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We define new differential graded algebras A.n; k;S/ in the framework of Lipshitz,
Ozsváth and Thurston’s and Zarev’s strands algebras from bordered Floer homology.
The algebras A.n; k;S/ are meant to be strands models for Ozsváth and Szabó’s
algebras B.n; k;S/; indeed, we exhibit a quasi-isomorphism from B.n; k;S/ to
A.n; k;S/ . We also show how Ozsváth and Szabó’s gradings on B.n; k;S/ arise
naturally from the general framework of group-valued gradings on strands algebras.
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1 Introduction

Heegaard Floer homology is a package of invariants for 3–manifolds and 4–manifolds
introduced by Ozsváth and Szabó [22; 21] that has proven to be particularly powerful in
the last two decades. A variation of their construction — see [20] and Rasmussen [28] —
called knot Floer homology and abbreviated HFK, assigns a graded abelian group
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to a knot or link, and the Euler characteristic of this group recovers the Alexander
polynomial. Knot Floer homology has many applications in knot theory; for example,
it exactly characterizes elusive knot information like Seifert genus and fiberedness,
for which the knot polynomials provide only incomplete bounds, and it leads to the
definition of many interesting knot concordance invariants.

In the past ten years, there has been considerable interest in assigning Heegaard
Floer invariants to surfaces and 3–dimensional cobordisms between them. Lipshitz,
Ozsváth and Thurston’s bordered Floer homology [11] initiated this project; Zarev [29]
introduced a generalization known as bordered sutured Floer homology. If one views
Heegaard Floer homology from the perspective of topological quantum field theories
(TQFTs), then bordered Floer homology begins the investigation of Heegaard Floer
homology as an “extended” TQFT. Extensions of TQFTs have been of particular interest
since Lurie’s proof [12] of the Baez–Dolan cobordism hypothesis classifying fully
extended TQFTs.

Bordered sutured Floer homology assigns an invariant to a surface F by first choosing a
combinatorial representation of F , called an “arc diagram” by Zarev. Arc diagrams are
a special case of what are known as “chord diagrams” in eg Andersen, Fuji, Manabe,
Penner and Sułkowski [2] (see Definition 3.1 below). Chord diagrams may have
linear and/or circular “backbones” (see Figure 1); arc diagrams are the same as chord
diagrams with no circular backbones. To an arc diagram Z representing a surface F.Z/,
bordered sutured Floer homology associates a differential graded (dg) algebra A.Z/,
called the bordered strands algebra of Z because it can be visualized by pictures of
strands intersecting in Œ0; 1��Z . Auroux [3] has shown that A.Z/ is closely related
to Fukaya categories of symmetric powers of F.Z/, in line with the original definition
of Heegaard Floer homology.

More recently, Ozsváth and Szabó [24; 26; 25; 19] have used the ideas of bordered Floer
homology to define a new algorithmic method for computing HFK by decomposing a
knot into tangles. Their theory has striking computational properties [23], categorifies
aspects of the representation theory of Uq.gl.1j1//— see Manion [14] — and has
surprising connections with other such categorifications; see Manion [13]. We will
refer to their theory as the Kauffman-states functor, since Kauffman states for a knot or
tangle projection (equivalently, spanning trees of the Tait graph) play a prominent role.

To a tangle diagram, the Kauffman-states functor assigns a bimodule whose definition
is motivated by holomorphic curve counting as in bordered Floer homology. However,
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Figure 1: The Heegaard diagram motivating the Kauffman-states functor,
and the chord diagram implied by it. Such a chord diagram has 2 linear
backbones and 3 circular backbones (all drawn in black).

the dg algebras B.n;S/ over which the bimodule is defined are not among Zarev’s
bordered strands algebras. Indeed, for a single crossing, Ozsváth and Szabó count
curves in a particular Heegaard diagram from which a chord diagram Z.n/ can be
inferred (see Figure 1), but some of the backbones of Z.n/ are circular rather than
linear, so Z.n/ is not an arc diagram and Zarev’s construction does not apply.

We begin by defining a reasonable candidate A.n;S/ for the bordered strands algebra
of the chord diagram Z.n/ in question, with a diagrammatic interpretation in terms
of intersecting strands as usual (the data S encodes orientations on tangle endpoints
and will be described below in Section 2). The algebra A.n;S/ is larger than B.n;S/,
with a more elaborate differential. See eg Figure 6 for an illustration. The dg algebras
A.n;S/ and B.n;S/ are both direct sums of dg algebras A.n; k;S/ and B.n; k;S/
for 0� k � n. Like B.n; k;S/, the strands algebra A.n; k;S/ comes with a Maslov
grading and various Alexander multigradings.

The bordered strands algebra A.n; k;S/ and Ozsváth and Szabó’s algebra B.n; k;S/
are in fact closely related to each other. Using our generators-and-relations description
of B.n; k;S/ from [16], we define a dg algebra homomorphism ˆW B.n; k;S/ !
A.n; k;S/ and prove the following result:

Theorem 1.1 The map ˆW B.n; k;S/!A.n; k;S/ is a quasi-isomorphism.
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Since we computed the homology of B.n; k;S/ in [16], we deduce the homology of
A.n; k;S/ from Theorem 1.1.

Corollary 1.2 Applying ˆ to the basis for H�.B.n; k;S// given in Theorem 2.20
yields a basis for H�.A.n; k;S//.

We can also transfer the formality properties for B.n; k;S/ proved in [16] to the
quasi-isomorphic algebras A.n; k;S/.

Corollary 1.3 The dg algebra A.n; k;S/ is formal if and only if S D ¿ or k 2
f0; n; nC 1g.

We describe the gradings on A.n; k;S/ combinatorially in Definition 6.1; their defini-
tion depends on S . However, bordered strands algebras A.Z/ typically have gradings
by nonabelian groups G0.Z/ and G.Z/ which do not see the dependence on S . We
define these gradings in our setting too (both groups end up being abelian) and show
how they are related to the combinatorial gradings.

Theorem 1.4 Given S , we have an isomorphism

‚S W G
0.Z.n// Š�! Z˚Z2n

such that, given a homogeneous element a of A.n; k;S/, the first component of
‚S.deg0.a// is the Maslov degree of a and the rest of the components form the
unrefined Alexander multidegree of a . Similarly, we have an isomorphism

‚S W G.Z.n// Š�! Z˚
�
1
2
Z
�n

whose first component recovers the Maslov grading and whose second component
recovers the refined Alexander multigrading.

Theorem 1.4 helps to explain the appearance of the data S in the algebras A.n; k;S/
and B.n; k;S/, since the orientation data for tangle endpoints is not visible from the
chord diagram Z.n/. While the gradings by G0.Z.n// and G.Z.n// are independent
of this orientation data, their interpretation as standard Maslov and Alexander gradings
is noncanonical and its choice forces a choice of S .

We note that this noncanonicity stems from the condition “j � ".˛/ mod 1” in Lipshitz,
Ozsváth and Thurston’s definition of their nonabelian gradings [11, Definition 3.33].
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Thus, we have a new motivation for this somewhat mysterious-seeming condition, since
in the end we do want A.n; k;S/ and B.n; k;S/ to depend on orientations. Note,
however, that A.n; k;S/ and B.n; k;S/ depend on S for more than just their gradings;
S also determines whether certain additional generators are allowed in the algebras.

Along with B.n; k;S/, it is natural to consider certain idempotent-truncated alge-
bras Br.n; k;S/, Bl.n; k;S/ and B0.n; k;S/. Each has an associated chord diagram
Zr.n/, Zl.n/ or Z 0.n/, and we define the corresponding strands algebras Ar.n; k;S/,
Al.n; k;S/ and A0.n; k;S/ (they are idempotent truncations of A.n; k;S/). We prove
that ˆ gives a quasi-isomorphism between the truncated algebras as well, deducing
results about homology and formality for the truncated algebras from the analogous
results in [16].

Finally, we define symmetries on the strands algebras A.n; k;S/ analogous to Ozsváth
and Szabó’s symmetries R and o on the algebras B.n; k;S/, and we show that ˆ
preserves these symmetries. The symmetries on A.n; k;S/ have an appealing visual
interpretation as symmetries of the surface Œ0; 1��Z.n/ on which the strands pictures
are drawn.

Context and motivation

This paper is a sequel to [16], which lays much of the necessary groundwork for our
main results here. A third paper [15] in the series is planned, in which we define
bimodules over A.n; k;S/ for crossings and prove that they are compatible with
Ozsváth and Szabó’s bimodules in an appropriate sense.

We view our constructions as evidence for the existence of a generalized theory of
bordered sutured Floer homology, allowing chord diagrams with circular backbones and
correspondingly generalized Heegaard diagrams. Defining Heegaard Floer homology
analytically in this level of generality has not been attempted, and appears to be quite
difficult. However, various recent constructions should be special cases of such a
generalized theory, including Lipshitz, Ozsváth and Thurston’s work in progress on a
bordered HF� theory for 3–manifolds with torus boundary [8] as well as Zibrowius’s
constructions in [30]. Our work should enable Ozsváth and Szabó’s Kauffman-states
functor to be directly compared with such a generalized theory once it exists, unifying
the Kauffman-states functor with the rest of bordered Floer homology.

In [17], Raphaël Rouquier and the first author will define generalized strands alge-
bras A.Z/, including A.n; k;S/ as a special case. These algebras are candidates
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for the algebras appearing in a generalized bordered sutured theory, possibly after
deformation as in [8]. The constructions of [17] will also give A.Z/ the structure of a
2–representation of Khovanov’s categorified UCq .gl.1j1//. Thus, together with [17],
this paper fills in (the positive half of) a missing piece from the discussion of [14].
While [14] shows that the bimodules from the Kauffman-states functor categorify
Uq.gl.1j1//–intertwining maps between representations, no candidate was offered for
the categorification of the Uq.gl.1j1// actions on the representations. This paper allows
us to replace Ozsváth and Szabó’s algebra B.n; k;S/ (when desired) with a strands
algebra A.n; k;S/ on which a categorified quantum-group action is given in [17].
Alternatively, one could directly define a 2–action on B.n; k;S/, and show that it
is compatible with the 2–action on A.n; k;S/ via ˆ; the 2–action on B.n; k;S/ is
constructed by Lauda and Manion [5] (for SD¿ although the construction generalizes).
The first author plans to clarify the relationship between these 2–actions once the general
framework of [17] is available.

This paper, along with [16], only discusses the algebras coming from Ozsváth and
Szabó’s first paper [24] on the Kauffman-states functor. A variant of these algebras
was introduced in [26], and further variants will be defined in [25; 19]. It would be
very interesting to find analogues of the results of this paper for any of these algebras,
especially the “Pong algebra” from [19]. As with Lipshitz, Ozsváth and Thurston’s
constructions in [8], the Pong algebra may give further insight into the algebraic
structure required for a generalized bordered sutured theory as mentioned above.

For the reasons discussed in [16], we will follow the standard conventions in bordered
Floer homology and work over F2 . While the bordered strands algebras have not been
defined over Z in general, to the authors’ knowledge it is plausible that the constructions
in this paper could be done over Z. However, it is likely that an analytic generalization
of bordered sutured Floer homology would be considerably more difficult over Z than
over F2 .

Remark 1.5 After this paper was posted, the authors discovered that similar construc-
tions have also been studied by Lekili and Polishchuk in [7], including an analogue
of our Theorem 1.1. The Ozsváth–Szabó algebra B.n; k;¿/ agrees with the algebra
Aıı of [7], as one can check by comparing [7, Theorem 3.2.5] with [24, Section 3].
The “strands” dg algebra modeling

L
S;S 0 homW.LS ; LS 0/, where W is the partially

wrapped Fukaya category of Symk.D2 n nb.p1; : : : ; pn// with two stops on @D2 and
fLSg are the distinguished Lagrangians, is not given a precise definition in [3] or [7], but
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presumably our dg algebras A.n; k;¿/ (and the more general strands algebras of [17])
are the intended algebras for the results in [3; 7]. If so, Proposition 11 of [3], whose
proof is sketched in [3], implies that A.n; k;¿/ describes the partially wrapped Fukaya
category W as discussed in [7]. This Fukaya-categorical perspective raises the exciting
possibility of understanding Ozsváth and Szabó’s one-sided tangle invariants from
[24; 26; 25] as objects in certain derived Fukaya categories (perhaps with curvature),
and similarly for their two-sided invariants, ideally with geometric interpretations in
terms of Lagrangian correspondences (as mentioned in [7]). Our thoughts on this
question will be discussed in [15].

Remark 1.6 In [25], Ozsváth and Szabó refer to what we call the Kauffman-states
functor as bordered knot Floer homology.

Organization

We start with a brief review of some essential definitions and results from [16] in
Section 2. For motivation, we discuss chord diagrams and sutured surfaces in Section 3,
giving generalized versions of Zarev’s definitions.

In Section 4, we define the strands algebras A.n; k;S/ and give illustrations. Section 5
proves some properties that will be useful both here and in [15]; in particular, we
give an explicit calculus for products and differentials of certain basis elements of
A.n; k;S/. In Section 6 we discuss gradings and prove Theorem 1.4; in Section 7, we
define symmetries on A.n; k;S/.

In Section 8 we compute the homology of A.n; k;¿/. In Section 9 we define the
map ˆ from B.n; k;S/ to A.n; k;S/ and prove Theorem 1.1 by induction on jSj; the
base case of the induction (jSj D 0) follows from the computation of H�.A.n; k;¿//
in Section 8. Finally, in Section 9.3 we show that ˆ preserves the algebra symmetries.
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2 Background on Ozsváth and Szabó’s algebras

We begin with a brief review of some important terminology and results from [24; 16].
As in [16, Appendix A], given a commutative ring k, we define a k–algebra to be a
ring A equipped with a ring homomorphism k! A. Given a quiver � (ie a finite
directed graph, allowed to have loops and multiedges), one has a path algebra Path.�/
formally spanned over k by paths in � , with multiplication given by concatenation. If
V is the vertex set of � , one can view Path.�/ as an algebra over I D kV , the ring of
functions from V into k. The homomorphism I!Path.�/ sends the indicator function
of a vertex x to the empty path Ix based at x . The composition k! I! Path.�/
has image in the center of Path.�/.

Equivalently, one may work in terms of a k–linear category k� whose set of objects
is V ; see [16, Section 2.1 and Appendix A] for a detailed review of this algebraic
framework. Hom spaces in this category are given by Ix Path.�/Iy for x;y 2 V , and
we have a decomposition

Path.�/Š
M

x;y2V

Ix Path.�/Iy :

If R is a subset of Path.�/, we can also consider the quotient of Path.�/ by the two-
sided ideal generated by R. We will call this quotient Quiv.�;R/; it is still an algebra
over I , and we can still view it as a k–linear category. Gradings and differentials on
Path.�/ and Quiv.�;R/ can be specified by defining them on the edges of � , as long
as the relations are homogeneous cycles, so that we can consider dg algebras defined
by quiver generators and relations.

Convention 2.1 In this paper, as in [16], the interval Œa; b� will denote the set of
integers i with a � i � b .

Given a subset S � Œ1; n�, we now recall the definition of Ozsváth and Szabó’s algebra
B.n; k;S/ in the language of [16].

Definition 2.2 For n � 0 and 0 � k � n, let V.n; k/ denote the set of k–element
subsets x � Œ0; n�. Elements of V.n; k/ will sometimes be called I–states, following
[24, Section 3.1]. Taking kD F2 , let I.n; k/D FV.n;k/2 .

Elements of V.n; k/ are visualized as in Figure 2. Elements of Œ0; n� are thought of
as regions between n parallel horizontal lines, including the two unbounded regions
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x D y D

Figure 2: Elements x and y of V.5; 3/ viewed as dots occupying regions.
The left-most figure indicates the numbered labeling of the regions and the
lines between them.

above and below the lines. An I–state x is drawn by placing a dot in each region
corresponding to an element of x . Ozsváth and Szabó use a 90ı–rotated visualization;
see Remark 2.11.

Definition 2.3 The directed graph �.n; k;S/ has set of vertices V.n; k/. It has the
following edges:

� If 1� i � n and x\fi � 1; ig D fi � 1g, then �.n; k;S/ has an edge from x

to .x n fi � 1g/[fig labeled Ri .

� If 1 � i � n and x \ fi � 1; ig D fig, then �.n; k;S/ has an edge from x to
.x n fig/[fi � 1g labeled Li .

� If 1 � i � n and x 2 V.n; k/, then �.n; k;S/ has an edge from x to itself
labeled Ui .

� If i 2S and x2V.n; k/, then �.n; k;S/ has an edge from x to itself labeled Ci .

For each path 
 in �.n; k;S/, we associate a noncommutative monomial �.
/ in the
letters fRi ; Li ; Ui ; Cig by taking the labels of the edges of 
 in order. We extend �
additively to the path algebra of �.n; k;S/.

Definition 2.4 For x;y 2 V.n; k/, let zRx;y;S be the set of elements

a 2 Ix Path.�.n; k;S//Iy

such that �.a/ is one of the following:

� RiUj �UjRi , LiUj �UjLi or UiUj �UjUi (the “U central relations”).

� RiLi �Ui or LiRi �Ui (the “loop relations”).
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� RiRj �RjRi , LiLj �LjLi or RiLj �LjRi for ji � j j > 1 (the “distant
commutation relations”).

� RiRiC1 or LiC1Li (the “two-line pass relations”).

� Ui when a is represented by a loop 
 at a vertex x of V.n; k/ such that
x\fi � 1; ig D¿ (the “U vanishing relations”).

� C 2i (the “C vanishing relations”).

� CiA�ACi for any label A 2 fRj ; Lj ; Uj ; Cj g (the “C central relations”).

Let zRS D
S

x;y2V.n;k/
zRx;y;S . Let Quiv.�.n; k;S/; zRS/ denote the quotient of the

path algebra of �.n; k;S/ by the two-sided ideal generated by elements of zRS . Define
a differential on Quiv.�.n; k;S/; zRS/ by declaring that @.Ci /D Ui .

