.

Proof As in Proposition 7.3, the proof amounts to checking that Lemmas 5.11 and 5.12
and Definition 6.1 are compatible with the symmetry o. We omit the detailed checks. O

Note that p oo = 0 o p, properly interpreted.

Remark 7.7 The symmetries p and o on the strands algebras may be understood
visually as follows, in terms of the graphical interpretation of Section 4: p is rotation by
180 degrees around a horizontal line, and o is rotation by 180 degrees around a vertical
line (both lines are in the plane of the page as drawn). See Figure 20 for an illustration.
The group of orientation-preserving self-diffeomorphisms of [0, 1] x Z(n) preserving
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Figure 20: Graphical interpretation of the symmetries p and o on the strands
algebra A(n,k,S).

the matching data, modulo isotopies among such diffeomorphisms, is Z /27 x Z./27..
The rotations corresponding to p and o may be taken as generators. Thus, all geometric
symmetries of [0, 1] x Z(n) are reflected in the algebras A(n, k,S). We will relate
these symmetries with the symmetries p and o on B(n, k,S) in Section 9.3.

8 Homology of the strands algebra

The goal of this section is to compute the homology of A(n,k) = A(n,k, D). The
homology of A(n, k,S) for general S will then follow from Theorems 2.20 and 9.9.
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By [16, Lemma A.17], the homology H«(A(n,k)) is still an I (n, k)—algebra, and it
can be decomposed as

Ho(An k)= @  JeH(An. k) Jy.
x,yeV(n,k)
where Jx Hi(A(n,k))Jy = Hy«(JxA(n,k)Jy). Thus, it suffices to compute the
homology of each summand Jx A(n,k)Jy . Since Jxy A(n,k)Jy =0 if x and y are
far (see Lemma 4.19), we can focus on the case when x and y are not far.

Before computing Jx Hx«(A(n, k))Jy, we introduce some notation that will be useful
later. Recall from Definition 4.5 that the differential 9 = d° on A(n, k) is a sum
over differentials d; on each circular backbone Sl-1 . We can augment this notation as
follows.

Definition 8.1 Given a subset S C [1, n], we define a new differential dg on A(n, k)

by
35 = Zai.

ieS

By a simple generalization of the arguments in Section 4.3, dg gives a well-defined
differential on A(n, k). The following lemma follows from a comparison of the sets
S, T, SUT and SN T.

Lemma 8.2 For all subsets S, T C [1,n], we have 05 + 01 = dsuT + 0snT-
Corollary 8.3 If S{U---US, = [1,n] is a partition of [1,n], then

ds; +---+0s, =0=10[1,]
8.1 A splitting theorem

In this section we present an important theorem on the structure of any summand
Jx A(n, k)Jy of our strands algebra, whose proof will occupy Sections 8.2, 8.3 and 8.4.
The idea is as follows. The differential d acts on each backbone Sl.1 independently,
and Sl.1 only admits certain types of strands depending on whether Sl.1 corresponds
to a crossed line or a member of a generating or edge interval from x to y. Thus
we expect a tensor product decomposition for Jx.A(n,k)Jy based on the generating
interval data, similar to [16, Corollary 4.16] for Iy B(n,k,S)I, .

As in [16, Section 4.3], let x,y € V(n,k) be not far. Based on the structure of
the generating intervals and edge intervals for x and y, we introduce a regrading
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of the generating and edge algebras A(/) and A,(/) from Definitions 5.5 and 5.7.
Let CLx,y be the set of crossed lines from x to y (see Definition 2.13), and let
[j1+ 1 j1+n4],....[jp + 1, jp + [p] be the generating intervals for x and y (see
Definition 2.15), of lengths /1, ..., [, respectively, ordered so that j; <--- < jp.

Definition 8.4 For a generating interval G = [j; + 1, j, + /4] between x and y, we
have a canonical isomorphism of differential algebras

(8-1) V6 Tjut1,jutrla—11A0 Lo = DI 1, jutla—1] = Alla)

by a simple reindexing of the circular backbones, omitting the empty ones. Rede-
fine the Alexander multigradings on A(l;) by shifting the indices by j,, so that
7, Bi = Ti+j, Bi+j, and the isomorphism preserves the Maslov grading and all
Alexander gradings from Definition 6.1.

Similarly, if G = [n —[p41 + 1,n] is a right edge interval for x and y, there is a
canonical isomorphism

(8'2) WGi J[n—lh+1+1,n]~’4(n’ lb+1)J[n—lb+1 +1,n] - A_;O(lb-i-l)'

Modify the Alexander gradings on A, p(lp+1) so that g preserves them as above.

If G =1, /o] is a left edge interval for x and y, then there is a canonical isomorphism

(8-3) Ve Jjo.10—11A0, 1) J(0.19—1] — Az (lo).

Note that there is no need to redefine the Alexander multigrading on A (/o) in this
case, because g already preserves it. If G = [[1, n]] is a two-faced edge interval for
x and y, then /T,\p(n) = Jjo,n)A(n,n + 1)J|g,,) by definition.

We will also use the graded polynomial algebra 2 [U; |i € CLy y] for crossed lines as
in the S = @ case of [16, Definition 4.15]. As described there, F>[U; | i € CLx,y] has

zero differential, and it carries an Alexander multigrading defined by
1 [P
0 otherwise,

with multiplication by U; increasing w; by 6; ;. Because we have S = & here, all of
F>[U; | i € CLy,y] is placed in Maslov degree zero.

Theorem 8.5 Let x,y € V(n,k) be not tar. With notation as above, there is an
isomorphism of chain complexes over [,

Vi Je A, k)Jy =5 Fa[Us |i €CLxy] ® Ao(lo) ® A1) ® -+ ® A(lp) ® Ao(lp+1),
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which respects both the Alexander and the Maslov gradings, where the algebras Ao (1)
and A, (lp+1) are defined as follows:

o If there is a left edge interval [[1,1o], then we set Ao(lg) = A, (lo); otherwise
we set Ao(lp) =F».

e If there is a right edge interval [n — I, + 1,n]], then we set Ao(lp4q) =
/Tp(lbﬂ); otherwise we set Ao(lp41) =Fa.

e If x =y =][0,n] (ie [1,n] is a two-faced edge interval for x and y), then we
set the target of Y to be A, Ap(1).

The Alexander and Maslov gradings on the right-hand side are specified in Definition 8.4.
Proving Theorem 8.5 is the goal of Sections 8.2, 8.3 and 8.4.

Remark 8.6 Just as in [16, Remark 4.17], concerning the splitting of Iy B(n,k,S)Iy,
we could also assign unrefined Alexander gradings to the tensor factors in Theorem 8.5
in such a way that ¥ respects these gradings as well.

8.2 Definition of ¥

Fix x,y € V(n,k). If x =y = [0, n], then the map » of Theorem 8.5 is simply the
identity map of A} p(n). Otherwise, there is not a two-faced edge interval and we will
build the map ¥ by focusing on one tensor factor in the image at a time.

Let a € Jx A(n,k)Jy be a standard basis element

- (2)(2),

If i € CLy,y, then by Lemma 5.14 there must be a single strand on the i™ backbone,
so one of p; or g; is zero and the other one is odd (which of p; or g; is zero is
determined by the sign of v;(x, y)). To each crossed line i, then, we can associate the
monomial Ul.(p itai=D/2 ¢ 2[Ui]. Note that the corresponding strand winds on the
i backbone by p; +¢; half twists.

Lemma 8.7 Given a standard basis element

a=(p1) ...(p”) e JeA(n,k)J,
q1 /1 qn Jn

and a generating interval G = [j + 1, j 4+ 1] from x to y, the restriction
Pj+1 Pj+1
alsz(‘] ) ...(J+)
q4j+1/j+1 dj+1/j+1
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of a to G is a well-defined basis element of

Jij+,j+1-11A0 L= DI i)

Moreover, the differential dg (see Definition 8.1) satisfies (dga)|g = d(a|g).

Geometrically, a|g is obtained by restricting the support of a to the circular backbones
labeled j +1,...,j + 1.