We have a homological grading on Quiv.�.n; k;S/; zRS/ called the Maslov grading,
as well as three related types of intrinsic gradings called Alexander gradings. We recall
their definitions now.

Definition 2.5 [16, Section 3.3] The gradings on Quiv.�.n; k;S/; zRS/ are defined
as follows:

� Let f�1; : : : ; �n; ˇ1; : : : ; ˇng denote the standard basis of Z2n . For an edge 
 of
�.n; k;S/, define the unrefined Alexander multidegree wun.
/ 2 .Z/2n to be

– wun.
/D �i if 
 has label Ri ,

– wun.
/D ˇi if 
 has label Li ,

– wun.
/D �i Cˇi if 
 has label Ui or Ci .

Extend wun additively to any path 
 2 Path.�.n; k;S//.

� Let fe1; : : : ; eng denote the standard basis of Zn . Define the refined Alexander
multigrading on Quiv.�.n; k;S/; zRS/, a grading by

�
1
2
Z
�n , by applying the homomor-

phism Z2n!
�
1
2
Z
�n sending �i and ˇi to 1

2
ei to the unrefined Alexander multidegrees.

For a 2 Quiv.�.n; k;S/; zRS/ homogeneous, let w.a/ denote the refined Alexander
multidegree of a . Explicitly, for an edge 
 of �.n; k;S/, we have

– w.
/D 1
2
ei if 
 has label Ri or Li ,

– w.
/D ei if 
 has label Ui or Ci .

Let wi .a/ denote the coefficient of w.a/ on the basis element ei .
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� Define the single Alexander grading on Quiv.�.n; k;S/; zRS/, a grading by 1
2
Z,

by applying the homomorphism
�
1
2
Z
�n
!

1
2
Z sending

ei 7!

�
1 if i … S;
�1 if i 2 S;

to the refined Alexander multidegrees. Let Alex.a/ denote the single Alexander degree
of a . We have

Alex.a/D
X
i…S

wi .a/�
X
i2S

wi .a/:

Explicitly, for a single edge 
 , we have

– Alex.
/D 1
2

if 
 has label Ri or Li and i … S ,

– Alex.
/D�1
2

if 
 has label Ri or Li and i 2 S ,

– Alex.
/D 1 if 
 has label Ui and i … S ,

– Alex.
/D�1 if 
 has label Ui or Ci and i 2 S .

� Define the Maslov grading on Quiv.�.n; k;S/; zRS/, a grading by Z, by declaring

m.
/D #C .
/� 2
X
i2S

wi .
/

for a path 
 in �.n; k;S/, where #C .
/ is the number of edges in 
 labeled Ci for
some i . Explicitly, for a single edge 
 , we have

– m.
/D 0 if 
 has label Ri , Li , or Ui and i … S ,

– m.
/D�1 if 
 has label Ri , Li , or Ci and i 2 S ,

– m.
/D�2 if 
 has label Ui and i 2 S .

Remark 2.6 Our use of the words “refined” and “unrefined” follows the standard
usage in bordered Floer homology, in contrast with [13] (see Section 6 below).

Definition 2.7 The dg algebra B.n; k;S/ is defined to be Quiv.�.n; k;S/; zRS/, with
any of the above three Alexander gradings as an intrinsic grading (preserved by @) and
the Maslov grading as a homological grading (decreased by 1 by @).

The above definition is justified by the following theorem:

Theorem 2.8 [16, Corollary 3.14] The dg algebra B.n; k;S/ defined in [24] is
isomorphic to Quiv.�.n; k;S/; zRS/.

One can also consider idempotent truncations of the algebras B.n; k;S/, which we
review below.
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Definition 2.9 For 0� k � n, define Br.n; k;S/ to be� X
xW0…x

Ix

�
B.n; k;S/

� X
xW0…x

Ix

�
:

Similarly, define Bl.n; k;S/ to be� X
xWn…x

Ix

�
B.n; k;S/

� X
xWn…x

Ix

�
:

For 0� k � n� 1, define B0.n; k;S/ to be� X
xW0;n…x

Ix

�
B.n; k;S/

� X
xW0;n…x

Ix

�
:

One can also describe these algebras in terms of full subcategories of the dg category
corresponding to B.n; k;S/; see [16, Definition 3.16].

Remark 2.10 As defined, Quiv.�.n; k;S/; zRS/ is a dg algebra over I.n; k/. How-
ever, we can view it as an algebra over F2ŒU1; : : : ; Un�V.n;k/ via the ring homomor-
phism

F2ŒU1; : : : ; Un�
V.n;k/

! Quiv.�.n; k;S/; zRS/

sending pIx , where p is a monomial in the Ui variables, to a path at x consisting of
a Ui loop for each factor of p (in any order). The U central relations in zRS ensure
that this homomorphism is well-defined and that the natural map

F2ŒU1; : : : ; Un�! F2ŒU1; : : : ; Un�
V.n;k/

! Quiv.�.n; k;S/; zRS/

has image in the center of Quiv.�.n; k;S/; zRS/, so we may view Quiv.�.n; k;S/; zRS/

as an F2ŒU1; : : : ; Un�–linear category. With this algebra structure understood, Theorem
2.8 gives us an isomorphism of F2ŒU1; : : : ; Un�V.n;k/–algebras.

Remark 2.11 In Ozsváth and Szabó’s conventions, the algebra B.n; k;S/ arises
when one has an oriented tangle diagram with n bottom (or top) endpoints, such that
endpoint i is oriented upward if and only if i 2 S . In our conventions, these diagrams
will be rotated 90ı clockwise, and endpoint i will be oriented rightward if and only if
i 2 S (see [16, Remark 2.13]).

Next, we recall some structural definitions for Ozsváth and Szabó’s algebras that were
first introduced in [24, Section 3.2].

Algebraic & Geometric Topology, Volume 20 (2020)



Strands algebras and Ozsváth and Szabó’s Kauffman-states functor 3619

For x 2 V.n; k/ and a 2 Œ1; k�, we let xa denote the ath element of x in increasing
order. For x;y 2 V.n; k/, define

vi .x;y/ WD jy \ Œi; n�j � jx\ Œi; n�j:

Let jvji .x;y/ WD jvi .x;y/j.

Definition 2.12 [24, Definition 3.5] For x;y 2 V.n; k/, we say that x and y are
far if there is some a 2 Œ1; k� with jxa�yaj> 1. Otherwise, we say that x and y are
not far.

It follows from [24, Proposition 3.7] that if x and y are far then IxB.n; k;S/Iy D 0.

Definition 2.13 If x and y are not far, we say that i 2 Œ1; n� is a crossed line if
vi .x;y/¤ 0. We denote the set of crossed lines from x to y by CLx;y .

Definition 2.14 Given x;y 2 V.n; k/, we say that a coordinate i 2 Œ0; n� is fully used
if i 2 x\y . Otherwise, we say that i is not fully used.

Definition 2.15 [24, Definition 3.6] Let x;y 2 V.n; k/ be not far. We say that
Œj C 1; j C l � is a generating interval for x and y if

� j and j C l are not fully used coordinates,

� for all i 2 Œj C 1; j C l � 1�, i is a fully used coordinate, and

� for all i 2 Œj C 1; j C l �, i is not a crossed line.

We say that ŒŒ1; l� is a left edge interval for x and y if coordinate l is not fully used,
but coordinate i is fully used for all i 2 Œ0; l�1�. Similarly, we say that Œn�lC1; n�� is
a right edge interval for x and y if coordinate n� l is not fully used, but coordinate i
is fully used for all i 2 Œn� l C 1; n�. In all of the above cases, we say that the length
of the generating or edge interval is l . Finally, if x D y D Œ0; n�, we say that ŒŒ1; n�� is
a two-faced edge interval for x and y of length n.

We have the following proposition from [16]:

Proposition 2.16 [16, Proposition 4.9] Given x;y 2 V.n; k/ not far, for each i 2
Œ1; n� exactly one of the following is true:

(1) i 2 CLx;y (line i is crossed );

(2) there exists a unique generating interval G such that i 2G ;

(3) there exists a unique (left , right or two-faced ) edge interval G such that i 2G.
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For generating intervals, we use the following shorthand notation:

Definition 2.17 If G D Œj C 1; j C l � is a generating interval for x and y , then we
let pG denote the monomial UjC1 � � �UjCl , an element of F2ŒU1; : : : ; Un�.

Given x;y 2V.n; k/ that are not far, Proposition 3.7 of [24] implies that IxB.n; k;S/Iy

decomposes as a tensor product of chain complexes, with factors for the generating and
edge intervals for x and y (see [16, Corollary 4.16]). The factors are themselves certain
special cases of the algebras B.n; k;S/, which we called generating and edge algebras
in [16], although the tensor product decomposition does not respect the multiplicative
structure. See [16, Section 4.3] for more details.

In [16] we used this tensor product decomposition to compute the homology of
B.n; k;S/; we review the result of this computation. First, we recall the definition of
certain paths 
x;y in �.n; k;S/.

Definition 2.18 [16, Definition 2.28] Let x;y 2 V.n; k/ be not far. Define a path

x;y from x to y in �.n; k;S/ by recursion on k� jx\yj as follows:

� If k�jx\yj D 0, then xDy ; define 
x;y to be the empty path based at xDy .

� If xa < ya for some a 2 Œ1; k�, let a be the largest such index. We have an edge

 from x to x0 D .x n fxag/[fxaC 1g with label RxaC1 . Since x and y are
not far, we have ya D x0a , so k � jx0 \ yj D k � jx \ yj � 1. It follows that

x0;y is defined. Let 
x;y D 
 � 
x0;y .

� If xa � ya for all a 2 Œ1; k� and xa > ya for some a , let a be the smallest such
index. We have an edge 
 from x to x0D .x nfxag/[fxa�1g with label Lxa .
As before, we have ya D x0a . Thus, k�jx0\yj D k�jx\yj�1 and 
x0;y is
defined. Let 
x;y D 
 � 
x0;y as above.

Remark 2.19 In fact, the paths 
x;y can be defined even when x and y are far; in
[16, Section 2.4], we use them to prove the validity of a quiver description of Ozsváth
and Szabó’s algebra B0.n; k/.

Theorem 2.20 [16, Theorem 5.4] For x;y 2 V.n; k/ that are not far, let

Œj1C 1; j1C l1�; : : : ; ŒjbC 1; jbC lb�

be the generating intervals from x to y , and let p1; : : : ; pb be their monomials pG .
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Choose an element ia 2 Œja C 1; ja C la�\ S for all a such that this intersection is
nonempty. We have a basis for IxH�.B.n; k;S//Iy in bijection with elements

p

bY
aD1

�
Ciapa

Uia

�"a
;

where p is a monomial in fUi j i 2 Œ1; n� n Sg not divisible by pa for any a and
"a 2 f0; 1g is zero for a such that ŒjaC 1; jaC la�\S D¿. The bijection sends the
element specified by p D 1 and "a D 0 for all a to the element

Œ
x;y � 2 IxH�.B.n; k;S//Iy ;

where 
x;y is the path of Definition 2.18. It sends a more general element to the
corresponding product of Œ
x;y � with Ui and Ci loops, in any order.

We recall that the values of n, k and S for which B.n; k;S/ is formal (when given
the refined or unrefined Alexander multigrading) were determined in [16, Section 5.2].
Given the results of this paper, the algebra A.n; k;S/ will be formal for the same
values of n, k and S , as stated in more detail in Corollary 9.11.

Finally, the algebras B.n; k;S/ have certain symmetries as described in Section 3.6
of [24]. In our notation, these symmetries are called � and o (our � is Ozsváth and
Szabó’s R).

Definition 2.21 On the vertex set V.n; k/ of �.n; k;S/, define �.x/Dfn� i j i 2xg
and o.x/D x . For S � Œ1; n�, define �.S/D fnC 1� i j i 2 Sg. Define

�W B.n; k;S/! B.n; k; �.S//

by sending Ix to I�.x/ and sending edges labeled Ri , Li , Ui and Ci to edges labeled
LnC1�i , RnC1�i , UnC1�i and CnC1�i , respectively. Define

oW B.n; k;S/! B.n; k;S/op

by sending Ix to Ix and sending edges labeled Ri , Li , Ui , and Ci to edges labeled
Li , Ri , Ui and Ci , respectively. We have both �2 D id and o2 D id, properly
interpreted. Restricting to the truncated algebras, we get

�W Br.n; k;S/ Š�! Bl.n; k; �.S//;

�W Bl.n; k;S/ Š�! Br.n; k; �.S//;

�W B0.n; k;S/ Š�! B0.n; k; �.S//
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as well as
oW Br.n; k;S/ Š�! Br.n; k;S/op;

oW Bl.n; k;S/ Š�! Bl.n; k;S/op;

oW B0.n; k;S/ Š�! B0.n; k;S/op:

We will relate the symmetries � and o to symmetries on the strands algebras A.n; k;S/
and their truncations, with visual interpretations, in Section 9.3 (see also Section 7).

3 Chord diagrams and sutured surfaces

We now introduce a common generalization of Zarev’s arc diagrams and of our example
of interest (see Section 3.3).

3.1 Definitions

Definition 3.1 A chord diagram Z D .Z; B;M/ is a triple consisting of

� a compact oriented 1–manifold Z ;

� a finite subset B � Z of basepoints, consisting of 2m points;

� an involution M on B with no fixed points, called a matching, which matches
the basepoints in pairs.

The connected components of Z are called backbones, and more specifically circular
backbones if they are closed and linear backbones if they are not.

Example 3.2 Four examples of chord diagrams are represented visually in Figure 3.
The backbones are shown in black; pairs of points matched by M are connected by
red arcs. The set B of basepoints is the set of endpoints of the red arcs. The first three
diagrams only have linear backbones; the fourth diagram has a linear backbone and
two circular backbones. By convention, we will assume that all linear backbones drawn
vertically in the plane are oriented upwards.

Remark 3.3 Chord diagrams, in several variants, appear in many places in mathe-
matics. Perhaps the most common meaning of “chord diagram” is the special case of
Definition 3.1 in which Z consists of a single circle; such chord diagrams appear (for
example) in the study of Vassiliev knot invariants (see [4]).

Like fatgraphs (a related notion), chord diagrams are often used to represent surfaces.
Penner has a detailed language for referring to features of these diagrams, and we follow
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Figure 3: Examples of chord diagrams.

his terminology. The “backbones” terminology is part of this language; see eg [1] for a
discussion of chord diagrams with multiple backbones appearing in Teichmüller theory
and the combinatorics of RNA in biology.

In Heegaard Floer homology, chord diagrams are often called arc diagrams, following
Zarev [29]. The connection between surface representations in bordered Floer homology
and chord diagrams as studied eg by Penner has already been noted in [10, Remark 3.1].

Zarev considers only chord diagrams with no circular backbones; he interprets the
basepoints on Lipshitz, Ozsváth and Thurston’s pointed matched circles as places to
cut the circle open, obtaining linear backbones. Recent work of Ozsváth and Szabó and
Lipshitz, Ozsváth and Thurston defining “minus versions” of bordered Heegaard Floer
homology in various cases, including the constructions of [24; 26] forming the subject of
our study, have made use of diagrams with circular backbones (and without basepoints).

Following [9, Construction 8.18], a chord diagram Z has a dual Z� D .Z�; B�;M �/,
where Z� is obtained by performing 1–dimensional 0–surgery on Z along B according
to M, B� is the union of the boundaries of the cocores

˚
1
2

	
� Œ0; 1� of the surgery

handles (each surgery replaces S0 �D1 in Z with D1 �S0 in Z� and the surgery
handle is D1�D1 ), and M � matches the two points of B� coming from each surgery
handle. An example is shown in Figure 4.

Z Z�

Figure 4: The dual of a chord diagram.
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A chord diagram Z is called nondegenerate if Z� has no circular backbones. In
Heegaard Floer homology, this condition has been most studied in the case where Z
also has no circular backbones. A nice feature of the class of all chord diagrams, with
both linear and circular backbones, is that the duality Z$ Z� gives an involution on
this set of diagrams with no nondegeneracy conditions required.

3.2 Sutured surfaces

Chord diagrams, viewed up to a natural equivalence relation given by chord-slides
(sometimes called arc-slides), are a diagrammatic way of representing what Zarev
calls sutured surfaces, in analogy with Gabai’s sutured 3–manifolds. Sutured surfaces
share many similarities with bordered surfaces as in [27] as well as with open–closed
cobordisms as in [6]. For topological motivation, we review how to get a sutured
surface from a chord diagram in this section.

The following definition of sutured surface is slightly different from that of [29] in that
we allow SC and S� to have closed components.

Definition 3.4 A sutured surface is a triple .F;ƒ; SC/ consisting of the following
data:

� a compact oriented surface F ;

� a finite collection ƒ� @F of disjoint open intervals, each of which contains a
point called a suture;

� a splitting of @F nƒ into compact submanifolds SC t S� such that for each
component C of ƒ, @C intersects both SC and S� .

If F D .F;ƒ; SC/ is a sutured surface, its dual is the sutured surface F�D .F;ƒ; S�/
in which the roles of SC and S� have been interchanged.

Definition 3.5 Given a chord diagram Z D .Z; B;M/, we can build a sutured surface
F.Z/D .F.Z/;ƒ/ associated to it as follows:

� F.Z/ is obtained from Z � Œ0; 1� by attaching a 1–handle between .z1; 1/

and .z2; 1/ for every pair of matched basepoints z1 and z2 in an orientation-
preserving manner;

� ƒD @Z � .0; 1/, with sutures given by @Z �
˚
1
2

	
;

� SC D Z � f0g.
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A sutured surface F can be represented by a chord diagram if and only if each
component of F (not @F ) intersects SC and S� nontrivially.

We have F.Z�/ D .F.Z//� . Thus, the nondegeneracy condition that Z� has no
circular backbones is equivalent to requiring that S� has no closed components in the
sutured surface .F;ƒ; SC/ associated to Z.