Proof By the discussion in Section 8.1, we may equivalently view a|g as an element
of A(/); we must show that the conditions of Lemma 5.6 are satisfied. Condition (1) for
a|g follows from condition (ii) of Lemma 5.4 for a, while condition (3) follows from
Lemma 5.14 since no line in a generating interval is crossed (see Proposition 2.16).

For condition (2) of Lemma 5.6, we show that p;4; = 0; the proof that g; y; =0
is similar. First suppose that j ¢ x. Condition (iii) of Lemma 5.4 then implies that
pj+1 = 0. Now suppose that j € x. By the definition of generating interval, the
coordinate j is not fully used, so j ¢ y. Since line j + 1 is not crossed, we must
have line j crossed with v;(x, y) = —1, and Lemma 5.14 then ensures that p; =0
and ¢g; is odd. From here, condition (ii) of Lemma 5.4 implies that p; 1 = 0.

The fact that the restriction commutes with the differential amounts to ensuring that
dj+1a =0, 7a =0, since (5-2) of Lemma 5.12 implies that d;+1a|g =9, ;alg =0
(all other summands of the differential commute trivially). For d; 414, if j ¢ x then
dj4+1a = 0 by (5-2), while if j € x then g; is odd, so d;+1a = 0 by the final case
of (5-3). The analysis for d i 41 18 similar. O

We have analogous statements when G is an edge interval, with similar proofs.

Lemma 8.8 Given a standard basis element

a=(p1) ...(p”) e Je An. k) Jy
ql 1 ‘In n

and a left edge interval G = [[1,[] from x to y, the restriction

_ (Pl) (Pl)
alg =
q1 /1 q1 /1
of a to G is a well-defined basis element of Jjo ;1] A, 1)J[o,1-1]-

Moreover, the differential dg satisfies (dga)|g = d(a|g).
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Lemma 8.9 Given a standard basis element

a=(p1) ...(p”) e Je A(n. k) Jy
q1 /1 qn Jn

and a right edge interval G = [n —[ + 1,n]| from x to y, the restriction

_ (pn—l-H) (pn)
alg =
An—1+1/n—1+1 qn /Jn
of a to G is a well-defined basis element of Jj,_j 41 2 A, D) Jn—141,1]-

Moreover, the differential dg satisfies (dga)|g = d(a|g).

Suppose that x and y are not far. Let Gq, ..., Gp denote the generating intervals, and
G, and G, denote the edge intervals if they exist.

Definition 8.10 For a basis element

=)~ (3),

of JyA(n,k)Jy, we define Y (a) = a if [[1,n] is a two-faced edge interval from x
to y. Otherwise, we define

w(a)::( 1_[ Ui(pi+qi_1)/2)®¢GA(Q|GA)®1PG1(0|G1)®"'®¢Gb(a|Gb)
i€CLx.y ®Ve,(alg,)

where we set Vg, (alg,) = 1F, (resp. ¥, (alc,) = lF, ) if there is no left (resp. right)
edge interval (the various maps Vg , are the isomorphisms described in (8-1), (8-2)
and (8-3)).

Next, we will show that ¥ is a chain map and that it preserves the gradings.

Lemma 8.11 The differential d on Jx A(n,k)Jy satisfies
0=0g, +0G, ++--+ g, +3G0

for the various intervals G; described above (if either G, or G, is empty, we have
0z =0).

Proof By Proposition 2.16, generating intervals, edge intervals and crossed lines form
a partition of [1, n]. Therefore, by Corollary 8.3,

0=10G, + 06, ++ +09g, +9g, + Y 0

i€CLx.y
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on JyA(n,k)Jy. If line i is crossed, then by Lemma 5.14 any basis element a
of JyxA(n,k)Jy has only one strand on the i backbone. Thus, by Definition 4.5,
dia = 0. It follows that, for all i € CLx,y, 0; vanishes on Jx A(n,k)Jy, and the
lemma is proved. a

Corollary 8.12 The map y of Definition 8.10 is a chain map.

Proof For any basis element a € Jx A(n, k)Jy, werename Go:=G) and Gp41:=G,
(again allowing for either to be the empty interval). We then use Lemmas 8.11 and 8.7

to compute
b+1
¥ (0a) = ¥ (0Goa+ 9g,a + -+ d,a + 96,,,0) = Y _ ¥(96,a)
b+1 =0
_ Z ( 1_[ Ui(Pi+Qi_1)/2) R Ve, (alg,) ® - ®Va,(dalg,)
4=0 "ICChxy R ®VGyy(alGyyy)
b+1
= Z( [T urre=v 2) ® YGo(algy) ® -+ ® d(¥G, (alg,))
d=0 “i€CLx,y ®"'®wa+1(a|Gb+1)
= 0(y(a)).

To derive the equality on the second line, note that no term in the differential can affect
strands on backbones corresponding to crossed lines (see the proof of Lemma 8.11), so
that [[;ecr, U l.(p i+4i=1/2 5 indeed the first factor of each term in the sum. Similarly,

dG,(alg,) = al|g, whenever d # e, while dg, (a|G,) = d(al|g,)- =

Lemma 8.13 The map  of Definition 8.10 preserves the Alexander multigrading
and the Maslov grading.

Proof We have already seen how the Alexander multigrading w; is preserved under
each Y, for i in a generating or edge interval G;, and since generating intervals, edge
intervals and crossed lines form a partition of [1, n] (Proposition 2.16), it only remains
to verify the preservation for the crossed lines. This claim follows from the definition
of the grading on the crossed-lines algebra (recall that w; (1) := % if i €CLx,y, which

offsets the —1 in the numerator of Ui(p itai—1/ 2)

The Maslov grading is similar. Since the grading on the tensor product will be a sum of
gradings on each factor, and the generating interval factors preserve their contributions
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to this sum, we again only mention the crossed lines. Note that for a crossed line i, one
of p; or g; is zero, so that |p; —q;| = pi + ¢i, and so the corresponding summand in
Definition 6.1 is

31pi —qil— (pi +4i) + (0+ 3 (pi + 9i)) = 3(pi —qi| — (pi +4i)) =0,

agreeing with the Maslov grading on the crossed-lines algebra. a

8.3 Definition of ¢

In this subsection we define a map

¢: FalU; |i €CLx y] ® Ao(lo) ® A1) ® -+ ® A(lp) ® Ao(lps1) — Jx A(n, k) Jy

which will be the inverse to .

For a crossed line i from x to y, we define, for a nonnegative integer r,

(8-4) oL ,(r) = §(1+32r)" ! vite. vy =+l
(1+2r)i if vi(x,y)=-1.

Recall that, given a generating interval [j + 1, j +/] from x to y and a standard basis
element a € Jj 1, j41-1]A(M. [ — 1)Jj41,j+1-1], We denote the array of vectors

Ar(a):(l’j—l-l) _'_(Pj—i-l)
q4j+1/j+1 qj+1/ j+1

(see Lemma 5.4, noting that all of the other vectors would have zeroes as entries). Note

defining it by

that Ar(a) itself does not record the ingoing and outgoing idempotents, so we can
interpret it as a standard basis element in another idempotent as necessary. Arrays
Ar(a) for edge intervals are defined similarly.

Definition 8.14 Given a monomial [ [; . Lxy Ul.ri in F>[U; |i € CLy,y] and standard

basis elements a. € A(l.), define an array of vectors

(8-5) Ar( ] Uiri,al,...,ab)

i€CLx y
= ( [T ¢y (n-)) Ar(YG, (@) - AU, (@p).
1€CLx.y

where we implicitly put the vectors appearing on the right side of the equation in
increasing order. By Proposition 2.16, no line can be a crossed line while also belonging
to a generating interval, so each vector in (8-5) appears with a different index.
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If there is a left edge interval G, = [[1, /o], and we have ag € A;(lp), then in (8-5)
we should include the term AT(WE; (ap)) as well. If there is a right edge interval
Gp = [n —Ilp4q1 + 1,n], and we have a4y € Ay (lp41), then in (8-5) we should
include the term Al‘(l/fai (ap4+1)) as well. Lastly, if x =y = [0, n], ie there is a two-
faced interval, then our monomial [ ;. Lx.y U/ is 1 and we have a single standard
basis element ay =:a of A,,(n). We define Ar(a) to be the array associated to this

basis element in Lemma 5.4.

Lemma 8.15 The array Ar(]_[l-ecﬁx ’ Ul.ri ,Als ... ,ab) from Definition 8.14 repre-
sents a basis element of Jx A(n, k)J, under the correspondence of Lemma 5.4.

Proof We prove the lemma in the case where there are no edge intervals. The other
cases are a straightforward variation of this proof (where one uses Lemmas 5.8 and/or 5.9
in addition to Lemma 5.6 below). We check that Ar(]_[l-eccx)y Uiri ,al, ... ,an) sat-
isfies the conditions of Lemma 5.4, hence it represents a standard basis element of
Jx A(n, k), and that the right idempotent of this basis element is J,. Note that by
hypothesis we know that x and y are not far. We will use j below for the index i in

items (ii)—(vi) of Lemma 5.4.

Condition (i) of Lemma 5.4 is immediate because there are no C; variables under
consideration, so we begin with condition (ii). Each of j and j + 1 is either a crossed
line or belongs to a generating interval. If j and j 4+ 1 belong to the same generating
interval G, condition (ii) follows immediately from (ii) for a.. If j belongs to a
generating interval G, but j + 1 does not, then g; = 0 (see Lemma 5.6). Analogously,
if j + 1 belongs to a generating interval G, but j does not, then p;+1 = 0. Lastly,
if both j and j + 1 are crossed lines, suppose that both ¢; and p;41 are nonzero.
Then, by (8-4), vj(x,y) =—1 and v;41(x,y) =1, from which we deduce

yN[jnl—yNn[j+Lnl=xn[jn]—xN[j+1,n]—2<0,

contradicting that [j + 1,n] C [/, n]. Thus we must have at least one of ¢; or p;1
equal to zero, and in all cases condition (ii) is satisfied.

For condition (iv) of Lemma 5.4, we consider the same cases. If j, j +1 € G, then the
condition is guaranteed by the same condition for a.. If only j (respectively j + 1) is
in some G, then Lemma 5.6 implies g; = 0 (respectively p ;41 = 0) which in turn
forces p; even (respectively g ;41 even), and both cases satisfy condition (iv). Finally,
if both j and j 41 are crossed lines, equation (8-4) allows for a proof by contradiction
as above, so that in all cases condition (iv) is satisfied.
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For condition (iii), we prove the contrapositive. Assume that ¢; 7 0. If j is a crossed
line, then v;(x, y) =—1 by (8-4), so j € x because x and y are not far. If j belongs
to some generating interval instead, then by Lemma 5.6(2), we can conclude that line
j + 1 is also in the generating interval, so that coordinate j must be fully used and
J € x. The argument is similar when one assumes that p; 1 # 0.

For condition (v) of Lemma 5.4, equation (8-4) implies that j belongs to a generating
interval, so condition (3) of Lemma 5.6 guarantees that p; = ¢; (mod 2), as desired.

Finally, for condition (vi) of Lemma 5.4, the assumption that one of p; or g; is odd
while the other is zero implies that j is a crossed line (by condition (3) of Lemma 5.6,
J cannot be contained in a generating interval). If p; is odd, then v;(x,y) =1
by (8-4). Since j € x, we must have v;41(x,y) =1 as well, so that j +1 is a crossed
line and (8-4) gives p;j+1 odd, as desired. If g; is odd, a similar argument forces
J — 1 to be a crossed line with ¢; 1 odd.

We now check that the ending I-state of the element a € Jx . A(n, k) defined by the array
of vectors in (8-5) is indeed y. Let y’ denote the ending I-state of a as characterized
in Lemma 5.4. We will show that y C y’, which is sufficient since |y| = |x| = |y’|.

Suppose j € y. If j ¢ x, then we must have either v;(x,y)=1orv;11(x,y)=—1.

In the first case, Ar([T;cop, , U'.ay,....ay) contains (2r-"0+1)j, and in the second
ri ! . 0 .
case, Ar(Hiecz:x,y U’ a,. ..,an) contains (2rj+1+1)j+1‘ Either way, we have

J € y' by Lemma 5.4. On the other hand, if j € x, we have several cases to consider.
If line j is crossed, first suppose p; is odd and g is zero. Then j € y’ by Lemma 5.4.
Alternatively, if p; is zero and ¢ is odd, then v;(x,y) = —1. Since j € y, we must
have v;y1(x,y) = —1. It follows that g1 is odd, so j € y’. The argument when
line j + 1 is crossed is analogous. Finally, if neither line j nor j 4+ 1 is crossed,
then j and j + 1 are part of a generating interval and we have p; = ¢; (mod 2) and
Pj+1 =¢j+1 (mod2) by Lemma 5.6. Since j € x, even in the case when some or
all of these integers are zero, we must have j € y’ by Lemma 5.4 and we are done. O

Definition 8.16 Let Hieccx B Ul.r’ be a monomial in F[U; | i € CLx,y] and let
ac € A(l¢) be standard basis elements. Define
</)( [] v'ea ®---®ab)
i€CLyx.y
to be the element of Jyx A(n, k)Jy represented by Ar(HieCEx ’ U',ay,... ,ab).

i

By Lemma 8.15, ¢ is well-defined.
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8.4 Proof of the splitting theorem
In this subsection we prove Theorem 8.5.

Lemma 8.17 The maps ¥ and ¢ defined in Sections 8.2 and 8.3 are inverses to each

az(pl) ---(p”) e Jy A(n.k)J,
ql 1 Qn n

be a standard basis element (we resume our practice of identifying algebra elements

other.

Proof Let

and the arrays of vectors representing them). If line i is crossed, then by Lemma 5.14
we have e
(") - (P59, i i y) = +1,

i )i |(,,4,,), if vitx,y)=-1.

In ¥ (a) we get a factor Ui(Pi +qi—1)/2

, which produces a factor d)fc,y (%(Pi +4i —1))
in ¢(¥(a)). By (8-4), this factor agrees with (f]’:)i . If i is in a generating or edge
interval, then (fl’;)i also appears as a factor in ¢ o/ (a). As we noted after the definition
of ¢, a factor indexed by some number i does not appear more than once in the formula
for ¢ oy(a). Thus, a = ¢ o Y (a). The proof that ¥ o ¢ =id is similar and is left to

the reader. O

Proof of Theorem 8.5 The map 1 defined in Section 8.2 is a chain map (Corollary
8.12), it preserves the Alexander multigrading and the Maslov grading (Lemma 8.13),
and it is bijective, since we exhibited an inverse map ¢ (Lemma 8.17). Thus, it is an
isomorphism of chain complexes. |

With Theorem 8.5 in hand, we set out to compute the homology Jyx Hx(A(n, k))Jy .
By the Kiinneth theorem, it is enough to understand the homology of each generating
algebra and edge algebra in the decomposition of Theorem 8.5. The next several
sections are devoted to computing these homology groups.

8.5 Elements of the generating algebra in Maslov degree zero

Note that when § = &, Definition 6.1 implies that the Maslov degree m(a) is
nonpositive for any a € A(n,k) = A(n,k, ). In this subsection we study some
homogeneous elements of the generating algebra in the maximal Maslov degree, namely
zero. Throughout this section, the Alexander grading refers to the refined Alexander
grading of Definition 6.1.
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Definition 8.18 For a vector r = (r1,...,77) € leo’ define

AR = {x € A() | w(x) =1},
the vector subspace (or subcomplex) of A() consisting of all Alexander-homogeneous
elements of Alexander degree r.
Note that for every standard basis element x € A(/), condition (3) of Lemma 5.6
implies that we have w(x) € leo, rather than just (%Zzo)l.

We start with the following observation:
Proposition 8.19 If r; >0 forall i =1,...,1, then AZ(l) = 0.