3.3 The example of interest

Definition 3.6 We define the chord diagram Z.n/D .Z.n/; B;M/ as

Z.n/ WD Œ0; 1�tS1 t � � � tS1 t Œ0; 1�;

where we take n copies of S1 WD Œ0; 2�=.0 � 2/. We can label the copies of S1

from 1 to n, and we denote the i th copy of S1 (ie the i th circular backbone) by S1i .
By analogy, we denote the two linear backbones by Œ0; 1�0 and Œ0; 1�nC1 . For each
i D 1; : : : ; n, let z�i WD Œ0� 2 S

1
i and zCi WD Œ1� 2 S

1
i be two distinct basepoints in S1i .

We also fix points zC0 2 Int.Œ0; 1�0/ and z�nC1 2 Int.Œ0; 1�nC1/. We define a matching
M on the set of basepoints B D fzC0 ; z

˙
1 ; : : : ; z

˙
n ; z

�
nC1g by matching zCi with z�iC1 ,

ie

M.zCi /D z
�
iC1:

7! D

Figure 5: The chord diagram Z.3/ and the sutured surface F.Z.3// . Follow-
ing Zarev’s conventions from [29], SC is colored orange and S� is colored
black. The intervals ƒ are colored green, with sutures indicated by green
marks.
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Notice that we write our circles S1 as Œ0; 2�=�, rather than Œ0; 1�=�; this allows each
basepoint on each S1i to occupy an integer value, easing notation throughout the paper.
Note that, in particular, the length of S1 is 2.

The sutured surface F.Z.n// is a connected genus-zero surface with nC 1 boundary
components. One boundary component has four sutures; the rest have no sutures and
are contained in SC . The chord diagram Z.3/ and the sutured surface F.Z.3// are
shown in Figure 5.

4 The strands algebras

Given the chord diagram Z.n/ of Definition 3.6 together with a subset S � Œ1; n�,
we would like to define a dg algebra A.n; k;S/ (or equivalently a dg category; see
[16, Section A.3]) called a strands algebra. Intuitively, a general strands algebra A.Z/
assigned to a chord diagram Z should be generated by collections of homotopy classes
of oriented continuous paths in Z that both start and end at distinct basepoints. The
graphs of such paths are visualized as “strands” drawn on Œ0; 1��Z, with multiplication
defined via concatenation and the differential defined via resolutions of strand crossings.

In the upcoming paper [17], Rouquier and the first author will define strands categories
for singular curves functorially. For a chord diagram Z , this construction yields an
algebra A.Z/ defined along the above lines. Here, though, we will follow [11; 29],
using a more combinatorial description that avoids some of the complications present
in the general setting. The key point is that, in our chord diagram Z.n/, any homotopy
class of paths has a preferred representative, namely the constant-speed representative.
Such paths can be manipulated combinatorially, as we will see below.

4.1 k–strands and the prestrands algebra

Definition 4.1 A k–strand s D fs1; : : : ; skg on Œ0; 1� � Z.n/ is a collection of k
smooth functions

saW Œ0; 1�! Z.n/;

called strands, satisfying the following conditions:

� s.0/ WD fs1.0/; : : : ; sk.0/g consists of k distinct points in B,

� s.1/ WD fs1.1/; : : : ; sk.1/g consists of k distinct points in B, and

� for all t 2 Œ0; 1� and 1� a � k , @tsa.t/D ˛a � 0 for some constant speed ˛a .

Algebraic & Geometric Topology, Volume 20 (2020)



Strands algebras and Ozsváth and Szabó’s Kauffman-states functor 3627

We also say that s is a k–strand from s.0/ to s.1/. By a slight abuse of notation, we
will use the notation sa for the graph of the strand sa .

Note that each strand is entirely determined by its starting point and its speed. Also
note that, since S1 D Œ0; 2�=� has length 2, the speed ˛a is always a nonnegative
integer.

Definition 4.2 Given a subset S � Œ1; n�, we define the prestrands algebra zA.n; k;S/
as the algebra generated over F2 by all pairs .s; Ec/ where s is a k–strand on Œ0; 1��Z.n/
and Ec is an element of f0; 1gS . The multiplication on the generators of the algebra is
defined via concatenation and addition as follows:

� If s.1/ ¤ t .0/, then .s; Ec/ � .t; Ed/ D 0 (we say the strands s and t were not
concatenable).

� If Ec.i/ C Ed.i/ D 2 for any i 2 S , then .s; Ec/ � .t; Ed/ D 0 (we say that the
multiplication produced a degenerate annulus).

� Suppose s contains two strands sa and sb with speeds ˛a and ˛b on one
component of Z.n/, and t also contains two strands tc and td with speeds ˇc
and ˇd such that sa.1/D tc.0/ and sb.1/D td .0/. If .˛a �˛b/.ˇc �ˇd / < 0,
then .s; Ec/ � .t; Ed/ D 0 (we say that the multiplication produced a degenerate
bigon).

If none of the three conditions above hold, we define .s; Ec/ � .t; Ed/ to be the pair
.s �t; EcC Ed/ where, for all a2 Œ1; k�, if b is such that sa.1/D tb.0/, we define the speed
of .s � t /a to be ˛aCˇb . Multiplication is then extended to all of zA.n; k;S/ linearly.

In the case when S is the empty set, we often drop it from the notation and write the
algebra as zA.n; k/.

Remark 4.3 In [11, Section 3.1.3], k–strands are defined algebraically as a bijection of
sets �W s.0/! s.1/ such that �.ba/� ba for all basepoints ba 2 s.0/. This definition
is equivalent to ours when all backbones are linear because, once both endpoints
are chosen for a strand on a linear backbone, the constant speed is also determined.
However, for our circular backbones, the extra data of the speed is necessary to account
for strands with nonzero wrapping number. In this sense, our definition for zA.n; k/ is
a direct generalization of that of [11].

Remark 4.4 In [11, Section 3.1.3], Lipshitz, Ozsváth and Thurston give another
interpretation of the prestrands algebras in terms of Reeb chords in contact 1–manifolds,
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Figure 6: Some examples of k–strands, with and without closed loops. For
visual appeal, speeds are not drawn as entirely constant.

with the set of endpoints viewed as a Legendrian submanifold. This perspective is related
to the interaction between strands algebras and holomorphic curve counts in bordered
Floer homology. From this point of view, one can think of nonzero components Ec.i/
of Ec as closed Reeb orbits; we thank Ko Honda for pointing out this connection, as
well as the use of closed loops in the visual interpretation below.

4.2 Visual interpretation of the prestrands algebra

We visualize k–strands by their graph on Œ0; 1��Z.n/, drawn “horizontally” as in the
examples in Figure 6. The definition implies that intersections between two strands
sa and sb in s are transverse. Furthermore, there are no points of triple (or more)
intersection between strands in a k–strand, since there can be no more than two strands
on any component of Œ0; 1��Z.n/. Meanwhile, we draw a single closed loop on the
cylinder S1i if and only if Ec.i/D 1.

We multiply by first concatenating the various sa and tb if possible. As long as we
have not created an annulus or bigon in this way, we then homotope the result into a
diagram of constant-speed strands. See Figure 7 for an example of a nonzero product
and Figure 8 for examples of degenerate annuli and bigons.

4.3 A differential on the prestrands algebra

Definition 4.5 Suppose .s; Ec/ 2 zA.n; k;S/. For all i 2 Œ1; n�, we define the element
@ci .s; Ec/ 2

zA.n; k;S/ as follows. If either i … S or Ec.i/ D 0, then @ci .s; Ec/ D 0.
Otherwise we have Ec.i/ D 1 and then we define @ci .s; Ec/ to be the sum over the
following contributions:
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!

Figure 7: Multiplication in zA.n; k;S/ .

� For any strand sa of s on the backbone S1i such that s has no strands of strictly
greater speed than sa on S1i , @ci .s; Ec/ has a contribution .s0; Ec 0/, where s0 is
obtained from s by increasing the speed of sa by two and Ec 0 is obtained from Ec
by setting Ec 0.i/D 0.

In particular, @ci .s; Ec/ is a sum of two distinct terms if and only if s has two strands of
equal speed on S1i .

We also define the element @0i .s; Ec/ as follows. If s contains 0, 1 or 2 strands of equal
speed on S1i , then @0i .s; Ec/D 0. Otherwise s contains two strands of differing speeds
p > q on the backbone S1i and we have two cases:

� If p� q D 2, then @0i .s; Ec/D .s
0; Ec/, where s0 is the k–strand obtained from s

by replacing the two strands on S1i by two new strands having (equal) speeds
p� 1D qC 1.

� If p� q � 4, then @0i .s; Ec/ is a sum of two terms involving k–strands obtained
from s by replacing the two strands on S1i by two new strands having (unequal)
speeds p�1 and qC1. There are two ways to do this, hence a sum of two terms.

Figure 8: Degenerate annuli and bigons
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We then define the i th differential of .s; Ec/ to be

@i .s; Ec/ WD @
0
i .s; Ec/C @

c
i .s; Ec/

and define the differential of .s; Ec/ to be

@.s; Ec/ WD
X
i2Œ1;n�

@i .s; Ec/:

Visually, the case of nonzero @i .s; Ec/ is precisely the case where we have strands
and/or closed loops along S1i that intersect. We compute the differential by resolving
crossings in the usual way. The operator @0i considers crossings between two strands
of s on S1i . If p�q D 2, there is only one crossing to resolve. If p�q � 4, there are
many crossings, but resolving any one other than the first or last will create a bigon,
and such terms are set to zero, so we are left with two terms (which correspond to the
two orderings of the new speeds p� 1 and qC 1).

The operator @ci considers crossings between strands of s and a closed loop on S1i ;
resolving a crossing between sa and a loop is equivalent to having the strand sa wrap
once more around S1i (corresponding to adding two to the overall speed of the strand).
If there are no other strands, this resolution cannot create any degeneracies. If there
is another strand sb , the newly added “wrapping” of sa must intersect sb at infinite
speed (before any homotopies); this resolution creates a degenerate bigon if and only if
there are other crossings between sa and sb where the speed of sb is the greater of the
two. Thus with two strands of differing speeds on S1i , we keep only the resolution of
the crossing between the loop and the faster strand.

In all of these nonzero cases, a simple homotopy takes the result of the resolution to a
set of constant-speed functions, as desired. See Figure 9 for an illustration of @0 and
Figures 10 and 11 for illustrations of @c . Figures 10 and 11 in particular demonstrate
that, although the result of the crossing resolutions defining @c could a priori depend on
the position of the closed loop, in fact the result is always given by our combinatorial
formula.

Lemma 4.6 We have @2 D 0 for the differential on the prestrands algebra.

Proof It is clear that @i and @j commute, so it is enough (over F2 ) to check that
@2i D 0 for any i . The term .@ci /

2 is trivially zero due to the condition on Ec.i/. The
reader may check that .@0i /

2D 0 in both of the nontrivial cases (notice that, in the case
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@0

7�! C C C

D 0 D 0

D D

Figure 9: The component @0 of the differential on the prestrands algebra.

of having two terms for @0i .s; Ec/, these two have equal image under @0i ). Finally, the
fact that @ci and @0i commute is also a case-by-case check, for which it is helpful to note
that neither @ci nor @0i can change the number of strands of s that are present on S1i .

4.4 The strands algebra

We now begin to incorporate the matching M for our chord diagram (see Section 3)
into our definitions. We begin with some notation. For any subset of basepoints X �B,

@c

7�! C

D D D

@c

7�! C

D D 0

Figure 10: The component @c of the differential on the prestrands algebra.
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@c

7�! C

D D D

@c

7�! C

D D D

@c

7�! C

D

D 0

Figure 11: The component @c in another example.

let M.X/ denote the transformation of this set under the matching M. That is, if
X D fx1; : : : ; xkg � B, then M.X/D fM.x1/; : : : ;M.xk/g.

Now let s be a k–strand, and label the basepoints of s.0/D fw1; : : : ; wkg in such a
way that wa is the starting point of the strand sa .

Definition 4.7 Let I � B denote the set of elements wa 2 s.0/ such that sa is a con-
stant strand. For any subset i � I, define the further notation s.0/i D .s.0/ni /[M.i /
and s.1/i D .s.1/ n i /[M.i / (note that i � I � s.0/ implies i � s.1/ as well).

Lemma 4.8 If s is a k–strand as above with s.0/\M.s.0//D s.1/\M.s.1//D¿,
then for any subset i � I, there is a well-defined k–strand si from s.0/i to s.1/i
defined by

.si /a D

�
sa if wa … i ;
ConstM.wa/ if wa 2 i ;

for all wa 2 s.0/, where ConstM.wa/ is the constant strand at M.wa/.
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Proof Clearly the functions .si /a are all still of constant speed. The fact that
s.0/\M.s.0//D¿ ensures that s.0/i still has k elements, while s.1/\M.s.1//D¿
ensures that .si /a.1/¤ .si /b.1/ for any a¤ b in Œ1; k�.

Note that, with this notation, we have si .0/D s.0/i and si .1/D s.1/i for any i � I
by definition.

Now, given a generator .s; Ec/ 2 zA.n; k;S/, we can use Lemma 4.8 to introduce the
further notation

(4-1) E.s; Ec/D

�P
i�I.si ; Ec/ if s.0/\M.s.0//D s.1/\M.s.1//D¿;

0 otherwise.

We then extend E linearly to a map EW zA.n; k;S/! zA.n; k;S/.

Lemma 4.9 Let s; s0 be k–strands such that

s.0/\M.s.0//D s.1/\M.s.1//D s0.0/\M.s0.0//D s0.1/\M.s0.1//D¿;

and let Ec; Ec 0 2 f0; 1gS be arbitrary. Then we have E.s; Ec/DE.s0; Ec 0/ in zA.n; k;S/ if
and only if Ec D Ec 0 and s0 D sj for some subset j � I � s.0/ of basepoints that are
starting points of constant strands in s .

Proof The necessity of EcD Ec 0 is clear from the definition. Note also that if E.s0; Ec 0/D
E.s; Ec/, then .s0; Ec 0/ must be equal to one of the summands of E.s; Ec/, implying that
s0 D sj for some j � I, as desired.

For the other direction, we write Ij for the set of starting points of constant strands
in s0 D sj . Given i � I, we can define kD .i n j /[M.j n i /, a subset of Ij . The
map sending i to k is a bijection

fsubsets of Ig Š�! fsubsets of Ij g

with inverse sending k � Ij to i D .k nM.j //[ .j nM.k// � I. Thus, there is
a bijective correspondence between the summands of E.s; Ec/ and those of E.sj ; Ec/.
One can then check that

.si ; Ec/D ..sj /k; Ec/;

finishing the proof.

Lemma 4.10 The set

fE.s; Ec/ j s.0/\M.s.0//D s.1/\M.s.1//D¿g

is a linearly independent subset of zA.n; k;S/.
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Proof It is sufficient to note that any element of the form E.s; Ec/ can be expanded,
in view of (4-1), as the sum of basis vectors of zA.n; k;S/, and, by Lemma 4.9, if
E.s; Ec/ ¤ E.s0; Ec 0/, then their expansions do not contain any common basis vector
.t; Ed/ 2 zA.n; k;S/.

Definition 4.11 As a vector space over F2 , we define A.n; k;S/ to be the subspace
im.E/ � zA.n; k;S/ spanned by the elements E.s; Ec/ (in the case when S is the
empty set, we again drop it from the notation and write A.n; k/ for A.n; k;¿/). By
Lemma 4.10, the set

fE.s; Ec/ j Ec 2 f0; 1gS ; s.0/\M.s.0//D s.1/\M.s.1//D¿g

is an additive basis for A.n; k;S/ over F2 . We call it the standard basis. Propositions
4.12, 4.15 and 4.17 below will endow A.n; k;S/ with a dg algebra structure over F2 ,
with gradings described in Section 6. We will refer to A.n; k;S/ as the strands algebra.

Proposition 4.12 The vector space A.n; k;S/ is closed under the multiplication
inherited from zA.n; k;S/.

Proof Consider two basis elements E.s; Ec/ and E.t; Ed/ in A.n; k;S/. If there is
some index i 2 S with Ec.i/C Ed.i/ D 2, then E.s; Ec/ �E.t; Ed/ D 0 regardless of s
and t (every concatenable term in the sum forms a degenerate annulus). Thus we only
need to check the case where EcC Ed 2 f0; 1gS .

Let I � s.0/ and J � t .0/ denote the sets of basepoints that are starting points for
constant strands in s and t , respectively, so that

E.s; Ec/ �E.t; Ed/D

�X
i�I

.si ; Ec/

�
�

� X
j�J

.tj ; Ed/

�
D

X
i�I

X
j�J

.si ; Ec/ � .tj ; Ed/:

We see that, if si .1/¤ tj .0/ for all i � I and j �J , then all of the strands si and tj
are nonconcatenable and the entire sum is zero. Otherwise there are some i and j
such that si .1/D tj .0/. After using Lemma 4.9 to replace s with si and t with tj ,
we can assume that s.1/D t .0/.

For the summand .si ; Ec/ � .tj ; Ed/ to be concatenable, we must have s.1/i D si .1/D
tj .0/D t .0/j , and since s.1/D t .0/, it follows that i D j . Thus we have

E.s; Ec/ �E.t; Ed/D
X
i�I

X
j�J

.si ; Ec/ � .tj ; Ed/(4-2)
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D

X
i�.I\J /

.si ; Ec/ � .ti ; Ed/

D

X
i�.I\J /

si �ti nondegenerate

.si � ti ; EcC Ed/

(we have already ruled out the possibility of a degenerate annulus due to Ec and Ed ).
We claim that the concatenation si � ti has a degenerate bigon if and only if s � t does.
Indeed, neither edge of a degenerate bigon can be a constant strand. Thus, a degenerate
bigon in s � t is bounded by two strands that are also included in si � ti and vice versa.
It follows that this sum is zero if and only if s � t is degenerate.