Proof If a standard basis element

=) (2)

isin AZ(l), then g; pi+1 =0 forall i € [1,/ —1] by Lemma 5.6, and p; = ¢; =0
by the same lemma. Therefore, at least / + 1 numbers among p1,q1,..., p;,q; must
vanish. By the pigeonhole principle, there must exist i such that p; = g; = 0, hence
ri = 0. The result follows. m|

Definition 8.20 For each r € leo’ we define an element a € AZ(/) by

2r; 0
(8-6) al .= Jp - [( ) —I—( )]J _11-
[1,/-1] H 0 ) 2r; ), [1,1-1]

i:rj #0

Note that after expanding the product defining a”, some terms may vanish. For example,
if r; # 0 for all i, then a” must vanish by Proposition 8.19. The role of the two factors
J[1,1-1] is to kill the possible terms containing (26‘)1 or (221) , which are not in the
generating algebra.

Lemma 8.21 Foreachr € le()’ we have m(ar) = 0.

Proof Each factor (25,~)i + (2(3[)1, of a’ appearing in (8-6) has vanishing Maslov

degree by Definition 6.1. The Maslov degree of their product therefore vanishes too. [0

Remark 8.22 By Definition 6.1, the Maslov degree m(a) of any homogeneous ele-
ment a € AZ(]) is nonnegative. By expanding (8-6), one can check that if r; = 0 for
some i , then a” # 0, so the Maslov degree of a” is the maximal Maslov degree in A% (1).
In fact, a” is the sum of all standard basis elements of AZ(I) in Maslov degree 0.
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Lemma 8.23 Forall r and r', we have a” -a* = a” %" (taking the product in A(l)).

Proof First note that if both r; and rl./ are nonvanishing, then

()G )G J= (7))

since the products (Zr’) (2(: ) and (2r ) (26 {) vanish by condition (V) of Lemma 5.11.
i

It follows that a” -a”’ is the product of the elements

2(ri +17) 0
( 0 )i+(2<n-+r;))l-

. . . /
over i such that at least one of »; and rl.’ is nonzero. The result is aZ 7.

A separate note should be made for the cases i = 1 and i = [, for which the factor

(26" )i + (2(')‘1')1' is replaced by either (2(:1,)1_ or (26" )i . In these cases, we have

() G =), e () (), - (07),
2}’1 1 27’{ 1 2(r1+ri) 1 0 1 0 1 0 1

8.6 Elements of the edge algebras in Maslov degree zero

In the case of the edge algebras, we have elements ai , af) and aip analogous to a’.
In this subsection, o denotes either A, p or Ap.
Definition 8.24 For a vector r = (r1,...,77) € leo, define

As(l) = {x € Ao(l) | w(x) =1},

the vector subspace (or subcomplex) of A, (/) consisting of all Alexander-homogeneous
elements of Alexander degree r.

Definition 8.25 For each r € Z>0, we define
2r
ai = Jj0,1-1] l_[ [( l) ( )]J[ol 11 € Ap(D),
i:rj #0
r 2rl
ap —J[1 1 l_[ J[ll EAp(l)

i:rj #0

r 2rl

as,=Jon ] J[ol € Ap(D).

i:rj #0
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The proofs of the next two lemmas are similar to those of Lemmas 8.21 and 8.23, and
are omitted.

Lemma 8.26 Foreachr € leo’ we have m(ag) = 0.

Remark 8.27 By expanding the equations in Definition 8.25, we have that ag # 0
for all r € Zl>0. Thus, as in Remark 8.22, the Maslov degree of as is the maximal
Maslov degre_e in A5(l). Moreover, one could characterize a5 as the sum of standard
basis elements of A5 (/) in Maslov degree 0.

r r r+r’
Lemma 8.28 Forall r and r’, we have as-as =as — .

8.7 The homology of A(n, k)

The main technical result we use in this section is the following lemma, whose proof
we postpone.
Lemma 8.29 Forall [ >0 and r € ZIZO:
(1) If r; =0 forsome i €[1,1], then Hy (A (1)) 2= F,; otherwise, H+(AZ(])) = 0.
(2) Hi(A;(D) =Fa.
(3) Hu(Ap() = Fs.
@) Ha(47, (1)) = F2.
In all nonzero cases, the homology is generated by the cycle ag. In particular, by
Lemmas 8.21 and 8.26, it is concentrated in Maslov degree zero.
We will prove that a is indeed a cycle while proving Lemma 8.29.

From Lemma 8.29 we deduce the following theorem, in which F,[Uy,..., U] is
endowed with an Alexander multigrading by setting

wi(1)=0, w;Uj)=46;,; forali,je{l,...,[}.

We define the Maslov grading to be zero on F,[Uy,..., U].

Theorem 8.30 For all | > 0, we have the following isomorphisms of graded F,—
vector spaces:

() Hy(A(l)) = Fa[Uy,.... U]/ (U -+ Up).
(2) H«(A; () =TF,[Uy,....Uj].
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() Hi(Ap()) =TF[Uy,...,U].
@) Hy(Ap,(1) =Fa[Uy,....U].

In all the cases, the isomorphism sends ag to Ulr .. Ulr’ .

Proof We prove case (1); the proof in the other cases requires only slight modification.
Note that we have a splitting

A= 40
lezlzo

as chain complexes, by Proposition 6.2. Thus we have a natural splitting

Hi(A() = @ Hu(A* ()= P Fala’],

rez’, rezt,
a Jir; =0
by Lemma 8.29.
We define a linear map
Fa[Uy, ..., U]

L: Ho(A()) — T

by setting L(at) =U lr L. U lr’ . The check that the map is bijective and that it preserves
the gradings is left to the reader. |

Note that L is in fact an isomorphism of [, —algebras by Lemmas 8.23 and 8.28.

Corollary 8.31 For x,y € V(n, k), there is an isomorphism

87) Vi Jx Hu(A(n. k)
-~ {0 if x and y are far,
{Fz[Ul, ..., Un]/(pc | G generating interval) otherwise.
The Maslov grading on the right-hand side of (8-7) is zero, and the Alexander multi-
grading on the right-hand side of (8-7) is defined as

1 oo
= ifieCLl
(1):=12 .y (U;7) =6 ;.
wi(l) %0 otherwise, wi (Uj) "/

Proof Theorem 8.5 gives us a decomposition of Jx.A(n, k)Jy into a tensor product,
and the Kiinneth theorem for tensor products over [F, guarantees that we can compute
the overall homology by tensoring together the homologies of the different factors.
The factor F2[U; | i € CLyx,y] corresponding to the crossed lines has no differential,
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while the homologies of the generating intervals and edge intervals are computed
in Theorem 8.30. When tensored all together, we get a graded vector space that is
isomorphic to the right-hand side of (8-7). m|

Corollary 8.32 Applying the inverse of the isomorphism from Corollary 8.31 to a
monomial Ulr L...U;", we get the homology class of the element

14 2r; 0
88 Jro [] ( Or)l.‘ I1 (1+2r,-)j

1€CLx.y JECLx .y
2r, 0
() ()
0 k 2rk k

v (x,y)=1 vj(x,y)=-1
k¢CLx .y

rx 70
of Jx H«(A(n, k))Jy, where again the idempotents Jx and J, force some of these
summands to be zero.

Remark 8.33 If we compare Corollary 8.31 to Theorem 2.20, we see that the two
algebras Jx A(n,k)Jy and I B(n,k)I, do indeed have isomorphic homology, at
least as graded vector spaces. Using the explicit formulas of [16, Corollary 4.12] and
Corollary 8.32, one can check without too much work that this isomorphism holds on
the level of graded algebras. Section 9 will be devoted to realizing this isomorphism
via a genuine map of dg algebras from B(n, k) to A(n, k), and more generally from
B(n,k,S) to A(n,k,S).

8.8 Proof of Lemma 8.29

As a first step toward proving Lemma 8.29, we study the homology of /Tip(l), which
will constitute the base case for an inductive proof of the aforementioned lemma. Note
that in this case r = r is just a natural number. To simplify the notation, we will denote
the element (5)1 by (f]’).

Lemma 8.34 Forall r € Z>¢, we have H ("fop(l)) =~ IF,, generated by the cycle aip
and concentrated in Maslov degree zero.

Proof Let Cs C fTﬁp(l) be the span of the standard basis elements (fl’) with w(f]’) =r
and m(f]’) =s. By the formulas of Definition 6.1, basis elements in C; satisfy | p—¢g| =
2s + 2r, so Cs is 1—-dimensional if s = —r, 2—dimensional if —r < s <0, and 0
otherwise (recall that no element of /Tﬁ p(l) has positive Maslov degree). Using the
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standard basis elements (fl’) as bases for each vector space Cg, we get isomorphisms
to Iy, IF22 or 0. We do not specify how we make each basis an ordered basis, because
any order will give the same result.

Since a basis for ffi p(l) is given by all vectors (g) with w(f;) = r, we obtain a
splitting /Tip(l) = EB;):_, Cs. Moreover, d(Cs) C Cs—1. Using the formulas of
Lemma 5.12, we can compute the matrix of each map 9: Cy — Cs—1. The resulting
chain complex is

Co—2—C_y -2 —25Cp 1 —25C,

F T

F2 F2 F2 F,
A R

The homology of this complex is 1—dimensional, concentrated in Maslov degree zero.

It is generated by the sum of the two basis elements (20r ) + (20r) if r # 0 and by (8) if

r = 0. This sum equals aip by definition. |

Proof of Lemma 8.29 We argue by induction on /. First suppose that [ = 1.

(1) This claim follows from the fact that the only nontrivial element of A(1) is
0_ (0

a® = (g);-

(2) For every r € Zxy, there is a unique nontrivial element in ffi(l), namely a} =

(20r)1 (note that in this algebra (,.)
Ji03A(1, 1) J(y). The claim follows.

| is set to 0, because it is not an element of

(3) This claim is analogous to (2).
(4) This claim is the content of Lemma 8.34.

For the inductive step, we now suppose that claims (1)—(4) are true for all k¥ </, and
we prove them for /.

(1) When r; > 0 for all i €[1,!], by Proposition 8.19 the algebra A”(l) is trivial and
s0 is its homology. Now suppose that r; = 0 for some fixed i € [1,{]. If a € AZ(]) is
a standard basis element, then p; =¢; =0. Let I, =[l,i—1] and Ig =[i +1,/—1].
Then a|;, and a7, completely determine a. In fact, there is an isomorphism of
complexes

o AT(l) > Ay (i —1)® A% (I—i)
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sending a standard basis element a to ¥, (al7,) ® Y1, (alrg), where r’ and r” are
the restrictions of r to the first i — 1 and the last / —i coordinates. It is straightforward
to check that the correspondence is bijective, and that it preserves the gradings (after
shifting the Alexander multigrading on /Ti” (n —1i) as in Section 8.1). The fact that «
is a chain map follows from Lemmas 8.8 and 8.9:

a(da) =ao (01, + 05y +015)(@) =ao(dr,a+drza)
= (Y1, 00(alr,) ® Vi (alig) + ¥, (alr,) & (Yi, 00(alrg))
= da(a).

Lastly, it follows from the definition of af that a(a%) = af,/ ® aiﬂ . Thus, by induction,
H.(AZ(])) = F,, generated by a”.

(2) For a standard basis element a € /Ti(l ), we have q; = 0 and p; = 2r; (see
Lemma 5.8). The map

B: A5 (1) —~ I‘Tip(l —Dir}, a=yY-n@lpi-1),

is an isomorphism of chain complexes, where {r;} denotes an upward translation in
the final component of the Alexander multigrading by r; and r’ is the restriction of r
to the first / — 1 coordinates. The result then follows from case (4) for [ — 1.

(3) This claim is analogous to (2).

(4) For convenience, write r = (r,r’). For all p,q € Z>¢ such that p + g = 2r,
define Cp 4 to be the submodule of /Tip (/) generated by the standard basis elements a
such that algy = (p)l. For m € Z, define

q
Cni= @B GCog

D:q€Z>0
p+q=2r
m=1|p—q|-r

Note that C_, = C . If —r <m <0, then Cy, = Cortm,—m D C—m,2r+m . For all
other values of m, we have C,, = 0. Moreover,

0
AL, = P cn= P G

m=-=r D:9€Z>0
p+q=2r

The number m is in fact the first summand of the Maslov grading, as one can check
from Definition 6.1.
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By Corollary 8.3, we have that d = d¢y + 9|2 ;7. To simplify the notation, let 1 := 0y
and dg := d2,77. For every p and g such that p +¢ = 2r, we have d9(Cp,4) C Cp 4.
For all m, we have do(Cp,) C Cpy and 91(Cr,) C Cpy—1 . Thus, we can define a filtration

on /Tip(l ) by setting
fs == @ Cm

m<s

Every filtered chain complex induces a spectral sequence. We refer the reader to [18],
and in particular to Section 2.2, for a discussion about spectral sequences arising from
filtered chain complexes. In the proof below, in E ;, the index s denotes the filtration
level (usually denoted by p), and ¢ denotes the page of the spectral sequence. We skip
the homological grading (usually denoted by ¢) to simplify the notation. Note that
in [18] subscripts and superscripts are swapped, since McCleary deals with cochain
complexes rather than chain complexes.

The zeroth page (E?, dy) of the associated spectral sequence is the associated graded
module, with differential induced by d = d1 + dg. Therefore, E 2 = Fy/Fs—1 = Cs
under the projection map sending each other summand of F; to 0, and the differential dy
is identified with d¢. Thus we have

(E2.do) = (Cs.00)= P (Cpg.00).
P:q€L=o
p+q=2r
s=3|p—ql-r
since, as we observed, Cp 4 is a dg—subcomplex of Cj.
For each p,q € Z>o with p+¢q =2r and |p —q| = 25 +2r, we have an isomorphism
of complexes

(AL (1= 1). (. 0}s] if g =0.

(Ap (I=1),){(r,0)}[s] if ¢ #0,
induced by the map a > Y5 ;1(al[2,;7) (here the brackets {-} denote an upward shift

in the Alexander multigrading and the brackets [-] denote an upward shift in the
Maslov grading). Note that the element b;r,,q = (3)1a§t(:;£) is sent under the above

. . r
isomorphism of complexes to ag .

Thus, it follows from the inductive hypothesis that

El= @ Falbpgl).

Pq€Z >0
ptq=2r

s=%|p—ql-r
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The differential d; on E! is induced by d = 91 + d¢. Since all elements of E! are
represented by do—cycles, di = [d1]. Therefore, the restriction map a + a|(;y induces
an isomorphism of complexes

(E',dp) = (4},(1),9){(0.r")}

which sends [b;r,,q] — (f]’). By Lemma 8.34, the second page E? of the spectral
sequence is 1—dimensional, spanned by the homology class of the element

2 0 0,r) .
((Or)1+(2r)1)'a/lp it r>0,
(), -asy”” if r =0,
which is the element aip by definition.
Therefore, E? = Fz([ai p]), and we note that aip must be a nonzero dog—cycle as
well as a d1—cycle. Thus, aip is a d—cycle too.

Since E? is 1-dimensional, it follows that the spectral sequence collapses at the second
page, so E? = E® is the associated graded module of the homology H. (/Tip(l )).
Thus, Hsx (/Tip(l )) must be 1-dimensional as well. We noted above that aip is a
d—cycle, and it cannot be a d—boundary because it has Maslov degree zero, which is
maximal. Thus, {[aip]} is a basis for H, (Eip(l)).. O

9 The quasi-isomorphism ¢

9.1 Defining ®

We are now in a position to define our map &: B(n,k,S) — A(n, k,S). We will use
Theorem 2.8. Recall that both B(n, k,S) and A(n, k,S) can be viewed as algebras
over I(n,k).

Remark 9.1 Even when viewing B(n, k, S) and A(n, k, S) as algebras over the same
ring I (n, k), we will continue to denote the basic idempotents of B(n,k,S) by I
and the basic idempotents of A(n, k,S) by Jy .