For nondegenerate s � t , we have si � ti D .s � t /i for all i � I \J , and I \J is the
set of starting basepoints of constant-speed strands for s � t (speeds add, and aC b � 0
with equality only when a D b D 0). Thus the sum in (4-2) is the basis element for
s � t and EcC Ed , ie we have proven that

(4-3) E.s; Ec/ �E.t; Ed/DE..s; Ec/ � .t; Ed//DE.s � t; EcC Ed/

for nondegenerate s � t .

We envision the basis elements E.s; Ec/ as single diagrams, called basis diagrams,
comprising nonconstant solid strands in Œ0; 1��Z.n/ (corresponding to the nonconstant
strands of s ) together with pairs of constant dashed strands in Œ0; 1��Z.n/ whose
endpoints are matched by M (corresponding to the constant strands of s which lead to
choices for i in the sum for E ). In this way, a single pair of matched dashed strands
indicates a sum of two strands diagrams. In each diagram we remove one of the two
dashed strands and replace the other one with a solid strand. See Figure 12.

The concatenation of basis elements b1 and b2 2A.n; k;S/ can be described pictorially
in terms of basis diagrams. When a pair of dashed strands matches another pair of
dashed strands, then they appear in the basis diagram of b1b2 as well. When a pair

D C

Figure 12: Dotted-line pictures of basis elements of A.n; k;S/ .
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D C

D C 0

Figure 13: Multiplying basis elements of A.n; k;S/ .

of dashed strands matches a single solid strand, then the dashed strand matched with
the solid strand is treated as solid, whereas the other one disappears (see Figure 13).
Finally, whenever a solid strand (or a pair of matched strands) of b1 does not match
any (solid or pair of dashed) strands of b2 , the product b1b2 vanishes.

Considering basis diagrams makes the visual interpretation of the differential clear as
well. Viewing a as a single basis diagram of solid and dashed strands as above, we
express b D @a as a sum of crossing resolutions of a . Terms coming from resolving
a crossing between solid strands clearly give further basis diagrams (the orientation-
preserving property of strands ensures that a nonconstant strand cannot suddenly become
constant after a crossing resolution). Meanwhile, crossings between solid and dashed
strands can only contribute terms when the intersecting dashed strand is considered
solid, and its matched partner is missing, giving a basis diagram after resolution with
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d
7�!

D C

d
7�! 0

Figure 14: Differentiating basis elements of A.n; k;S/ .

one fewer pair of dashed lines (note that after resolution, the formerly constant solid
strand is no longer constant, and neither is the other solid strand). See Figure 14 for an
illustration. This argument indicates that A.n; k;S/ should inherit the differential of
zA.n; k;S/, which we prove using the following sequence of lemmas, whose proofs

are structurally very similar to each other. We will continue to use the notation of
Definition 4.7 throughout.

Lemma 4.13 For any a 2A.n; k;S/, we have @cj a 2A.n; k;S/ for all j 2 Œ1; n�.

Proof By linearity, we can suppose that a D E.s; Ec/, where s.0/ \M.s.0// D
s.1/\M.s.1//D¿. If s has any nonconstant strands on the backbone S1j , then all
constant strands of s remain constant in any summand of @cj .s; Ec/. In such a case, I is
the set of starting points for constant strands in any summand of @cj .s; Ec/. Thus, we
have

@cj .E.s; Ec//D @
c
j

�X
i�I

.si ; Ec/

�
D

X
i�I

@cj .si ; Ec/DE.@
c
j .s; Ec// 2A.n; k;S/:

Now we consider the case where s has no strands of speeds greater than zero on the
backbone S1j . If si has no strands at all on S1j for all i � I, then every term @cj .si ; Ec/

in the sum for @cjE.s; Ec/ is zero. Similarly, if Ec.j /D 0, every term in the sum is zero
as well. Thus, we can assume that Ec.j /D 1 and there is some i � I such that si has
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at least one constant strand on S1j . After replacing s with some si if necessary, we
can also assume that the number of (constant) strands of s on S1j is maximal among
elements of fsi j i � Ig. From here we consider two further subcases:

(1) (one dashed strand and one loop) If s contains only one constant strand on S1j ,
with starting (and ending) basepoint zıj (here ı can be a C or a �), we compute

@cjE.s; Ec/D @
c
j

X
i�.Infzı

j
g/

..si ; Ec/C .si[fzı
j
g; Ec//

D

X
i�.Infzı

j
g/

.@cj .si ; Ec/C @
c
j .si[fzıj g

; Ec//

D

X
i�.Infzı

j
g/

..s0i ; Ec
0/C 0/;

where s0
i

and Ec 0 are defined as in Definition 4.5. The zero term in the last line follows
from the fact that si[fzı

j
g cannot have any strands on S1j . Meanwhile, the terms .s0

i
; Ec 0/

will be nonzero by assumption, and since s0 in Definition 4.5 replaces the formerly
constant strand at zıj by one with speed 2 (but does not change any other strands), the
set I n fzıj g is precisely the set of starting basepoints of constant strands for s0. Thus
we have

@cjE.s; Ec/DE.s
0; Ec 0/DE.@cj .s; Ec// 2A.n; k;S/

just as in the case when we had nonconstant strands.

(2) (two dashed strands and one loop) If s contains two constant strands on S1j , with
starting basepoints z�j and zCj , we begin in the same way:

@cjE.s; Ec/D @
c
j

X
i�.Infz�

j
;z
C

j
g/

..si ; Ec/C .si[fz�
j
g; Ec/C .si[fzC

j
g
; Ec/C .s

i[fz�
j
;z
C

j
g
; Ec//

D

X
i�.Infz�

j
;z
C

j
g/

.@cj .si ; Ec/C @
c
j .si[fz�j g; Ec/C @

c
j .si[fzC

j
g
; Ec/C 0/;

where we get the zero term using the same reasoning as before. Now we write
@cj .si ; Ec/ D .s

�
i
; Ec 0/C .sC

i
; Ec 0/, where s˙

i
is the k–strand defined by replacing the

constant strand at z˙j by a new strand of speed 2, while maintaining the other strands
(including the constant strand at z�j ). We can then write our sum as

@cjE.s; Ec/D
X

i�.Infz�
j
;z
C

j
g/

..sC
i
; Ec 0/C .s0i[fz�

j
g
; Ec 0/C .s�i ; Ec

0/C .s0
i[fz

C

j
g
; Ec 0//;
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where s0i[fz˙
j
g are defined as in Definition 4.5. The key point is to recognize that

.sC
i
; Ec 0/ and .s0i[fz�

j
g; Ec
0/ are complementary in the sense that both have a strand of

speed 2 starting and ending at zCj , and indeed have the same strands everywhere except
that .sC

i
; Ec 0/ has a constant strand at z�j , while .s0i[fz�

j
g; Ec
0/ has a constant strand at

zCj�1 DM.z
�
j /. This reasoning implies thatX
i�.Infz�

j
;z
C

j
g/

..sC
i
; Ec 0/C .s0i[fz�

j
g
; Ec 0//D

X
i�.Infz

C

j
g/

.sC
i
; Ec 0/

and similarly we haveX
i�.Infz�

j
;z
C

j
g/

..s�i ; Ec
0/C .s0

i[fz
C

j
g
; Ec 0//D

X
i�.Infz�

j
g/

.s�i ; Ec
0/:

Since I n fz˙j g is the set of constant strand starting points for s˙ , we have

@cjE.s; Ec/D
X

i�.Infz
C

j
g/

.sC
i
; Ec 0/C

X
i�.Infz�

j
g/

.s�i ; Ec
0/

DE.sC; Ec 0/CE.s�; Ec 0/

DE.@cj .s; Ec// 2A.n; k;S/:

Thus, in all cases we see that, after replacing s with some si if necessary as described
above,

(4-4) @cj .E.s; Ec//DE.@
c
j .s; Ec// 2A.n; k;S/;

proving the lemma.

Lemma 4.14 For any a 2A.n; k;S/, we have @0j a 2A.n; k;S/ for all j 2 Œ1; n�.

Proof As in the proof of Lemma 4.13, we can suppose that a D E.s; Ec/, where
s.0/\M.s.0//D s.1/\M.s.1//D¿. If @0j .si ; Ec/D 0 for all i � I, then we have
@0j a D 0 2 A.n; k;S/ trivially. Thus it is enough to consider the case where there is
some subset i � I such that @0j .si ; Ec/¤ 0. By Lemma 4.9 we can replace s by this si
without changing a , and so we may assume without loss of generality that s itself
satisfies @0j .s; Ec/¤ 0.

In particular, we may assume that s contains two strands on the backbone S1j having
unequal speeds p > q . We now split into two further subcases:

(1) (q ¤ 0— two solid strands) In this case, neither strand on S1j is constant, so
every term in the sum @0j aD

P
i�I.@

0
j .si ; Ec// is nonzero, and is a sum of one term
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(if p � q D 2) or two terms (if p � q > 2) with nonconstant strands. Furthermore,
since @0j does not affect any strand away from the backbone S1j , constant strands of s
remain constant in any summand of @0j .s; Ec/. Thus the set I of constant-strand starting
points for s is the set of constant-strand starting points for any summand of @0j .s; Ec/ in
this case. For i � I, we may write @0j .si ; Ec/D .@

0
j .s; Ec//i , so our sum becomes

@0j aD
X
i�I

.@0j .s; Ec//i DE.@
0
j .s; Ec// 2A.n; k;S/;

extending . � /i linearly.

(2) (q D 0— one dashed strand) In this case, s has a constant strand on some
basepoint zıj 2 S

1
j , where ı 2 fC;�g. Thus for any i � I containing zıj , si does not

contain this constant strand, so @0j .si ; Ec/D 0. It follows that the only terms in the sum
that matter are those that come from subsets not containing zıj . For such subsets i , we
may again write @0j .si ; Ec/D .@

0
j .s; Ec//i .

Meanwhile, the terms in @0j .s; Ec/ will contain strands of speeds p� 1 and 1 on S1j .
There will be two such terms if p¤ 2 and one such term if pD 2. All other strands of s
are maintained. We cannot have pD 1 since the strands of s end on distinct basepoints
in s.1/. Thus, the set of constant-strand starting points for @0j .s; Ec/ is precisely I nfzıj g.
Altogether, we can write our sum as

@0j aD
X

i�Infzı
j
g

.@0j .si ; Ec//D
X

i�.Infzı
j
g/

.@j .s; Ec//i DE.@
0
j .s; Ec// 2A.n; k;S/;

where we have again extended . � /i linearly.

As in Lemma 4.13, we have

(4-5) @0j .E.s; Ec//DE.@
0
j .s; Ec// 2A.n; k;S/

in all cases, again after replacing s with some si if necessary, proving the lemma.

Proposition 4.15 The subspace A.n; k;S/ of zA.n; k;S/ is preserved by the differen-
tial on zA.n; k;S/.

Proof Since @ D
P
j2Œ1;n� @

c
j C @

0
j , this proposition follows from Lemmas 4.13

and 4.14.

4.5 Idempotents and the unit

At this point, we can almost say that A.n; k;S/ is a differential algebra (we will see in
Section 6 that it is in fact a dg algebra). One subtlety is that the unit of zA.n; k;S/ is
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not an element of A.n; k;S/. However, A.n; k;S/ has its own unit, which we define
below.

Let B be the set of basepoints in Z.n/ as above, and let M be the matching on B. We
write B=M WD B=.z �M.z// and consider the quotient map qW B! B=M. We can
identify B=M with Œ0; n� by sending fzCi ; z

�
iC1g 2 B=M to the index i 2 Œ0; n�.

Let x be a k–element subset x of B=M Š Œ0; n�, ie an element of V.n; k/ in the
notation of Definition 2.2 (we will resume using this notation below). Following
Lipshitz, Ozsváth and Thurston, we will call a subset S � B a section of x if S is
the image of a section of the quotient map q over x .

Definition 4.16 For x 2 V.n; k/, let Jx be the element E.ConstS ; E0/ of A.n; k;S/,
where S is any section of x and ConstS is the k–strand of constant strands at each
basepoint in S. Note that this definition is independent of the choice of S by Lemma 4.9.
Define

1A.n;k;S/ WD
X

x2V.n;k/

Jx:

A section S of x can always be chosen by the rule that i 2 x if and only if zCi 2 S.
Regardless of the choice of section, however, the element Jx is visually interpreted
as the diagram consisting of a constant dashed strand at each point of q�1.x/ � B.
The elements Jx for x 2 V.n; k/ constitute a set of pairwise orthogonal idempotents
in A.n; k;S/.

Proposition 4.17 The element 1A.n;k;S/ is an identity element for A.n; k;S/.

Proof Let E.s; Ec/ denote a standard basis element of A.n; k;S/. Let y; z 2 V.n; k/
denote the images of q.s.0// and q.s.1//, respectively, under the identification of B=M
with Œ0; n�. Note that, if x ¤ y , then Jx �E.s; Ec/ D 0 because no summand of Jx

is concatenable with any summand of E.s; Ec/, while Jy �E.s; Ec/DE.s; Ec/ (see the
proof of Proposition 4.12, where it is shown that E.t; Ed/ �E.s; Ec/ D E.t � s; Ed C Ec/
after t and s are chosen appropriately). Similarly, E.s; Ec/ �Jx D 0 for x ¤ z, while
E.s; Ec/ �Jz DE.s; Ec/. Thus we have

1A.n;k;S/ �E.s; Ec/D Jy �E.s; Ec/C
X
x¤y

Jx �E.s; Ec/DE.s; Ec/;

E.s; Ec/ � 1A.n;k;S/ DE.s; Ec/ �JzC

X
x¤z

E.s; Ec/ �Jx DE.s; Ec/:
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We see that A.n; k;S/ is a differential algebra over F2 (gradings will be discussed
in Section 6). Moreover, A.n; k;S/ can be viewed as an algebra over the idempotent
ring I.n; k/D FV.n;k/2 via the ring homomorphism sending the indicator function of
x 2 V.n; k/ to Jx 2A.n; k;S/, and we have a natural splitting

(4-6) A.n; k;S/D
M

x;y2V.n;k/

JxA.n; k;S/Jy

(see [16, Lemma A.17] for more details).

Each element of the basis for A.n; k;S/ from Definition 4.11 is homogeneous with
respect to the decomposition of (4-6). The basis element E.s; Ec/ lies in JxA.n; k;S/Jy

if and only if x and y are the projections of s.0/; s.1/� B to k–element subsets of
.B=M/Š Œ0; n�, respectively (in other words, x and y are the unique I–states such
that s.0/ is a section of x and s.1/ is a section of y ). Thus, we have the following
lemma:

Lemma 4.18 Let x;y 2 V.n; k/. An F2–basis of the summand JxA.n; k;S/Jy of
A.n; k;S/ consists of all standard basis elements of A.n; k;S/ of the form E.s; Ec/,
where s.0/ and s.1/ are sections of x and y , respectively.

4.6 Far states and the strands algebra

Recall that for x;y 2 V.n; k/ that are “far” in the sense of Definition 2.12, we have
IxB.n; k;S/Iy D 0. Below we prove a similar result for the strands algebra.

Lemma 4.19 Let x;y 2 V.n; k/. If x and y are far, then JxA.n; k;S/Jy D 0.

Proof We show the contrapositive. Let xD fx1 < � � �<xkg and y D fy1 < � � �<ykg
and suppose that JxA.n; k;S/Jy¤0. Then there exists a k–strand s from a section S
of x to a section T of y , which in turn gives a bijection 'W x! y with the property
that for all a 2 Œ1; k� we have

j'.xa/� xaj � 1:

We wish to show that this condition implies jya �xaj � 1 for all a as well (and hence
x and y are not far). To prove that ya � xa � 1, assume by contradiction that the
set fa 2 Œ1; k� j ya � xa > 1g is nonempty, and let m be its minimum. Then, for all
b D 1; : : : ; m� 1, we have that

'.xb/� 1C xb < ym:
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Moreover, '.xm/�xm � 1 < ym�xm , so '.xm/ < ym too. Then ' is injective from
fx1; : : : ; xmg to fy1; : : : ; ym�1g, which is a contradiction. To prove that ya�xa��1,
we can apply the same reasoning to the maximum of the set fa 2 Œ1; k� j ya�xa <�1g.
Thus we must have that jya � xaj � 1, so x and y are not far.

4.7 Idempotent-truncated strands algebras

As in [16, Section 3.4], one can define truncated versions of A.n; k;S/ (see also
[24, Section 12]).

Definition 4.20 For 0� k � n, define Ar.n; k;S/ to be� X
xW0…x

Jx

�
A.n; k;S/

� X
xW0…x

Jx

�
:

Similarly, define Al.n; k;S/ to be� X
xWn…x

Jx

�
A.n; k;S/

� X
xWn…x

Jx

�
:

For 0� k � n� 1, define A0.n; k;S/ to be� X
xW0;n…x

Jx

�
A.n; k;S/

� X
xW0;n…x

Jx

�
:

As with the truncations of B.n; k;S/, one can also describe these algebras in terms of
full subcategories of the dg category corresponding to A.n; k;S/; see Definition 3.16
of [16].

In fact, as with A.n; k;S/, the truncated algebras are special cases of strands algebras
for chord diagrams that will be defined in [17]. We describe these diagrams below.

Definition 4.21 We define the chord diagram Zr.n/ to be .Zr.n/; B;M/, where

Zr.n/ WD S1 t � � � tS1 t Œ0; 1�:

For i D 2; : : : ; n, let z�i WD Œ0� 2 S
1
i and zCi WD Œ1� 2 S

1
i be two distinct basepoints

in S1i . We also fix points zC1 2S
1
1 and z�nC1 2 Int.Œ0; 1�nC1/. We define a matching M

on the set of basepoints B D fzC1 ; z
˙
2 ; : : : ; z

˙
n ; z

�
nC1g by matching zCi with z�iC1 , ie

M.zCi /D z
�
iC1:

We define Zl.n/ and Z 0.n/ similarly, with

Zl.n/ WD Œ0; 1�tS1 t � � � tS1 and Z 0.n/ WD S1 t � � � tS1:
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7! D

7! D

7! D

Figure 15: The chord diagrams Zl .3/ , Zr .3/ and Z 0.3/ and the sutured
surfaces F.Zr .3// , F.Zl .3// and F.Z 0.3// .

Both F.Zr.n// and F.Zl.n// are a connected genus-zero sutured surface with nC 1
boundary components. One boundary component has two sutures; the rest have no
sutures and are contained in SC . The sutured surface F.Z 0.n// is a connected genus-
zero surface with nC1 boundary components and no sutures. All boundary components
are contained in SC except the outermost one, which is contained in S� .
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The chord diagrams Zr.3/, Zl.3/ and Z 0.3/ and the sutured surfaces F.Zr.3//,
F.Zl.3// and F.Z 0.3// are shown in Figure 15.

5 Structure of the strands algebras

5.1 Notation and explicit bases for summands of A.n; k;S/

As mentioned below Definition 4.1, a k–strand can be described entirely by specifying
the starting points and (constant) speeds of each strand. When we pass to the sub-
algebra A.n; k;S/ within zA.n; k;S/, we treat constant strands somewhat differently
from nonconstant strands, but basis elements E.s; Ec/ should still be determined by
starting points and speeds of each strand of s (together with Ec ), where a speed of zero
corresponds visually to a dashed strand rather than a solid strand.

Because the majority of the results in this paper hinge upon the splitting

A.n; k;S/Š
M

x;y2V.n;k/

JxA.n; k;S/Jy ;

we allow our notation to take the starting idempotent x as a given. That is, given a
starting idempotent, we seek a notation that allows an immediate combinatorial and
visual grasp of any given basis element E.s; Ec/ for any section s.0/ of x . With all
of this in mind, we present the following definition, starting from pairs .s; Ec/ in the
prestrands algebra.

Definition 5.1 Suppose .s; Ec/ 2 zA.n; k;S/. Let Ar.s; Ec/ denote the following combi-
nation of a squarefree monomial in variables Ci for i 2 S together with an array of
vectors:

Ar.s; Ec/ WD
Y
i2S

C
Ec.i/
i

�
p1

q1

�
1

�
p2

q2

�
2

� � �

�
pn

qn

�
n

;

where each pi and qi is defined as follows:

� If z�i is the starting point of a nonconstant strand sa of s , then pi is the (constant)
speed of this strand; otherwise we set pi equal to 0.

� If zCi is the starting point of a nonconstant strand sb of s , then qi is the (constant)
speed of this strand; otherwise we set qi equal to 0.

We may also omit columns of all zeros from the array. In particular, the following
notation will be used often:

(5-1)
�p
q

�
i
WD

�0
0

�
1
� � �

�0
0

�
i�1

�p
q

�
i

�0
0

�
iC1
� � �

�0
0

�
n
:
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Recall that we have defined our circles S1i and basepoints z˙i so that our speeds are
integers, and a speed of 2 indicates a degree one map to the circle. In particular, a
strand starts and ends at the same basepoint if and only if its speed is even.

Lemma 5.2 Fix some starting idempotent x 2 V.n; k/. For any two basis elements
.s; Ec/ and .s0; Ec 0/ of Jx zA.n; k;S/ with s.0/\M.s.0//D s.1/\M.s.1//D ¿ and
s0.0/\M.s0.0//D s0.1/\M.s0.1//D¿, we have E.s; Ec/DE.s0; Ec 0/ if and only if
Ar.s; Ec/D Ar.s0; Ec 0/.

Proof It is clear that if Ec ¤ Ec 0, then we have both E.s; Ec/¤E.s0; Ec 0/ and Ar.s; Ec/¤
Ar.s0; Ec 0/. If Ec D Ec 0, Lemma 4.9 shows that E.s; Ec/DE.s0; Ec 0/ if and only if s0 D si
for some i � I, where I is the set of basepoints that are starting points for constant
strands of s as usual.

We claim that s0 D si for some i � I if and only if Ar.s; Ec/D Ar.s0; Ec/. Indeed, if
s0 D si , then the only difference between s and s0 is the placement of certain constant
strands, which the notation of Definition 5.1 ignores.

Conversely, if Ar.s; Ec/ D Ar.s0; Ec/, the nonzero entries of the arrays demand that s
and s0 have the same nonconstant strands, so that they (possibly) differ only in the
placement of their constant strands. Then, since s.0/ and s0.0/ are both sections of x ,
we must have s0 D si for some i � I.

Lemma 5.2 shows that Ar.s; Ec/ descends to a well-defined notation for basis elements
E.s; Ec/ in JxA.n; k;S/ once x has been fixed. Notice that an entry of zero in Ar.s; Ec/
can mean two different things for the corresponding k–strand s — it can mean that
there is no strand at all at the given basepoint, or it can mean that there is a constant
(ie speed 0) strand at the given basepoint. In particular, the case qi D piC1 D 0 can
mean there are no strands present at all, or that there is a single constant strand starting
at either zCi or z�iC1 , but it cannot mean that there are constant strands at both zCi
and z�iC1 since we have s.0/\M.s.0//D¿.

Lemma 5.2 views this ambiguity as a helpful feature of the notation due to the ambiguity
inherent in Lemma 4.9. However, one might object that the notation alone does not
distinguish between a constant-strand starting point, an empty basepoint that is matched
to a constant-strand starting point, and an empty basepoint that is not matched to a
constant-strand starting point. (As an extreme example, every idempotent element Jx

is written as an array of all zeros, regardless of x .) To address this objection, we always
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Figure 16: The basis element C2C4C5
�
1
9

�
1

�
0
0

�
2

�
0
2

�
3

�
0
0

�
4

�
1
1

�
5

of A.5; 6;S/ ,
also denoted C2C4C5

�
1
9

�
1

�
0
2

�
3

�
1
1

�
5

, starting at the idempotent Jx , where
x D f0; 1; 2; 3; 4; 5g and S � Œ1; 5� contains f2; 4; 5g .

work with a fixed starting I–state x , implying the existence (or lack thereof) of strands
starting from certain matched pairs of basepoints. We summarize this point with the
following remark:

Remark 5.3 The notation of Definition 5.1 is only well-defined for basis elements
of JxA.n; k;S/ for some fixed beginning I–state x . It is therefore not helpful as a
notation for general basis elements in A.n; k;S/. For computations in this paper using
this notation, we will focus on a single summand JxA.n; k;S/ of A.n; k;S/ at a time.

Visually, once we have fixed a starting I–state x , the notation Ci1 � � �Cil
�
p1
q1

�
1
� � �
�
pn
qn

�
n

indicates a specific basis diagram in which solid strands are drawn according to their
speeds (the placement of pi above qi in the notation is a reminder that pi is the speed

i � 2

i � 1

i

i C 1

pi�1

qi�1

pi

qi

piC1

qiC1

Figure 17: Reference diagram for the proof of Lemma 5.4.
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starting from the upper basepoint, while qi starts from the lower basepoint). Constant
dashed strands are drawn on any matched pair of basepoints that are contained in x
but have no solid strands coming from them. Closed loops are drawn on any cylinder
whose Ci variable appears in the monomial. See Figure 16 for an example.

It should be clear that only certain arrays can appear in valid basis elements for a given
summand JxA.n; k;S/ of the strands algebra. Furthermore, given a valid array, the
ending idempotent of the corresponding strands algebra element is also determined.
Visually all that is required is that no two solid strands start on matched basepoints,
and that no two strands (whether solid or dashed) end on basepoints that are either the
same or matched. The following lemma describes the precise combinatorics involved;
see Figure 17 for reference.

Lemma 5.4 For x 2 V.n; k/, the map .s; c/ 7! Ar.s; Ec/ of Definition 5.1 descends
to a one-to-one correspondence between basis elements E.s; Ec/ of JxA.n; k;S/ and
expressions

Ci1 � � �Cil

�
p1

q1

�
1

� � �

�
pn

qn

�
n

satisfying the following conditions:

(i) The indices i1; : : : ; il are distinct elements of S .

(ii) For every i 2 Œ1; n� 1�, qipiC1 D 0 (ie qi and piC1 cannot both be nonzero).

(iii) For every i 2 Œ0; n� nx , qi D piC1 D 0.

(iv) For every i 2 Œ1; n� 1�, piqiC1 is even (ie pi and qiC1 cannot both be odd ).

(v) For every i 2 Œ1; n�, if pi and qi are both nonzero , then pi � qi .mod 2/.

(vi) Suppose i 2 Œ1; n� and fi � 1; ig � x . If pi is odd and qi D 0, then we must
have piC1 odd (and thus qiC1 D 0 by (iv)–(v)). Symmetrically , if pi D 0 and
qi is odd , then we must have qi�1 odd (and thus pi�1 D 0 by (iv)–(v)).

By convention , we always set q0 D pnC1 D 0.

Given an array expression satisfying the above conditions, let E.s; Ec/ denote the
corresponding basis element of JxA.n; k;S/. We have E.s; Ec/ 2 JxA.n; k;S/Jy ,
where y 2V.n; k/ is the unique vertex satisfying the following conditions for i 2 Œ0; n�:

� If i 2 x and qi is odd , then i � 1 2 y .

� If i 2 x and piC1 is odd , then i C 1 2 y .

� If i 2 x and qi and piC1 are both even , then i 2 y .

Note that if qi or piC1 is odd , then i 2 x follows from condition (iii) above.
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Proof Lemma 5.2 implies that the map under consideration is well-defined and
injective into the set of all possible array expressions. We want to show that the image
of this map lies in the subset consisting of array expressions satisfying conditions
(i)–(vi), and that the map is surjective onto this subset.

Indeed, condition (i) follows from the requirement that Ec.i/ 2 f0; 1g for all i 2 S .
Condition (ii) follows from s.0/\M.s.0//D¿, and condition (iii) follows from the
fact that s.0/ is a section of x . Condition (iv) follows from s.1/\M.s.1// D ¿.
Condition (v) follows from the fact that s.1/ is a set of k distinct basepoints, since
s is a k–strand. Finally, condition (vi) also follows from s.1/\M.s.1// D ¿ and
the fact that s is a k–strand. Thus, array expressions in the image of the map under
consideration satisfy the listed conditions.

For surjectivity, given an array expression satisfying the conditions, we can form a
putative k–strand s by interpreting pi (respectively qi ) as the speed of a strand starting
at z�i (respectively zCi ), filling in constant strands compatibly with x , and translating
the monomial Ci1 � � �Cil into a function Ec 2 f0; 1gS (this last step is possible by
condition (i)). By construction, s.0/ consists of k distinct basepoints; the same is true
for s.1/ by conditions (v) and (vi), so s is a k–strand. We have s.0/\M.s.0//D¿
by condition (ii), and we have s.1/\M.s.1//D¿ by conditions (iv) and (vi). Finally,
s.0/ is a section of x by condition (iii) and the fact that constant strands of s were
chosen to be compatible with x .

It follows that the map under consideration is indeed a one-to-one correspondence. The
determination of y from x and the parity of the speeds pi and qi is a straightforward
computation; we leave it to the reader.

5.1.1 An important special case The following special case of the summands
JxA.n; k;S/Jy will be important below.

Definition 5.5 For n� 1, we define the generating algebra to be

xA.n;S/ WD JŒ1;n�1�A.n; n� 1;S/JŒ1;n�1�:

While xA.n;S/ is naturally a dg algebra, we will focus below on its structure as a chain
complex over F2 .

Lemma 5.6 A basis over F2 of xA.n;S/ is given by squarefree monomials in the Ci
variables as usual times all arrays

�
p1
q1

�
1
� � �
�
pn
qn

�
n

such that

(1) for i 2 Œ1; n� 1�, qipiC1 D 0 (ie qi and piC1 cannot both be nonzero);
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(2) p1 D qn D 0;

(3) for all i 2 Œ1; n�, pi � qi .mod 2/.

Proof Condition (1) here is the same as (ii) from the general Lemma 5.4. In xA.n;S/
where x D Œ1; n � 1�, condition (2) here is equivalent to (iii) from that lemma. It
remains to see that conditions (iv), (v) and (vi) from the general lemma are equivalent
in xA.n;S/ to condition (3) here.

We show this by considering negations, assuming the first two conditions here. Suppose
condition (iv) from the general lemma is false, so there exists some i with pi and qiC1
both odd. Then since at least one of qi and piC1 must be zero by (1), we have some
index j where pj and qj have opposite parity, so condition (3) here is false.

Note also that if condition (v) or condition (vi) from the general lemma is false, then
condition (3) here is false.

Conversely, suppose that condition (3) here is false, so there exists an index i 2

Œ1; n� where pi and qi have opposite parity. By condition (v), we must have either
pi D 0 or qi D 0; without loss of generality, we may assume that pi is odd and
qi is zero. Let i be the maximal such index. By condition (vi), we have i D n.
Since pn is odd, we have n 2 y for the right idempotent Jy of the basis element
under consideration, contradicting the fact that the basis element lives in xA.n;S/ WD
JŒ1;n�1�A.n; n� 1;S/JŒ1;n�1� .

We will also need to consider the following three variants of xA.n;S/:

Definition 5.7 For n� 1, we define the edge algebras

� xA�.n;S/ WD JŒ0;n�1�A.n; n;S/JŒ0;n�1� ,
� xA�.n;S/ WD JŒ1;n�A.n; n;S/JŒ1;n� , and

� xA��.n;S/ WDA.n; nC 1;S/.

The following three lemmas are analogous to Lemma 5.6, and their proofs are omitted.

Lemma 5.8 A basis over F2 of xA�.n;S/ is given by squarefree monomials in the Ci
as usual times all arrays

�
p1
q1

�
1
� � �
�
pn
qn

�
n

such that

(1) for i 2 Œ1; n� 1�, qipiC1 D 0;

(2) qn D 0;

(3) for i 2 Œ1; n�, pi � qi .mod 2/.
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Lemma 5.9 A basis over F2 of xA�.n;S/ is given by squarefree monomials in the Ci
as usual times all arrays

�
p1
q1

�
1
� � �
�
pn
qn

�
n

such that

(1) for i 2 Œ1; n� 1�, qipiC1 D 0;

(2) p1 D 0;

(3) for i 2 Œ1; n�, pi � qi .mod 2/.

Lemma 5.10 A basis over F2 of xA��.n;S/ is given by squarefree monomials in
the Ci as usual times all arrays

�
p1
q1

�
1
� � �
�
pn
qn

�
n

such that

(1) for i 2 Œ1; n� 1�, qipiC1 D 0;

(2) for i 2 Œ1; n�, pi � qi .mod 2/.

5.2 Products and differentials of explicit basis elements

In this section we wish to derive formulas for products and differentials of explicit
basis elements written in the notation of Definition 5.1. Since A.n; k;S/ is closed
under multiplication and the differential, such products and differentials are sums of
basis elements; we wish to write these sums explicitly in the same notation.

5.2.1 Products of basis elements As seen in the proof of Proposition 4.12, in order
for the product of two basis elements E.s; Ec/ �E.t; Ed/ to be nonzero, we must have
some i � I and j � J such that s.1/i D t .0/j (see that proof for an explanation
of the notation). If we recall that qW B ! B=M Š Œ1; n� denotes the quotient map,
this requirement implies that q.s.1// D q.t.0// as k–element subsets of Œ1; n� (the
converse is not true, as we will explore shortly).

Because E.s; Ec/ �E.t; Ed/¤ 0 at least requires q.s.1//D q.t.0//, we only write down
formulas for the product of a; a0 2A.n; k;S/ in the case where a 2 JxA.n; k;S/Jy

and a0 2 Jx0A.n; k;S/ with x0 D y . All other cases have trivial product. Note that
this assumption enforces certain conventions in our formulas regarding the meaning
of zeros in the second (or third, etc) factor in a product. For instance, as elements of
JxA.2; 2;S/ with x D f0; 2g, the formula�1

0

�
1

�0
0

�
2
�

�0
0

�
1

�0
2

�
2
D

�1
0

�
1

�0
2

�
2

presumes that the starting I–state of
�
0
0

�
1

�
0
2

�
2

is y WD f1; 2g, and thus the entries
q1 D p2 D 0 for this term are forced to represent constant dashed strands, while the
entry p1 D 0 is forced to represent an empty space. See Figure 18. In short, fixing x
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D

Figure 18: A figure illustrating the formula
�
1
0

�
1

�
0
0

�
2
�
�
0
0

�
1

�
0
2

�
2
D
�
1
0

�
1

�
0
2

�
2

in
the case when the starting idempotent was x D f0; 2g , with dots placed on
occupied matchings.

fixes the meaning of the notation for a 2 JxA.n; k;S/, which in turn fixes y , which
then fixes the meaning of the notation for a0 2 JyA.n; k;S/ when considering a
product a � a0.

However, the condition x0 D y above does not guarantee that E.s; Ec/ �E.t; Ed/¤ 0,
or even that there exist i and j with s.1/i D t .0/j . The elements may still be not
concatenable, and even if they are, we may still create degenerate annuli or bigons upon
concatenation (see Definition 4.2 and the discussion below (4-3)). If we translate all
of our monomials in Ci variables and .pi ; qi /–arrays into graphs of solid and dashed
strands with closed loops, these situations become visually clear. The following lemma
presents the combinatorics that result from this analysis, including the formulas for the
nonzero products:

Lemma 5.11 Let a 2 JxA.n; k;S/Jy and a0 2 JyA.n; k;S/ be basis elements,
represented by expressions

aD Ci1 � � �Cil

�
p1

q1

�
1

� � �

�
pn

qn

�
n

and a0 D Ci 01
� � �Ci 0

l0

�
p01
q01

�
1

� � �

�
p0n
q0n

�
n

:

Then a � a0 ¤ 0 if and only if for all i D 1; : : : ; n the following conditions hold :

(I) if pi is odd , then p0iC1 D 0;

(II) if pi ¤ 0 and is even , then q0i�1 D 0;

(III) if qi is odd , then q0i�1 D 0;

(IV) if qi ¤ 0 and is even , then p0iC1 D 0;

(V) if pi and qi are both even , then .pi � qi /.p0i � q
0
i /� 0;

(VI) if pi and qi are both odd , then .pi � qi /.p0i � q
0
i /� 0;

(VII) no Ci variable appears in the monomial for both a and a0.
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Moreover , when a � a0 ¤ 0, we also have the formulas

a � a0 D Ci1 � � �CilCi 01
� � �Ci 0

l0

�
r1

s1

�
1

� � �

�
rn

sn

�
n

2 JxA;

where

ri WD

8<:
pi C q

0
i if pi is odd ,

pi Cp
0
i if pi is even and qi is even;

0 if pi D 0 and qi is odd ,
and

si WD

8<:
qi Cp

0
i if qi is odd ,

qi C q
0
i if qi is even and pi is even ,

0 if qi D 0 and pi is odd.