Remark 9.2 In this section, we will implicitly make the identification

B(n,k,S) = Quiv(T'(n, k,S), Rs)

as in Section 2.
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Definition 9.3 Let x,y € V(n,k) and let y be an edge in ['(n,k,S) from x to y.
To y, we associate an element ®(y) of Jx A(n,k,S)Jy as follows:
(1) If y has label R;, let ®(y) = (;)
(2) If y has label L;, let @(y) = (9),.
(3) If y haslabel U; and x N{i —1,i} = &, then let ®(y) = 0.
(4) If y has label U; and x N{i — 1,i} = {i — 1}, then, in B(n,k,S), we can
factor y uniquely as y = y’-y”, where )’ has label R; and y” has label L;.
Let &(y) := ®(y)2(y") = (}),.
(5) If e haslabel U; and x N{i —1,i} = {i}, then, in B(n, k,S), we can factor y
uniquely as y = y’ - y”, where y’ has label L; and y” has label R;. Let
O(y) = NG = (3);-
(6) If y haslabel U; and x N{i —1,i} ={i —1,i}, then let O(y) = (g)i + (g)i.
(7) If y has label C;, then let ®(y) = C;.

i

By [16, Proposition 2.6], the above data defines a homomorphism of I (n, k)—algebras
®: Path(I'(n, k,S)) — A(n, k,S). In Lemma 9.4 below, we will show that ® sends
the relation ideal Rs defining B(n, k, S) to zero, so that ® induces a homomorphism
of I(n,k)-algebras from B(n,k,S) to A(n,k,S).

Visually, we imagine the map ® as follows. A multiplicative generator of B(n, k,S)
is an arrow in the quiver algebra, visualized as a motion of a dot across a line or as a
formal U; or C; generator. In mapping this motion to the strands algebra A(n, k, S),
we imagine the line i of B(n, k, S) as the core of the corresponding cylinder [0, 1] x Sl.1
in [0, 1] x Z(n). A dot between two lines i and i + 1 in B(n, k,S) corresponds to
a choice of matching (Zl~+, z;4y) for A(n, k). A motion of a dot across a line i in
B(n, k) corresponds to the shortest oriented path around the cylinder [0, 1] x Sl-1 from
one matched basepoint to another in A(n, k,S). Stationary dots are interpreted as
pairs of dashed strands for the corresponding matchings in A(n, k,S). A U; loop that
factors as R;L; or L; R; gets mapped to a path that loops once around Sil , starting
and ending at z;~ or Zi+ , respectively. A nonzero U, loop that does not factor must be
based at a vertex x with {i —1,i} C x. This type of U; loop corresponds to a sum
of two terms, each with a strand starting at z;~ or zl.‘" looping once around Sil and
an adjacent pair of dashed strands. Finally, a C; generator in B(n, k,S) is sent to a
closed loop on the cylinder [0, 1] x Si1 . See Figures 21 and 22 for an illustration of
Definition 9.3.
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Figure 21: From left to right: images under @ of generators of B(5,3)
starting at x = {0, 1,3} and labeled R,, L3, U; and C, respectively.

Lemma 9.4 & is well-defined and respects multiplication.

Proof We must show that the relations given in Definition 2.4 are satisfied in A(n, k, S)
after applying ®. The description below Definition 9.3, along with the examples, should
make this lemma very plausible. We carry through the algebraic checks one case at a
time. Recall that in the visualization of B(n, k, S), line i sits between regions i — 1 and
i, and similarly in A(n, k, S) the cylinder [0, 1] xSi1 sits between matchings (Zi+_ 12Zi)

Figure 22: Image under ® of the generator of B(5, 3) starting at x = {0, 2, 3}
and labeled U;.
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D(L2)P(Lg) = P(L4)P(L2) P(L2)P(R4) = P(R4)P(L2)

Figure 23: Distant commutation relations in B(5, 2).

and (ziJr .Z; 1) (these can be viewed as matchings i — 1 and i, respectively). We will
be using Lemma 5.11 together with the convention of (5-1) throughout the proof.

e The “U vanishing relations” U; = 0 if y is a loop at a vertex x € V(n, k) with
xN{i—1,i} = 3. These follow from item (3) in Definition 9.3.

o The “loop relations” R;L; = U; and L; R; = U;. In such a relation, let y be the
edge labeled U;. By item (4) or (5) of Definition 9.3, ® maps the relation to zero.

* The “distant commutation relations” R;R; = RjR;, L;L; = L;L; and R;L; =
L;R; for |i — j| > 1. For arelation of the form R; R; = R; R;, both ®(R;)®P(R;)
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and ®(R;)P(R;) are the basis element ((1)) ((1))1. by the formulas of Lemma 5.11. The

i
other cases are similar; see Figure 23.

e The “two-line pass” relations R;iR;+1 =0 and L;L;—1 =0. For R;R;+1 =0,
we have | |

o(R)®(Ri+1) = () (o)., =0
by condition (I) of Lemma 5.11. The relation L;L;—1 = 0 is similar, using condi-
tion (III).

e The “U central relations”, part 1: R;U; = U;jR; and L;U; = U;L;. First
consider a relation of the form R;U; = U; R;. We consider several cases; first assume
li—j|>1.Inthiscase wehave x N{j —1,j} = \{i—1JU{iph)N{j—1,j}.
- Ifxn{j—1,j} =0, then ®(U;) is zero on both sides of the relation.
- IfxN{j—1,j}=1{j—1}, then we have
P(R)P(Uj) = P(R)P(R))P(L)) = P(Rj)D(Lj)P(R;) = ©(U;)P(R),
using the “distant commutation relations” twice in the middle equality. The case
where x N{j — 1, j}={/j} is similar.
- IfxN{j—1,j}={j—1,j}, then by Lemma 5.11 we have

CR)O(U;) = ((l))l((z))] + ((1))z<g>]’
and ®(U;)P(R;) gives the same result.

For the cases when |i — j| < 1, we note that the presence of R; as the only nonloop
edge implies that x N {i —1,i} = {i — 1}. First suppose j =i — 1. We consider two
subcases:

- IfxN{i—2,i—1,i} ={i — 1}, we have
O(U;)P(R;) = P(Li—1)P(Ri—1)P(R;) =0

by the “two-line pass” relations. We also have ®(R;)®(U;) = 0 because the
second factor is zero.

- IfxnN{i—2,i—1,i}={i —2,i — 1}, we have

v@porn=[(o),+ ()] (0),=(6) (o),

by Lemma 5.11 (the second summand is zero by condition (IV) of that lemma).
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Meanwhile, we have

O(R;)P(U;) = ((1))1 : <(2))l-_1 - ((2))5—1((1))1"

so the relation holds.
If j =i+ 1, we follow a parallel argument:
- IfxnN{i—1,i,i +1} ={i — 1}, we have
P(R)P(Uj) = P(R)P(Ri+1)P(Li+1) =0
by the “two-line pass” relations. We also have ®(U;)®(R;) = 0 because the
first factor is zero.

- IfxnN{i—1,i,i +1}={i —1,i + 1}, we have

arne@)= (o) [(2) ., + (). ]= ().,

by Lemma 5.11 (the first summand is zero by condition (I) of that lemma).
Meanwhile, we have

QU;j)P(R;) = (g)m ' ((1)>, - ((l))i(g)iﬂ’

so the relation holds.

Finally, if j =i, then again since x N {i —1,i} = {i — 1}, we have ®(R;)P(U;) =
O(R;)P(L;)P(R;) = ®(U;)P(R;). The relations L;U; = U;L; are analogous to
R; Uj = Uj R;.

e The “U central relations”, part 2: U;U; = U;U;. Since both U; and U; are
loops, we have x = y in this case regardless of i and j, so the meaning of ®(U;) and
®(Uj) does not change depending on the order in which they are taken. We may also
assume i # j.

- Ifxn{i-1li}=@ orxN{j—1,j} =3, then either (U;) or ®(U;) is
zero and the relation holds.
- IfxNn{i—1,i} ={i — 1}, then
Q(U)PUj) = P(R)P(Li)P(U))
= O(R;)P(U;)P(Li)
= O(U;)P(R;)P(L;)
= O(U)PU)).
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A similar argument shows that the relation also holds if x N {i —1,i} = {i}; by
symmetry, itholdsif x N {j —1,j}={j —1}orxN{j—1,j}={j}.