In the above lemma, by convention we always set q0 D pnC1 D q00 D p
0
nC1 D 0. In

the definition of ri , note that if pi is even and qi is odd, then we must have pi D 0,
hence we cover all the cases (and similarly for si ).

Proof We first prove the “only if” direction. We write aDE.s; Ec/ and a0DE.s0; Ec 0/
with I and J denoting the starting basepoints of constant strands from s and s0,
respectively, as in the proof of Proposition 4.12.

Suppose that item (I) fails for some fixed index i . Since pi is odd, the point zCi is the
endpoint of a nonconstant strand of s , so z�iC1 DM.z

C
i / is not in s.1/, and indeed

not in s.1/i for any i � I. Meanwhile, if p0iC1¤ 0, then there is a nonconstant strand
departing from z�iC1 in s0, meaning z�iC1 2 s

0.0/j for all j � J . Thus each product
in the double sum for a � a0 is not concatenable, so a � a0 D 0. Items (II), (III) and (IV)
are similar. Visually, these four items cover the cases when a solid strand in a0 has no
strand (solid or dashed) in a to concatenate with.

To show that item (V) holds, first suppose that fi � 1; ig is not a subset of x . If the
quantity in (V) is negative, then either pi and q0i are both nonzero or qi and p0i are
both nonzero. Since pi and qi are even, both cases contradict the assumption that
the right idempotent of a is the left idempotent of a0. If fi � 1; ig � x and a � a0 ¤ 0,
then there exist representatives .s; Ec/; .t; Ed/ for a and a0 such that s and t have two
strands each on the backbone S1i . These representatives satisfy the “no degenerate
bigon” condition of Definition 4.2, implying item (V).

The argument for item (VI) is similar (note that when pi and qi are odd, the relative
positions of the starting points of the strands swap, causing a flip in the sign of p0i � q

0
i

relative to the phrasing in Definition 4.2). Finally, negating item (VII) means that we
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have Ec.i/C Ec 0.i/D 2 for some i , so a � a0 is zero. Visually, negating item (V) or (VI)
results in a degenerate bigon after concatenation, while negating item (VII) results in a
degenerate annulus.

In the other direction, the proof of Proposition 4.12 shows that a � a0 ¤ 0 so long as
there exist some i � I and j �J with s.1/i D s0.0/j and such that the concatenation
si � s

0
j

has no degenerate bigons or annuli. Annulus creation violates item (VII). Bigon
creation between two strands must take place on some fixed backbone S1i ; the reader
may verify that the result violates one of items (V) or (VI) depending on the parity of
pi and qi . Thus it is enough to show that, if we assume items (I), (II), (III) and (IV)
(along with q.s.1//D q.s0.0//D y ), then we can find the requisite i and j making
si and s0

j
concatenable.

Suppose s.1/¤ s0.0/, so there exists some basepoint z˙i 2 s.1/ns
0.0/. Since q.s.1//D

q.s0.0//, the matched basepoint M.z˙i / must be an element of s0.0/. If the basepoint
z˙i 2 s.1/ is the endpoint of a nonconstant strand, then we are in one of the cases
covered by items (I), (II), (III) and (IV), forcing M.z˙i / to be the starting point of a
constant strand in s0. This means we can choose j D fM.z˙i /g; using Lemma 4.9, we
can replace s0 by s0

j
and begin again with one fewer element in s.1/ n s0.0/. On the

other hand, if z˙i 2 s.1/ was the endpoint of a constant strand, then we have z˙i 2 s.0/
as well and we can choose i D fz˙i g to accomplish the same goal after replacing s
with si . In either case, we decrease the size of s.1/ n s0.0/. This process does not
change the elements a and a0, so it preserves the entire list of conditions above. Since
the sets s.1/ and s0.0/ are finite, we must eventually make s and s0 concatenable,
proving the characterization of nonzero products a � a0.

Assuming that a �a0¤ 0, choose .s; Ec/ and .s0; Ec 0/ with aDE.s; Ec/ and a0DE.s0; Ec 0/
such that s � s0 is nondegenerate. Equation (4-3) shows us that to compute a � a0, we
need only take the product of .s; Ec/ and .s0; Ec 0/ in zA.n; k;S/, where speeds of various
strands add. With this observation in mind, the formulas above follow so long as one
recalls that strands with odd speeds start and end at opposite basepoints, essentially
reversing the role of p0i and q0i.

5.2.2 Differentials of basis elements According to Proposition 4.15, the differential
of Definition 4.5 descends to the strands algebra A.n; k;S/; the proofs of Lemmas 4.13
and 4.14 show how to compute the differential on A.n; k;S/. Therefore, we will refrain
from a detailed proof of the resulting formulas when applying this reasoning to basis
elements written in our .pi ; qi /–notation.
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Lemma 5.12 Let
aD Ci1 � � �Cil

�
p1

q1

�
1

� � �

�
pn

qn

�
n

be a basis element of the summand JxA.n; k;S/. For 1� i � n, @0i a is the element
of JxA.n; k;S/ given by

(5-2) @0i aD 0 if fi � 1; ig š x;

and otherwise , defining mi WDmin.pi ; qi / and Mi WDmax.pi ; qi /,

(5-3) @0i aD8̂̂̂̂
<̂̂
ˆ̂̂̂:

Ci1 � � �Cil
�
p1
q1

�
1
� � �
�
miC1
Mi�1

�
i
� � �
�
pn
qn

�
n
CCi1 � � �Cil

�
p1
q1

�
1
� � �
�
Mi�1
miC1

�
i
� � �
�
pn
qn

�
n

if qi�1DpiC1D 0 and Mi�mi � 4,
Ci1 � � �Cil

�
p1
q1

�
1
� � �
�
miC1
Mi�1

�
i
� � �
�
pn
qn

�
n

if qi�1DpiC1D 0 and Mi�mi D 2,

0 if either of qi�1 or piC1 is¤ 0;
or if .Mi�mi /D 0.

The ellipses of (5-3) are meant to indicate that all entries of the array for a have been
kept the same except for those in the i th column.

Proof If fi � 1; ig š x , write aDE.s; Ec/. For each term .si ; Ec/ in the sum defining
E.s; Ec/, the k–strand si can have at most one strand on the backbone S1i , so @0i aD 0.
Similarly, if either of qi�1 or piC1 is ¤ 0, each si can have at most one strand on S1i ,
so @0i aD 0. Also, Mi �mi D 0 if and only if pi D qi , again indicating that @0i aD 0.
The only cases remaining are those where fi�1; ig�x , qi�1DpiC1D 0 and pi ¤ qi .
In these cases, if both pi and qi are nonzero, we have the formula immediately from
Definition 4.5. If pi D 0 and qi ¤ 0, recall that qi�1D 0 and i �1 2 x ; if qi D 0 and
pi ¤ 0, recall that piC1 D 0 and i 2 x . The proof of item (2)enumz in Lemma 4.14
now implies the stated formula.

Lemma 5.13 Let
aD Ci1 � � �Cil

�
p1

q1

�
1

� � �

�
pn

qn

�
n

be a basis element of the summand JxA.n; k;S/. For 1� i � n, @ci a is the element
of JxA.n; k;S/ given by

(5-4) @ci aD 0 if Ci does not appear in the monomial Ci1 � � �Cil I
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otherwise, as long as pi and qi are not both zero,

(5-5) @ci aD

8̂̂̂<̂
ˆ̂:
.Ci1 � � �Cil=Ci /

�
p1
q1

�
1
� � �
�
piC2
qi

�
i
� � �
�
pn
qn

�
n

C .Ci1 � � �Cil=Ci /
�
p1
q1

�
1
� � �
�
pi
qiC2

�
i
� � �
�
pn
qn

�
n

if pi D qi ¤ 0,

.Ci1 � � �Cil=Ci /
�
p1
q1

�
1
� � �
�
piC2
qi

�
i
� � �
�
pn
qn

�
n

if pi > qi ,

.Ci1 � � �Cil=Ci /
�
p1
q1

�
1
� � �
�
pi
qiC2

�
i
� � �
�
pn
qn

�
n

if pi < qi .

If pi D qi D 0, we have a potential sum of terms depending on x and the entries qi�1
and piC1 as follows:

(5-6) @ci

�
Ci1 � � �Cil

�
p1

q1

�
1

� � �

�
0

0

�
i

� � �

�
pn

qn

�
n

�
D ıi�1

�
Ci1 � � �Cil

Ci

�
p1

q1

�
1

� � �

�
2

0

�
i

� � �

�
pn

qn

�
n

�
C �i

�
Ci1 � � �Cil

Ci

�
p1

q1

�
1

� � �

�
0

2

�
i

� � �

�
pn

qn

�
n

�
;

where ıi�1 and �i are defined as

ıi�1 WD

�
1 if i � 1 2 x and qi�1 D 0,
0 otherwise ,

�i WD

�
1 if i 2 x and piC1 D 0,
0 otherwise.

Proof Equations (5-4) and (5-5) are straightforward translations of Definition 4.5 into
this notation (note that the ambiguity of a zero entry is irrelevant for @ci if there is
another strand of positive speed on S1i ). Meanwhile, equation (5-6) splits @ci into a
sum of terms — the first term appears if and only if the entry pi D 0 refers to a dashed
strand at z�i in the visual representation for a , while the second term appears if and
only if the entry qi D 0 refers to a dashed strand at zCi . One can check that (5-6) also
follows from Definition 4.5.

5.3 More results on the strands algebra

Because the idempotents Jx 2A.n; k;S/ are indexed by subsets x 2 V.n; k/, we can
extend some of the terminology of Section 2 to our current setting. By Lemma 4.19,
we already know that JxA.n; k;S/Jy D 0 when x and y are far as in Definition 2.12.
The following lemma relates our .pi ; qi /–notation to the entries vi .x;y/ of the rel-
ative weight vectors (Definition 2.2) and the notion of crossed lines from x to y
(Definition 2.13).
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Lemma 5.14 Let a D Ci1 � � �Cil
�
p1
q1

�
1
� � �
�
pn
qn

�
n
2 JxA.n; k;S/Jy be a standard

basis element of the strands algebra. Then x and y are not far (in the sense of
Definition 2.12), and the following conditions are equivalent :

(1) line i from x to y is crossed ;

(2) for any k–strand s such that aDE.s; Ec/, s has only one strand mapping to the
i th circular backbone , and this strand connects either z�i to zCi or zCi to z�i ;

(3) pi ¥ qi .mod 2/.

Moreover , in such a case , the following are equivalent too:

(1) vi .x;y/D 1 (resp. vi .x;y/D�1);

(2) the strand of s on the i th circular backbone connects z�i to zCi (resp. zCi to z�i );

(3) qi D 0 (resp. pi D 0).

Proof The claim that x and y are not far follows from Lemma 4.19. If we write
aDE.s; Ec/, we see that for any i 2 Œ1; n� we have

jx\ Œi; n�j D js.0/\fzCi ; z
˙
iC1; : : : ; z

˙
n ; z

�
nC1gj

and
jy \ Œi; n�j D js.1/\fzCi ; z

˙
iC1; : : : ; z

˙
n ; z

�
nC1gj:

The strands of s on the circular backbones S1j for j � i C 1 (and the final linear
backbone) give a one-to-one correspondence between

s.0/\fz˙iC1; : : : ; z
˙
n ; z

�
nC1g and s.1/\fz˙iC1; : : : ; z

˙
n ; z

�
nC1g;

so there are only three possibilities for vi .x;y/D jy \ Œi; n�j � jx\ Œi; n�j:

� If zCi 2 s.0/n s.1/, then vi .x;y/D�1 (line i is crossed); in such a case, there
must be only a single strand on S1i starting from zCi and ending at z�i , which
is equivalent to pi D 0 and qi odd.

� If zCi 2 s.1/ n s.0/, then vi .x;y/D 1 (line i is crossed); in such a case, there
must be only a single strand on S1i ending at zCi and starting from z�i , which
is equivalent to qi D 0 and pi odd.

� If zCi 2 s.0/\ s.1/ or zCi … s.0/[ s.1/, then vi .x;y/D 0. If zCi 2 s.0/\ s.1/,
then either s has a single strand from zCi to zCi (pi D 0 and qi even), or s has
at least two strands on the i th cylinder (pi � qi .mod 2/). If zCi … s.0/[ s.1/,
then s can have no strand starting from or ending in zCi (qi D 0 and pi even).

The assertions of the lemma follow.
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Figure 19: The elements fx;y of Path.K.5; 4// and gx;y of A.5; 4/ for
x D f0; 1; 2; 5g and y D f0; 2; 3; 4g .

Corollary 5.15 Let x;y 2 V.n; k/. If

aD Ci1 � � �Cil

�
p1

q1

�
1

� � �

�
pn

qn

�
n

and a0 D Ci 01
� � �Ci 0

l0

�
p01
q01

�
1

� � �

�
p0n
q0n

�
n

are basis elements of JxA.n; k;S/Jy , then, for all i D 1; : : : ; n, we have pi C qi �
p0i C q

0
i .mod 2/.

Proof By Lemma 5.14, the parity of pi C qi is determined by whether or not line i
is crossed, which depends only on x and y .

For I–states x and y that are not far, there is a unique minimally winding basis
element of A.n; k;S/, which should be viewed as an analogue to the generator fx;y

of B.n; k;S/ as in [16, Definition 2.11]. Visually, this element is found by placing
speed zero strands for each stationary dot (in the sense of the motions of dots in
[16, Section 2.3]), and placing speed one strands for each moving dot. The following
lemma presents the combinatorics of this construction; see Figure 19 for an example.

Lemma 5.16 If x and y are not far , then there exists a unique basis element

gx;y D

�
p1

q1

�
1

� � �

�
pn

qn

�
n

2 JxA.n; k;S/Jy

with the following properties:

� pi D 1 if vi .x;y/D 1;

� qi D 1 if vi .x;y/D�1;
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� pi and qi are 0 in all other cases.

Moreover , if Ci1 � � �Cil
�
r1
s1

�
1
� � �
�
rn
sn

�
n

is a basis element of JxA.n; k;S/Jy , then , for
all i D 1; : : : ; n, we have ri � pi and si � qi .

Proof The three properties listed above completely determine all entries pi and qi .
We need to check that such an array of vectors defines an element of JxA.n; k;S/Jy ,
ie that it satisfies the properties of Lemma 5.4. Condition (i) is automatic.

If qi ¤ 0, then vi .x;y/ D �1, so viC1.x;y/ must be �1 or 0, hence piC1 D 0.
Thus qipiC1 D 0, and condition (ii) holds.

If pi is odd, then vi .x;y/D 1, so viC1.x;y/ must be 1 or 0, hence qiC1D 0. Thus
piqiC1 D 0 is even, and condition (iv) holds.

If i … x , then there are two cases. If i … y , then vi .x;y/D viC1.x;y/D 0, otherwise
x and y would be far. If i 2 y , then vi .x;y/D viC1.x;y/C 1, so vi .x;y/¤ �1
and viC1.x;y/ ¤ 1. In all these cases, we have qi D piC1 D 0 and condition (iii)
holds. Condition (v) is immediate because pi and qi are never both nonzero.

Finally, if pi is odd and qi D 0 (respectively pi D 0 and qi is odd), we have
vi .x;y/D 1 (respectively vi .x;y/D �1). Assuming fi � 1; ig � x , we then have
viC1.x;y/D 1 (respectively vi�1.x;y/D�1), so that piC1D 1 is odd (respectively
qi�1 D 1 is odd). Thus, condition (vi) is also satisfied.

Thus, gx;y 2 JxA.n; k;S/. Let y 0 denote the ending I–state of gx;y , so that gx;y 2

JxA.n; k;S/Jy 0 . If i 2 x and piC1 is odd, then iC 1 2 y 0. On the other hand, piC1
is odd if and only if viC1.x;y/ D 1, which, by the closeness of x and y , implies
that i 2 x and i C 1 2 y . Analogously, if i 2 x and qi is odd, then we deduce both
i � 1 2 y 0 and i � 1 2 y .

If i 2 x and qi and piC1 are both even, then vi .x;y/ � 0 and viC1.x;y/ � 0. By
the fact that

0� vi .x;y/� viC1.x;y/D ıi2y � ıi2x D ıi2y � 1;

we deduce that i 2 y . Thus, by Lemma 5.4, y and y 0 coincide.

Lastly, to check that ri �pi and si �qi for the general basis element of JxA.n; k;S/Jy

we use Lemma 5.14. If vi .x;y/ D 1, then ri ¥ 0 .mod 2/, so ri � 1 D pi . If
vi .x;y/D�1, then si ¥ 0 .mod 2/, so si � 1D qi .

Corollary 5.17 The summand JxA.n; k;S/Jy of the strands algebra is nonzero if
and only if x and y are not far.
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6 Gradings

In this section we endow our strands algebra A.n; k;S/ with several gradings, defined
combinatorially in terms of the .pi ; qi /–notation of Definition 5.1. We then illustrate the
relationship between our gradings and the group-valued gradings of [11] in Sections 6.2
and 6.3. Throughout this section, we extend the function Ec 2 f0; 1gS to a function
Ec 2 f0; 1gŒ1;n� by declaring that Ec.i/D 0 if i … S .