- Ifxn{i—1l,i}={{—1,itandxN{j—1,j}={j—1, )}, then we consider
subcases:

* If |i —j|>1, then ®(U;)P(U;) and ®(U;)P(U;) are both equal to

(0,0),+©).G),+ 2),6), + ),

* If j =i —1, then

owyew) =[(o),+ ()]0, + ().}

(0), ()= (0. () (), (5),., =
(), (0= (06 () ()= ()L G);

On the other hand,

O(U)D(U;) = [(3)1._1 + (3),._1] ' [(3), * (g)l]

(01 (0) =0 @) 0 ()= (), ),
0 (2 ()= (), (5),

(2),-1° (o),
QUNPUi-1) = @U;i-1)@(Ui)

Thus,

when x N{i —2,i —1,i}={i—2,i—1,i}.
* The case j =i + 1 follows by symmetry.

e The “C central relations” C; A = AC; for all generators A labeled Rj, L;, U;
or C;j. These relations hold in A(n, k,S) because multiplication in A(n, k,S) is
defined using addition of the components ¢ of generators E(s,¢), and addition is
commutative. Visually, a closed loop may be isotoped to near the beginning or the end
of a cylinder without changing the corresponding element of A(n, k, S).
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o The “C? vanishing relations” Cl-2 =(. These relations hold in A(n, k, S) because
the product of E(s,¢) with E(s’,¢’) was defined to be zero if (¢ +¢’)(i) = 2 for
any i. Visually, the product results in a degenerate annulus. a

Lemma 9.5 The map ® is a homomorphism of differential graded algebras.

Proof The reader may use the grading formulas of Definitions 2.5 and 6.1 to confirm
that ® does indeed preserve gradings.

For the differential, we first show d(®(y)) = 0 for an edge y with label R;, L; or U;
of B(n, k,S). In all of these cases, the array for ®(y) has no monomial of C; variables
out front, so d°(®(y)) = 0. The array also has p; = g; =0 for all j # i, so that
Mj = mj; = 0 in the language of Lemma 5.12. Thus, 8})(CI>()/)) =0for j #1i.

To compute 8?(@()/)), let x denote the starting vertex of y. First note that 8?(@()/)) =0
if {i —1,i} ¢ x. This observation takes care of all cases of y under consideration
except the case when y is labeled by U; and {i —1,i} C x, for which we have ®(y) =
(g)i + (g)i. By formula (5-3) in Lemma 5.12, we have 8?(((2))i) = (i)l = 8?((g)i).
Since we are in characteristic 2, it follows that 8? (®(y)) =0, and so we may conclude

that d(P(y)) = 0 in all of these cases.

Now consider a loop y labeled by C; in B(n, k,S) at vertex x. The array ®(y) = C;
has all p; = ¢q; =0, so Lemma 5.12 again ensures that 3°(®(y)) = 0. Meanwhile,
Lemma 5.13 allows us to compute 9¢(P(y)) case-by-case by analyzing §;—; and ¢;
in (5-6):

o IfxN{i—1,i} =@, then 9°(P(C;)) =0.

o Ifxn{i—1,i}=/{i—1}, then (&) = (})

e IfxN{i—1,i}={i}, then (®(C})) = (3),.

« Ifxn{i—1i}={i—1i}, then () = (), + (),

i

Using Definition 9.3 in each case, we have 0¢(®(y)) = ®(y’) for the loop y’ at x
labeled by U; instead of C; (note that ' =0 in B(n,k,S) if x N{i —1,i} = @).
These four cases are illustrated in Figure 24.

We have shown that d(®P(y)) = ©(d(y)) for all edges y in the quiver I'(n, k,S). It
follows from the Leibniz rule that d(®(y)) = ®(d(y)) for all y € B(n,k,S). Thus,
® is a homomorphism of dg algebras. a
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Figure 24: Differential of ®(C;) in various cases.

Recall B(n, k, S) is a dg algebra over Fo[U7, . .., U,]V®k) | so we have a dg ring homo-
morphism from F,[Uj,..., U,,]V("’k) to B(n, k,S). The natural inclusion I (n, k) —
Fa[Uy, ..., U,,]V("’k) recovers the usual I (n, k)—algebra structure of B(n,k,S). We
now have another dg ring homomorphism &: B(n,k,S) — A(n,k,S), and we can
compose to give A(n, k, S) the structure of a dg algebra over F5[Uy, ..., U,]V %)
compatible with the dg algebra structure over I (n, k). Tautologically, ® is a homo-
morphism of dg F»[Uy, ..., U]V %) _algebras. One can check that the natural map

Fa[Us, ..., Up] = Fa[Us, ..., U]V OF) = A(n, k., S)

sends each variable U; to a central element of A(n, k, S), where the first map in the

composition is the inclusion of constant functions.

Lemma 9.6 For x,y € V(n, k) not far, the isomorphism
W: JxH*(A(n,k))Jy — ]FZ[Ula BRI Un]/(pG)

given in (8-7) of Corollary 8.31 is linear over [F»[Uy, ..., Uy].
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Proof The action of U; on a basis element of Jx.A(n, k)Jy is given by multiplication
(on either side) by ®(y), where y is aloop in I'(n, k, S) labeled U; . For concreteness,
let y be based at x, so that the action of U; is left multiplication by ®(y).

IfxNn{i—1,i} =, then y =0, so ®(y) =0. Correspondingly, line i is contained
in a generating interval of length 1, so the action of U; on F2[Uy,...,U,]/(pg) is
also zero.

Ifxn{i—1,i} ={i —1}, then ®(y) = (g)i. We cannot have v;(x,y) = —1. If
v;(x,y) =1, then line i is crossed, and by Lemma 5.11, ®(y) acts on a homology

basis element of Corollary 8.32 by increasing the value of r; by one. If v;(x, y) =0,
0
2r;
because i ¢ x (see Lemma 5.4). Thus, ®(y) acts by increasing the value of r; by one

then line i is not crossed, but the term ( )l. in this homology basis element is zero

in this case too. The argument when x N {i —1,i} = {i} is similar.

Finally, if {i —1,i} C x, we have ®(y) = (§), + (), If v;(x.y) =—1, then (}), be-
comes zero when multiplied by a basis element of Jy H«(A(n,k))Jy. If v;(x,y) =1,
then (g)l. becomes zero when multiplied by a basis element of Jy H«(A(n,k))Jy. If
vi(x,y) =0 (soi ¢CLx,y) and r; # 0, we see a product of the form

()G () o))

The cross terms (g)l. : (2(7)'1')1' and (g)i . (2(?);' are both zero due to degenerate bigons
(see Lemma 5.11), while the remaining terms give (2(”0+1)) i+ (2(ri0+1))i . The case
when r; = 0 is left to the reader. In all three cases, we see that multiplication by ®(y)
on the left has the effect of increasing the value of r; by one in a basis element from

Corollary 8.32. a

Lemma 9.7 Suppose x,y € V(n,k) are not far. If yx y is the element of B(n, k)
represented by the path from Definition 2.18, then ®(yy,y) is the basis element from
Corollary 8.32 with all r; equal to zero.

Proof We use the recursive definition of yx, , and induct on k — |x N y|. When this
quantity is zero, we have x =y and yyy is the empty path. Thus, ®(x, y) = Jy, which
is the strands element corresponding to 1 € F2[Uy, ..., U]/ (pg) under Corollary 8.32.

Now assume that ®(yy’ /) is as described whenever k — |x' N y'| <k —|x N y|.
If we have x, < y, for some a € [1,k], let a be the maximal such index. Let
x" = (x \ xg) U{yq}. By Definition 2.18, we have yx y =y - yx’,y, Where y is the
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unique edge from x to x’ labeled Ry, 1. By item (1) in Definition 9.3, we have
PD(y) = ((l))xa +1- and by induction ®(yx,y) is the strands element whose array has
vectors (), for i with v;(x’,y) =1, (}), for i with v;(x’,y)=—1, and no other

nontrivial factors.

We can use Lemma 5.11 to show that the product of these strands elements has
vector (é)i for i with v;(x,y) =1, ((1))1. for i with v;(x,y) = —1, and no other
nontrivial factors. We first show that the product is nonzero. The main thing to
check is condition (I); conditions (II)-(VII) are tautological. We only have p; odd for
i = Xq + 1, so we want to show that p; ,, = 0. Indeed, if p}_,, is nonzero, then
we have X441 = X4 + 1 = Y4 < Ya+1, contradicting that a is the maximal index with
Xq < yq. Thus, condition (I) holds, so the product under consideration is nonzero.