6.1 The gradings, combinatorially

Definition 6.1 Let aDE.s; Ec/ 2 JxA.n; k;S/ be a basis element; we can write a as

aD C
Ec.1/
1 � � �C Ec.n/n

�
p1

q1

�
1

� � �

�
pn

qn

�
n

:

Let �S W Œ1; n�!f0; 1g be the indicator function of S� Œ1; n� (0 if i …S and 1 if i 2S ).
As in Definition 2.5, let �1; ˇ1; : : : ; �n; ˇn denote the standard basis of Z2n , while
e1; : : : ; en denotes the standard basis of Zn . We have the following four notions of a
degree for a :

(1) The Maslov grading mW A.n; k;S/! Z is defined by

m.a/ WD

nX
iD1

�
1
2
jpi � qi j � .pi C qi /C .�1/

�S.i/
�
Ec.i/C 1

2
.pi C qi /

��
:

(2) The unrefined Alexander grading wunW A.n; k;S/! Z2n is defined by

wun.a/ WD

nX
iD1

.w
un;�
i .a/�i Cw

un;ˇ
i .a/ˇi /;

where

w
un;�
i .a/ WD Ec.i/C

�
1
2
pi
˘
C
˙
1
2
qi
�

and w
un;ˇ
i .a/ WD Ec.i/C

˙
1
2
pi
�
C
�
1
2
qi
˘
:

(3) The refined Alexander grading wW A.n; k;S/!
�
1
2
Z
�n is defined by

w.a/D

nX
iD1

�
Ec.i/C 1

2
.pi C qi /

�
ei :

As in Definition 2.5, w is recovered from wun by the homomorphism sending
both �i and ˇi to 1

2
ei .

(4) The single Alexander grading AlexW A.n; k;S/! 1
2
Z is defined by

Alex.a/D
nX
iD1

.�1/�S.i/
�
Ec.i/C 1

2
.pi C qi /

�
:

Algebraic & Geometric Topology, Volume 20 (2020)



Strands algebras and Ozsváth and Szabó’s Kauffman-states functor 3661

Visually, the entries of the unrefined Alexander grading count how often any strand
traverses each arc between basepoints on the circular backbones (there are 2n such
arcs), while the entries of the refined Alexander grading count the total winding number
of all strands on each circular backbone. The Maslov grading is a bit more complicated.

With these definitions in place, the reader can use Lemmas 5.11 and 5.12 to verify the
homogeneity of both multiplication and differentiation, as described by the following
proposition:

Proposition 6.2 For a 2A.n; k;S/ homogeneous with respect to any of the following
gradings , we have

m.@a/Dm.a/� 1; wun.@a/D wun.a/; w.@a/D w.a/; Alex.@a/D Alex.a/:

Moreover , all of these gradings are additive with respect to multiplication in the algebra:
for a; b 2A.n; k;S/ g–homogeneous (where g is any of the gradings introduced so
far) and such that a � b ¤ 0, we have

g.a � b/D g.a/Cg.b/:

6.2 Where the unrefined gradings come from, topologically

Lipshitz, Ozsváth and Thurston discuss gradings on the strands algebra associated to a
pointed matched circle in [11, Section 3.3]. Their ideas are easily carried over to the
case of a general chord diagram Z D .Z; B;M/. The unrefined gradings of [11] take
values in a subgroup of a central extension by 1

2
Z of H1.Z; B/ determined by M ;

in general, such an extension gives a nonabelian group. We will see that, in the case
of our specific chord diagram Z.n/D .Z.n/; B;M/, this extension is in fact trivial,
leading to the unrefined grading group of Definition 6.1. We begin with a definition.

Definition 6.3 (cf [11]) Let Z D .Z; B;M/ be a chord diagram as in Definition 3.1.
For p 2 B and ˛ 2 H1.Z; B/, the multiplicity m.˛; p/ of p in ˛ is the average
multiplicity with which ˛ covers the two arcs on either side of p . Extend m to a map
H1.Z; B/�H0.B/! 1

2
Z bilinearly.

Using the multiplicity m, Lipshitz, Ozsváth and Thurston [11] define a bilinear “linking”
function LW H1.Z; B/�H1.Z; B/! 1

2
Z as

L.˛1; ˛2/ WDm.˛2; @˛1/;
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where @ is the connecting homomorphism @W H1.Z; B/!H0.B/ from the long exact
sequence for the pair .Z; B/. Note that L is antisymmetric; equivalently, L.˛; ˛/D 0
for any ˛ . Using L, we can define a group G0.Z/ as follows:

Definition 6.4 [11, Definition 3.33] Define "W H1.Z; B/!
�
1
2
Z
�
=Z by

".˛/D 1
4

#.parity changes in ˛/ mod 1;

where a parity change in ˛ is a point p 2 B such that m.˛; p/ is a half-integer. The
unrefined grading group G0.Z/ is the subset of 1

2
Z�H1.Z; B/ consisting of pairs

.j; ˛/ satisfying
j � ".˛/ mod 1:

The multiplication on G0.Z/ is given by

.j1; ˛1/ � .j2; ˛2/ WD .j1C j2CL.˛1; ˛2/; ˛1C˛2/I

one can check that the condition j � ".˛/ mod 1 is satisfied for the product.

For our chord diagram Z.n/, the linking function is trivial, as shown below:

Lemma 6.5 Consider the chord diagram Z.n/D .Z.n/; B;M/ of Definition 3.6. For
any ˛1; ˛2 2H1.Z.n/; B/, we have L.˛1; ˛2/D 0.

Proof Any standard basis element ˛1 2 H1.Z.n/; B/ Š Z2n will lie entirely on
some S1i , and so will have either @˛1 D 0 or @˛1 D˙.zCi � z

�
i /. Since the arcs on

either side of zCi are the same as the arcs on either side of z�i , we have m.˛2; @˛1/D 0
in all cases.

Corollary 6.6 For the chord diagram Z.n/, the unrefined grading group G0.Z.n//
of [11] is isomorphic to the subgroup of 1

2
Z�H1.Z.n/; B/Š 1

2
Z�Z2n consisting

of pairs .j; ˛/ with j � ".˛/ mod 1.

The next lemma shows that G0.Z.n// is noncanonically isomorphic to Z�Z2n .

Lemma 6.7 Write �1; ˇ1; : : : ; �n; ˇn for the generators of H1.Z.n/; B/Š Z2n . For
1� i � n, choose j �i ; j

ˇ
i 2

1
2
Z nZ. The elements

f�D .1; 0/; .j �1 ; �1/; .j
ˇ
1 ; ˇ1/; : : : ; .j

�
n ; �n/; .j

ˇ
n ; ˇn/g

form a basis of G0.Z.n// as a free abelian group.
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Proof The set is independent, so it suffices to show these elements generate G0.Z.n//.
Indeed, let .j; ˛/ be an arbitrary element of G0.Z.n//, where ˛D

Pn
iD1.a

�
i �iCa

ˇ
i ˇi /

for some integers a�i and aˇi . We have

nY
iD1

.j �i ; �i /
a�
i .j

ˇ
i ; ˇi /

a
ˇ

i D .j 0; ˛/

for some j 0 2 1
2
Z, and since j � ".˛/� j 0 mod 1, we have .j; ˛/D �a.j 0; ˛/ for

some a 2 Z.

We will use S to choose the half-integers ji above.

Definition 6.8 If i 2S , pick j �i Dj
ˇ
i D

1
2

in Lemma 6.7. If i …S , pick j �i Dj
ˇ
i D�

1
2

.
We get an isomorphism ‚S from G0.Z.n// to Z�Z2n by sending

� �D .1; 0/ 7! .1; 0/;

� .j �i ; �i / 7! .0; �i /;

� .j
ˇ
i ; ˇi / 7! .0; ˇi /.

We now define a grading by G0.Z.n// on A.n; k;S/, following [11, Definition 3.38].
Applying ‚S to this grading, we will get the combinatorially defined Maslov and
unrefined Alexander gradings from Section 6.1. We require one further definition.

Definition 6.9 Let .s; Ec/ be a generator of the prestrands algebra zA.n; k;S/. The
number of inversions of .s; Ec/, denoted by inv.s; Ec/, is defined as

inv.s; Ec/D
nX
iD1

invi .s; Ec/;

where invi .s; Ec/ is defined as follows:

� If s.0/\fz˙i g D¿, then invi .s; Ec/ WD 0.

� If js.0/\fz˙i gj D 1, then invi .s; Ec/ WD Ec.i/.

� If js.0/\ fz˙i gj D 2 and the two strands of s on S1i have speeds pi and qi ,
then

invi .s; Ec/ WD 1
2
jpi � qi jC 2Ec.i/:
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Note that inv.s; Ec/ is only well-defined for elements .s; Ec/ of zA.n; k;S/, not for
elements of A.n; k;S/. Visually speaking, inv.s; Ec/ counts the number of crossings
between strands in a pictorial representative of .s; Ec/ where the positions of the closed
loops are chosen to avoid triple intersections. The terms Ec.i/ and 2Ec.i/ then account
for crossings between strands of s and closed loops.

Definition 6.10 Let .s; Ec/ be a basis element of zA.n; k;S/. Let �1; ˇ1; : : : ; �n; ˇn
denote the generators of H1.Z.n/; B/Š Z2n . The homology class of .s; Ec/, denoted
by Œs; Ec� 2H1.Z.n/; B/, is the sum of the relative homology classes represented by
the strands of s viewed as paths in Z.n/, together with the additional term

nX
iD1

Ec.i/.�i Cˇi /

accounting for closed loops.

As in [11, Definition 3.38], we can use the homology classes Œs; Ec� and the multiplicity
function m to “correct” the quantity inv.s; Ec/, allowing it to descend to A.n; k;S/.

Lemma 6.11 Let .s; Ec/ be a basis element of the prestrands algebra zA.n; k;S/. We
have

Œs; Ec�D Œs0; Ec� and inv.s; Ec/�m
�
Œs; Ec�; Œs.0/�

�
D inv.s0; Ec/�m

�
Œs0; Ec�; Œs0.0/�

�
;

where s0 is obtained from s by removing all constant strands.

Proof The first claim is true because constant strands of s represent 0 in H1.Z.n/; B/.
The second claim is similar to that of [11, Proposition 3.40], but we give details for
completeness.

We can write inv.s; Ec/�inv.s0; Ec/ as the sum of Ec.i/ over i 2 Œ1; n� with js.0/\fz˙i gjD1
such that the strand of s on S1i is constant, plus the sum of 1

2
jpi � qi j C � Ec.i/ over

i 2 Œ1; n� with js.0/\fz˙i gj D 2 such that at least one of the two strands of s on S1i
is constant, where � is the number of constant strands of s on S1i .

On the other hand, Œs; Ec�D Œs0; Ec�, and we can write m
�
Œs; Ec�; Œs.0/�

�
�m

�
Œs; Ec�; Œs0.0/�

�
as the sum of two terms. The first term is

m

�X
i

Ec.i/.�i Cˇi /; Œs.0/�

�
�m

�X
i

Ec.i/.�i Cˇi /; Œs
0.0/�

�
;

agreeing with the contribution of Ec to inv.s; Ec/� inv.s0; Ec/.

Algebraic & Geometric Topology, Volume 20 (2020)



Strands algebras and Ozsváth and Szabó’s Kauffman-states functor 3665

The second term is the sum over a 2 Œ1; k� of m
�
Œsa�; Œs.0/�

�
�m

�
Œsa�; Œs

0.0/�
�
. For

a given index a , this difference is the sum of m
�
Œsa�; Œsb.0/�

�
over b such that sb is

constant. There can be at most one nonzero term m
�
Œsa�; Œsb.0/�

�
, and if this term is

nonzero then sa and sb are different strands on the same backbone S1i for some i . In
such a case, we have m

�
Œsa�; Œsb.0/�

�
D
1
2
jpi �qi j (recall that at least one of pi and qi

vanishes). It follows that inv.s; Ec/� inv.s0; Ec/D m
�
Œs; Ec�; Œs.0/�

�
�m

�
Œs0; Ec�; Œs0.0/�

�
,

proving the lemma.

Definition 6.12 For a basis element aDE.s; Ec/ of A.n; k;S/, we define

deg0.a/D
�
inv.s; Ec/�m

�
Œs; Ec�; Œs.0/�

�
; Œs; Ec�

�
2G0.Z.n//:

Note that deg0.a/ is well-defined by Lemma 6.11, since all terms of E.s; Ec/ give
the same element .s0; Ec/ when constant strands are removed. For the condition j �
".˛/ mod 1, note that inv.s; Ec/ is an integer and we can ignore integer contributions
to m

�
Œs; Ec�; Œs.0/�

�
. For an index b with sb.0/ D sb.1/, there are no half-integer

contributions to m
�
Œs; Ec�; Œs.0/�

�
from sb , and there is also no contribution to ".˛/

from sb . For b with sb.0/¤ sb.1/, we get a contribution of 1
2

to m
�
Œs; Ec�; Œs.0/�

�
as

well as to ".˛/, since ˛ has two parity changes from sb . See also [11, Proposition 3.39].

Warning 6.13 Lipshitz, Ozsváth, and Thurston refer to inv.s; Ec/�m
�
Œs; Ec�; Œs.0/�

�
as

the “Maslov component” and Œs; Ec� as the “Spinc component” of deg0.a/. However,
this Maslov component (a half-integer in general) is different from the Maslov grading
by Z that we will extract from deg0.

The quantity inv.s; Ec/�m
�
Œs; Ec�; Œs.0/�

�
is independent of Ec , as we prove below.

Lemma 6.14 For a basis element .s; Ec/ of zA.n; k;S/, we have

inv.s; Ec/�m
�
Œs; Ec�; Œs.0/�

�
D inv.s; E0/�m

�
Œs; E0�; Œs.0/�

�
:

Proof For 1� i � n, the contributions 0, Ec.i/ or 2Ec.i/ to inv.s; Ec/ in Definition 6.9
are canceled by the contribution

Ec.i/m.�i Cˇi ; Œs.0/\fz
˙
i g�/

to m
�
Œs; Ec�; Œs.0/�

�
.
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Lemma 6.15 Let aDE.s; Ec/ 2 JxA.n; k;S/ be a basis element ; write a as

aD C
Ec.1/
1 � � �C Ec.n/n

�
p1

q1

�
1

� � �

�
pn

qn

�
n

:

We have

Œs; Ec�D

nX
iD1

.a�i �i C a
ˇ
i ˇi /;

where
a�i D Ec.i/C

�
1
2
pi
˘
C
˙
1
2
qi
�

and a
ˇ
i D Ec.i/C

˙
1
2
pi
�
C
�
1
2
qi
˘
:

Proof The terms Ec.i/ are present by the definition of Œs; Ec�. For the other terms, note
that the strands of s representing nonzero homology classes correspond to nonzero
entries pi or qi in the representation of a . An entry pi >0 represents a homology class
of a path traversing S1i for pi half-turns, with the segment ˇi being traversed one more
time than �i if pi is odd (where we identify �i and ˇi with the oriented segments on Z
in their respective relative homology classes). An entry qi >0 is similar, except that �i is
traversed one more time than ˇi if qi is odd. Counting up how many times the segments
�i and ˇi are traversed by all strands of s , we get the formulas of the lemma.

Lemma 6.16 Let aDE.s; Ec/ 2 JxA.n; k;S/ be a basis element ; write a as

aD C
Ec.1/
1 � � �C Ec.n/n

�
p1

q1

�
1

� � �

�
pn

qn

�
n

:

We have

inv.s; Ec/�m
�
Œs; Ec�; Œs.0/�

�
D

nX
iD1

�
1
2
jpi � qi j � .pi C qi /

�
:

Proof By Lemma 6.11, we may assume that s has no horizontal strands, and by
Lemma 6.14, we may assume that Ec D E0. For 1� i � n, we consider three cases:

� If s.0/\ fz˙i g D ¿, then invi .s; E0/ D 0 and Œs; E0� has coefficient zero on �i
and ˇi , so m

�
Œs; E0�; Œs.0/�

�
has no contribution from the cylinder Œ0; 1�� S1i .

We also have pi D qi D 0.

� If js.0/\fz˙i gj D 1, then invi .s; E0/D 0. Assume first that pi > 0 and qi D 0.
We have m

�
�i ; Œs.0/�

�
Dm

�
ˇi ; Œs.0/�

�
D

1
2

. Thus, by Lemma 6.15, we have

m
�
Œs; E0�; Œs.0/\fz˙i g�

�
D

1
2

�˙
1
2
pi
�
C
�
1
2
pi
˘�
D

1
2
pi :

It follows that

invi .s; Ec/�m
�
Œs; Ec�; Œs.0/\fz˙i g�

�
D�

1
2
pi D

1
2
jpi � 0j � .pi C 0/:

The case where pi D 0 and qi > 0 is similar.
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� If fz˙i g � s.0/, then invi .s; E0/D 1
2
jpi � qi j. We have

m
�
�i ; Œs.0/�

�
Dm

�
ˇi ; Œs.0/�

�
D 1;

so by Lemma 6.15, we have

m
�
Œs; E0�; Œs.0/�

�
D
�
1
2
pi
˘
C
˙
1
2
qi
�
C
˙
1
2
pi
�
C
�
1
2
qi
˘
D pi C qi :

It follows that

invi .s; Ec/�m.Œs; Ec�; Œs.0/\fz˙i g�/D
1
2
jpi � qi j � .pi C qi /:

The lemma follows from summing over i .

Proposition 6.17 For a basis element aDE.s; Ec/ of A.n; k;S/, we have

‚S.deg0.a//D .m.a/; wun.a//;

where ‚S is as defined in Definition 6.8.

Proof Let a�i and aˇi be defined as in Lemma 6.15. By definition, ‚S sends the
element

nX
iD1

�
.�1/�S.i/C1 1

2
.a�i C a

ˇ
i /; a

�
i �i C a

ˇ
i ˇi

�
to an element of Z�Z2n with first component zero. Thus, the first component of
‚S.deg0.a// is

inv.s; Ec/�m
�
Œs; Ec�; Œs.0/�

�
C

nX
iD1

.�1/�S.i/ 1
2
.a�i C a

ˇ
i /:

By Lemmas 6.16 and 6.15, this quantity equals
nX
iD1

�
1
2
jpi � qi j � .pi C qi /C .�1/

�S.i/
�
Ec.i/C 1

2
.pi C qi /

��
;

which is m.a/ by Definition 6.1.