It follows that the product is given by the formula in Lemma 5.11; we must show
this product is the desired strands element. We have rx,+1 = px,+1 + q;a 41 and
Px,+1 = 1; we claim that q;a 11 = 0. Indeed, if it is nonzero then q;a 41 =1and
Py, +1 =0, s0, by Lemma 5.14, line x4 + 1 is crossed from x’ to y and we have
Ux,+1(x’, y) # 0. But the equality x), = y, implies that vy,+1(x’, y) = 0, since

X Nxg+1all=k—a=|yNlya+Lnll.

so we have a contradiction. It follows that ry,1+1 = 1. We also have sx,11 = 0 because
Px,+1 1s 0dd, so vector i in the product is equal to ((l))l. when i = x, + 1. Note that

vxa+1(x’y): 1

Now consider i # x4, + 1. We have p; = ¢; = 0, so Lemma 5.11 gives us r; =
pi+p, =p;and s; =q; +q, =q;. Thus, r; = 1 if and only if v;(x’, y) =1 (in
which case s; = 0) and s; = 1 if and only if v;(x’, y) = —1 (in which case r; = 0).
For i # x4 + 1, we have |x N[i,n]| = |x'N[i,n]|, so v;(x’, y) = vi(x, y), proving
that ®(y)P(yx’,y) is the strands element described above.

The case when x, > y, for all a € [1,k] and x, > y, for some minimal index a is
analogous. By induction, ®(yx,y) is the strands element whose vector has ((l))l. for
i with v;(x,y) =1, ((1))1. for i with v;(x, y) = —1, and no other nontrivial factors,
proving the lemma. |

Theorem 9.8 The map
®: B(n, k) — A(n, k)

is a quasi-isomorphism of dg algebras over F5[Uy, ..., U,]V k).
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Proof The algebra B(n,k) = B(n,k, ) has no differential, so it is equal to its
homology. Given x and y in V(n, k) that are not far, let U;" --- Up" yx,y be the basis
element of I,B(n,k)I, given by Theorem 2.20.

Since @ islinear over [F5[Uy,. .., U], © sends this element to Ulr1 - Uy"®(yx,y). By
Lemmas 9.6 and 9.7, the basis element for Jx A(n,k)J, corresponding to U;":--Uy,"
isalso U -+ Uy" ®(yx,y).

Since @ sends a basis for the homology of I, B(n, k)Iy to a basis for the homology of
JxA(n,k)Jy, ® induces an isomorphism on homology, so & is a quasi-isomorphism.
O

9.2 Homology of the strands algebra: general case

Finally, we compute the homology of A(n, k,S) and show that & is a quasi-isomor-
phism for general S.

Theorem 9.9 The map ®: B(n,k,S) — A(n, k,S) is a quasi-isomorphism.

Proof We will induct on |S|. The base case |S| = 0 follows from Theorem 9.8.

For the inductive step, write S = {i,...,i;}, and let S’ =S\ {i;}. As a chain complex,
A(n,k,S) has a two-step filtration by powers of the variable C;,. Since we may write
this variable C;, as ®(C;;) and we have

A(D(Cy))) = D(A(Cy))) = D(U;)),

the complex A(n, k,S) is isomorphic to the mapping cone on the endomorphism
®(U;,) of A(n,k,S’). The mapping cone gives us a long exact sequence on homology
from which we can extract a short exact sequence by taking kernels and cokernels (as
in the proof of [16, Lemma 5.3]). The short exact sequence must split over [, giving

LAk, S
Hu(A(n. k., S)) = %[Ui” & ker B([U]).

By induction, & identifies these summands with the cokernel and kernel of [U;,] acting
on H«(B(n,k,S")). The chain complex B(n, k,S) also has a two-step filtration by
powers of the variable C;, . Since the corresponding short exact sequence for B(n, k, S)
splits in the same way to give
/
H.(B(n,k,S)) =~ w @ ker([U;]),
im([U;,])

® is a quasi-isomorphism from B(n, k,S) to A(n,k,S). O
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By [16, Definition A.20], we can restrict quasi-isomorphisms to full dg subcategories,
so we get the following corollary:

Corollary 9.10 The map & restricts to quasi-isomorphisms from B,(n,k,S) to
Ar(n, k,S), from B;(n,k,S) to A;(n,k,S) and from B'(n,k,S) to A'(n,k,S).

Since formality is preserved by quasi-isomorphisms, we deduce the next corollary from
the results of [16].

Corollary 9.11 (see Corollary 1.3) The dg algebra A(n, k,S) is formal if and only
if
e S=U,or
e ke{0,n,n+1}.
The dg algebra A, (n, k,S) is formal it and only if
e S=gor{l},or
e ke{0,n},or
e k=n—1land 1€S.
The dg algebra Aj(n, k,S) is formal if and only if
e S=gor{n},or
e ke{0,n},or
e k=n—1landnesS.
The dg algebra A'(n, k,S) is formal if and only if
e S=g, {1}, {n} or{l,n},or
e ke{0,n—1},o0r
e k=n—-2and {1,n} CS.

Proof These results follow from Theorem 9.9 and Corollary 9.10, as well as [16,
Theorems 5.10, 5.13, 5.14 and 5.17]. O

9.3 Symmetries

Here we show that the quasi-isomorphism & of Theorem 9.9 intertwines the symmetries
p and o from [16, Section 4.5] with the symmetries of the same name from Section 7.
We start with the symmetry p.
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Proposition 9.12 The diagram
B(n.k,8) —2— A(n.k.S)

0| G

of morphisms of dg algebras commutes.

Proof It suffices to check commutativity on the quiver generators of B(n,k,S).
For an edge y of I'(n,k,S) from x to y with label R;, we have ®(y) = ((l))i, SO
o(®(y)) = ((1))”+1_l.. On the other hand, p(y) is the edge of I'(n, k, p(S)) from p(x)
to p(y) (with label L,41—;), so we have ®(p(y)) = ((1))

for edges labeled L; is similar.

nt1—; as well. The argument
For an edge y of I'(n,k,S) from x to x with label U;, we may assume that
xN{i—1,i}# @, so that y represents a nonzero generator. If x N{i —1,i} ={i — 1},
then ®(U;) = O(R;)P(L;), so commutativity follows from the above paragraph. If
xN{i—1,i} ={i}, the argument is similar. If {i —1,i} C x, then ®(y) = (3),- + (g)i ’
so p(P(y)) = (g)n—i-l—i + (g)n+l—i' On the other hand, p(y) is the edge from
p(x) to p(x) with label U,4+1—;, and we have {n —i,n + 1 —i} C p(x). Thus,
(1) = Q) ni1-i T Gns1—i- 50 2(0()) = p((1)).

Finally, for an edge y of I'(n, k,S) from x to x with label C;, we have p(®(y)) =
Cny1-i = ©(p(y)). Thus, the square commutes. a

Next we consider the symmetry o.
Proposition 9.13 The diagram
B, k,S) —2— An, k,S)

o] lo
B(n,k,S)°P — An, k,8)®P
of morphisms of dg algebras commutes.
Proof As in Proposition 9.12, we check compatibility on the quiver generators
of B(n,k,S). For an edge y of I'(n,k,S) from x to y with label R;, we have

o(®(y)) = ((1))1. . On the other hand, o(y) is the edge of I'(n, k, S)°P from x to y (with
label L;), so ®(o(y)) = ((1))1. as well. The argument for edges labeled L; is similar.

For an edge y of I'(n,k,S) from x to x with label U;, we may again assume that
xN{i—1,i}#Z@. IfxnN{i—1,i}={i —1} or {i}, then commutativity follows from
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the above paragraph. If {i — 1,7} C x, then o(®(y)) = (g) + (g)i . On the other hand,

i

o(y) =y, 50 ®(0(y)) = D(y) = (3); + (3); and we have ®(o(y)) = 0(®(y)).

Finally, for an edge y of I'(n, k,S) from x to x with label C;, we have o(®(y)) =

C; = ®(o(y)). Thus, the square commutes. a
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