For the rest of the components, we have �Z2n.‚S.j; ˛//D˛ , where we are identifying
H1.Z.n/; B/ with Z2n as usual. Thus, Lemma 6.15 implies that �Z2n

�
‚S.deg0.a//

�
D

wun.a/.

6.3 Where the refined gradings come from, topologically

Let Z D .Z; B;M/ be a chord diagram and let qW B ! B=M be the quotient map
defined in Section 4.5.
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Definition 6.18 [11, Section 3.3.2] The refined grading group G.Z/ of Z is the
subgroup of G0.Z/ consisting of elements .j; ˛/ with q� ı @.˛/D 0, where

q� ı @W H1.Z; B/!H0.B=M/

is the composition of q� with @W H1.Z; B/!H0.B/.

Recall from Definition 3.5 that a chord diagram Z D .Z; B;M/ determines a sutured
surface F.Z/ that is built by attaching 1–handles to Z � Œ0; 1� according to the
matching M. Lipshitz, Ozsváth and Thurston [11, Section 3.3.2] show how to identify
the kernel of q� ı @ with the homology group H1.F.Z//. Correspondingly, they
identify G.Z/ (noncanonically) with a central extension of H1.F.Z// by Z, where
ghD hg�2Œg�\Œh� for g; h 2G.Z/. Here Œg� denotes the image of g in H1.F.Z//.

Remark 6.19 One can also describe G.Z/ in terms of nonvanishing vector fields as
in Seiberg–Witten theory; see [11, Remark 3.48].

As discussed in Section 3.3, the surface F.Z.n// is an n–punctured disc; the circular
backbones of Z.n/ provide a basis for H1

�
F.Z.n//

�
. The intersection pairing on

H1
�
F.Z.n//

�
is trivial, so G.Z.n// is abelian (in fact, G.Z.n// is a subgroup of

G0.Z.n// and G0.Z.n// is already abelian).

In [11, Remark 3.47], Lipshitz, Ozsváth and Thurston mention that in some cases one
can obtain a grading by G.Z/ from a grading by G0.Z/ by applying a homomorphism
from G0.Z/ to G.Z/ fixing G.Z/ as a subgroup of G0.Z/ (extension of scalars is
usually required to define such a homomorphism, and even then it does not always exist).

In our case, the homomorphism exists and the extension of scalars is unproblematic,
so we do not need to make choices for each idempotent as in [11, Section 3.3.2].
Indeed, the isomorphism ‚S from Definition 6.8 sends G.Z.n// to the subgroup of
Z�Z2n generated by .1; 0/ and .0; �i Cˇi / for all i , regardless of S . This subgroup
is isomorphic to Z�Zn , where we identify .0; �i C ˇi / with .0; ei /. We can thus
extend scalars by replacing G.Z.n// with Z�

�
1
2
Z
�n . We have a homomorphism ‰

from Z�Z2n to Z�
�
1
2
Z
�n sending

� .1; 0/ 7! .1; 0/,

� .0; �i / 7!
�
0; 1
2
ei
�
, and

� .0; ˇi / 7!
�
0; 1
2
ei
�
.
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Conjugating by the isomorphisms ‚S , we get a homomorphism ‰S W G
0.Z.n//!

G.Z.n// such that the diagram

G0.Z.n//
‚S

Š
//

‰S

��

Z�Z2n

‰
��

G.Z.n//
‚S

Š
// Z�

�
1
2
Z
�n

commutes. The generators .1; 0/ and .0; �i Cˇi / of ‚S
�
G.Z.n//

�
�‚S

�
G0.Z.n//

�
are sent to themselves by ‰ , so ‰S fixes the original (unextended) G.Z.n// as a
subgroup of G0.Z.n//. Note that ‰S is independent of S .

Definition 6.20 For a basis element a of A.n; k;S/, define deg.a/ WD‰S.deg0.a//,
an element of the (extended) grading group G.Z.n// Š Z�

�
1
2
Z
�n . Since ‰ (and

thus ‰S ) is a group homomorphism preserving �D .1; 0/, this grading is well-defined.

Corollary 6.21 For a basis element aDE.s; Ec/ of A.n; k;S/, we have ‚S.deg.a//D
.m.a/; w.a//.

Proof By definition, ‚S.deg.a//D‰
�
‚S.deg0.a//

�
, which equals ‰.m.a/; wun.a//

by Proposition 6.17. Since ‰ sends both �i and ˇi to 1
2
ei , we have ‰.m.a/; wun.a//D

.m.a/; w.a//.

7 Symmetries

Now we will define analogues of the symmetries � and o from [16, Section 4.5]
for the strands algebras A.n; k;S/ (see Definition 2.21 for a brief review, as well as
[24, Section 3.6] where these symmetries were first introduced). We use the notation
of [16, Section 4.5] and Definition 2.21.

Proposition 7.1 For a generator a of JxA.n; k;S/Jy , write

aD Ci1 � � �Cil

�
p1

q1

�
1

� � �

�
pn

qn

�
n

as in Lemma 5.4. Define an array of vectors
�p0
i

q0
i

�
i

by p0i D qnC1�i and q0i D pnC1�i .
The expression

CnC1�i1 � � �CnC1�il

�
p01
q01

�
1

� � �

�
p0n
q0n

�
n

represents a valid generator of J�.x/A.n; k; �.S//J�.y/ .
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Proof The conditions of Lemma 5.4 are invariant under replacing Ci with CnC1�i ,
pi with qnC1�i , qi with pnC1�i , x with �.x/, y with �.y/, and S with �.S/. For
example, to see that the new condition (iii) is satisfied, note that if i … �.x/, then
n� i … x , so qn�i D pnC1�i D 0 by the old condition (iii). The rest of the conditions
are similar. Also note that �.y/ is the element of V.n; k/ that Lemma 5.4 constructs
given �.x/ and the array of vectors

�p01
q01

�
1
� � �
�p0n
q0n

�
n

.

Definition 7.2 For a generator a of JxA.n; k;S/Jy , define

�.a/ 2 J�.x/A.n; k; �.S//J�.y/

to be the generator constructed in Proposition 7.1.

We thus have an I.n; k/–linear map �W A.n; k;S/!A.n; k; �.S//, where the action
of I.n; k/ on A.n; k; �.S// is modified so that Jx acts via the usual action by J�.x/ .
We claim that � is an involution of dg algebras over I.n; k/, after suitable modifications
to the gradings.

Proposition 7.3 As in [16, Section 4.5], modify the unrefined Alexander multigrading
on A.n; k; �.S// by postcomposing the degree function with the involution of Z2n

sending �i to ˇnC1�i and sending ˇi to �nC1�i . Then the map � is a homomorphism
of dg algebras from A.n; k;S/ to A.n; k; �.S// and satisfies �2 D id. Similar grading
statements hold for the refined and single Alexander gradings.

Proof The equation �2 D id is immediate from the definition of � . To see that �
respects multiplication, let a2JxA.n; k;S/Jy and a0 2JyA.n; k;S/Jz . The product
a � a0 is given by Lemma 5.11. If it is zero, then one can check that �.a/ � �.a0/ is
also zero. Otherwise, �.a/ � �.a0/ has the same idempotents, Ci variables and array of
vectors as �.a � a0/, so �.a/ � �.a0/D �.a � a0/. Similarly, Lemma 5.12 implies that �
respects the differential. One can check that � respects the gradings of Definition 6.1
after the above modification.

Next we define a symmetry o on our strands algebras.

Proposition 7.4 For a generator a of JxA.n; k;S/Jy , write

aD Ci1 � � �Cil

�
p1

q1

�
1

� � �

�
pn

qn

�
n
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as in Lemma 5.4. The expression

Ci1 � � �Cil

�
q1

p1

�
1

� � �

�
qn

pn

�
n

represents a valid generator of JyA.n; k;S/Jx .

Proof As with Proposition 7.1, one can check that the conditions of Lemma 5.4 for
the old expression imply the conditions for the new expression, and that x 2 V.n; k/
is the vertex selected by Lemma 5.4 given y and the new array of vectors.

Definition 7.5 For a generator a of JxA.n; k;S/Jy , define

o.a/ 2 JyA.n; k;S/Jx

to be the generator constructed in Proposition 7.4.

We thus have a I.n; k/–linear map oW A.n; k;S/! A.n; k;S/, where the I.n; k/–
algebra structure on the target side is unmodified (unlike for �). We claim that o
respects multiplication, differential and gradings when we take the opposite algebra on
the target side.

Proposition 7.6 Modify the unrefined Alexander multigrading on .A.n; k;S//op by
postcomposing the degree function with the involution of Z2n sending �i to ˇi and
sending ˇi to �i . The map o is a homomorphism of dg algebras from A.n; k;S/ to
.A.n; k;S//op and satisfies o2 D id. Similar statements hold for the refined and single
Alexander gradings.

Proof As in Proposition 7.3, the proof amounts to checking that Lemmas 5.11 and 5.12
and Definition 6.1 are compatible with the symmetry o. We omit the detailed checks.

Note that � ı oD o ı � , properly interpreted.

Remark 7.7 The symmetries � and o on the strands algebras may be understood
visually as follows, in terms of the graphical interpretation of Section 4: � is rotation by
180 degrees around a horizontal line, and o is rotation by 180 degrees around a vertical
line (both lines are in the plane of the page as drawn). See Figure 20 for an illustration.
The group of orientation-preserving self-diffeomorphisms of Œ0; 1��Z.n/ preserving
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�

o

Figure 20: Graphical interpretation of the symmetries � and o on the strands
algebra A.n; k;S/ .

the matching data, modulo isotopies among such diffeomorphisms, is Z=2Z�Z=2Z.
The rotations corresponding to � and o may be taken as generators. Thus, all geometric
symmetries of Œ0; 1��Z.n/ are reflected in the algebras A.n; k;S/. We will relate
these symmetries with the symmetries � and o on B.n; k;S/ in Section 9.3.

8 Homology of the strands algebra

The goal of this section is to compute the homology of A.n; k/ D A.n; k;¿/. The
homology of A.n; k;S/ for general S will then follow from Theorems 2.20 and 9.9.

Algebraic & Geometric Topology, Volume 20 (2020)



Strands algebras and Ozsváth and Szabó’s Kauffman-states functor 3673

By [16, Lemma A.17], the homology H�.A.n; k// is still an I.n; k/–algebra, and it
can be decomposed as

H�.A.n; k//D
M

x;y2V.n;k/

JxH�.A.n; k//Jy ;

where JxH�.A.n; k//Jy D H�.JxA.n; k/Jy/. Thus, it suffices to compute the
homology of each summand JxA.n; k/Jy . Since JxA.n; k/Jy D 0 if x and y are
far (see Lemma 4.19), we can focus on the case when x and y are not far.

Before computing JxH�.A.n; k//Jy , we introduce some notation that will be useful
later. Recall from Definition 4.5 that the differential @ D @0 on A.n; k/ is a sum
over differentials @i on each circular backbone S1i . We can augment this notation as
follows.

Definition 8.1 Given a subset S � Œ1; n�, we define a new differential @S on A.n; k/
by

@S WD
X
i2S

@i :

By a simple generalization of the arguments in Section 4.3, @S gives a well-defined
differential on A.n; k/. The following lemma follows from a comparison of the sets
S, T , S [T and S \T .

Lemma 8.2 For all subsets S; T � Œ1; n�, we have @S C @T D @S[T C @S\T .

Corollary 8.3 If S1 t � � � tSa D Œ1; n� is a partition of Œ1; n�, then

@S1 C � � �C @Sa D @D @Œ1;n�:

8.1 A splitting theorem

In this section we present an important theorem on the structure of any summand
JxA.n; k/Jy of our strands algebra, whose proof will occupy Sections 8.2, 8.3 and 8.4.
The idea is as follows. The differential @ acts on each backbone S1i independently,
and S1i only admits certain types of strands depending on whether S1i corresponds
to a crossed line or a member of a generating or edge interval from x to y . Thus
we expect a tensor product decomposition for JxA.n; k/Jy based on the generating
interval data, similar to [16, Corollary 4.16] for IxB.n; k;S/Iy .

As in [16, Section 4.3], let x;y 2 V.n; k/ be not far. Based on the structure of
the generating intervals and edge intervals for x and y , we introduce a regrading
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of the generating and edge algebras xA.l/ and xA�.l/ from Definitions 5.5 and 5.7.
Let CLx;y be the set of crossed lines from x to y (see Definition 2.13), and let
Œj1C 1; j1C l1�; : : : ; Œjb C 1; jb C lb� be the generating intervals for x and y (see
Definition 2.15), of lengths l1; : : : ; lb respectively, ordered so that j1 < � � �< jb .

Definition 8.4 For a generating interval G D ŒjaC 1; jaC la� between x and y , we
have a canonical isomorphism of differential algebras

(8-1)  G W JŒjaC1;jaCla�1�A.n; la � 1/JŒjaC1;jaCla�1�! xA.la/;

by a simple reindexing of the circular backbones, omitting the empty ones. Rede-
fine the Alexander multigradings on xA.la/ by shifting the indices by ja , so that
�i ; ˇi 7! �iCja ; ˇiCja and the isomorphism preserves the Maslov grading and all
Alexander gradings from Definition 6.1.

Similarly, if G D Œn� lbC1C 1; n�� is a right edge interval for x and y , there is a
canonical isomorphism

(8-2)  G W JŒn�lbC1C1;n�A.n; lbC1/JŒn�lbC1C1;n�! xA�.lbC1/:

Modify the Alexander gradings on xA�.lbC1/ so that  G preserves them as above.

If GD ŒŒ1; l0� is a left edge interval for x and y , then there is a canonical isomorphism

(8-3)  G W JŒ0;l0�1�A.n; l0/JŒ0;l0�1�! xA�.l0/:

Note that there is no need to redefine the Alexander multigrading on xA�.l0/ in this
case, because  G already preserves it. If G D ŒŒ1; n�� is a two-faced edge interval for
x and y , then xA��.n/D JŒ0;n�A.n; nC 1/JŒ0;n� by definition.

We will also use the graded polynomial algebra F2ŒUi j i 2 CLx;y � for crossed lines as
in the S D¿ case of [16, Definition 4.15]. As described there, F2ŒUi j i 2 CLx;y � has
zero differential, and it carries an Alexander multigrading defined by

wi .1/D

�1
2

if i 2 CLx;y ;

0 otherwise,

with multiplication by Uj increasing wi by ıi;j . Because we have S D¿ here, all of
F2ŒUi j i 2 CLx;y � is placed in Maslov degree zero.

Theorem 8.5 Let x;y 2 V.n; k/ be not far. With notation as above, there is an
isomorphism of chain complexes over F2 ,

 W JxA.n; k/Jy
��! F2ŒUi j i 2 CLx;y �˝ xAı.l0/˝ xA.l1/˝� � �˝ xA.lb/˝ xAı.lbC1/;
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which respects both the Alexander and the Maslov gradings , where the algebras xAı.l0/
and xAı.lbC1/ are defined as follows:

� If there is a left edge interval ŒŒ1; l0�, then we set xAı.l0/D xA�.l0/; otherwise
we set xAı.l0/D F2 .

� If there is a right edge interval Œn � lbC1 C 1; n��, then we set xAı.lbC1/ D
xA�.lbC1/; otherwise we set xAı.lbC1/D F2 .

� If x D y D Œ0; n� (ie ŒŒ1; n�� is a two-faced edge interval for x and y ), then we
set the target of  to be xA��.n/.

The Alexander and Maslov gradings on the right-hand side are specified in Definition 8.4.

Proving Theorem 8.5 is the goal of Sections 8.2, 8.3 and 8.4.

Remark 8.6 Just as in [16, Remark 4.17], concerning the splitting of IxB.n; k;S/Iy ,
we could also assign unrefined Alexander gradings to the tensor factors in Theorem 8.5
in such a way that  respects these gradings as well.

8.2 Definition of  

Fix x;y 2 V.n; k/. If x D y D Œ0; n�, then the map  of Theorem 8.5 is simply the
identity map of xA��.n/. Otherwise, there is not a two-faced edge interval and we will
build the map  by focusing on one tensor factor in the image at a time.

Let a 2 JxA.n; k/Jy be a standard basis element

aD

�
p1

q1

�
1

� � �

�
pn

qn

�
n

:

If i 2 CLx;y , then by Lemma 5.14 there must be a single strand on the i th backbone,
so one of pi or qi is zero and the other one is odd (which of pi or qi is zero is
determined by the sign of vi .x;y/). To each crossed line i , then, we can associate the
monomial U .piCqi�1/=2i 2 F2ŒUi �. Note that the corresponding strand winds on the
i th backbone by pi C qi half twists.

Lemma 8.7 Given a standard basis element

aD

�
p1

q1

�
1

: : :

�
pn

qn

�
n

2 JxA.n; k/Jy

and a generating interval G D Œj C 1; j C l � from x to y , the restriction

ajG WD

�
pjC1

qjC1

�
jC1

� � �

�
pjCl

qjCl

�
jCl
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of a to G is a well-defined basis element of

JŒjC1;jCl�1�A.n; l � 1/JŒjC1;jCl�1�:

Moreover, the differential @G (see Definition 8.1) satisfies .@Ga/jG D @.ajG/.

Geometrically, ajG is obtained by restricting the support of a to the circular backbones
labeled j C 1; : : : ; j C l .

Proof By the discussion in Section 8.1, we may equivalently view ajG as an element
of xA.l/; we must show that the conditions of Lemma 5.6 are satisfied. Condition (1) for
ajG follows from condition (ii) of Lemma 5.4 for a , while condition (3) follows from
Lemma 5.14 since no line in a generating interval is crossed (see Proposition 2.16).

For condition (2) of Lemma 5.6, we show that pjC1 D 0; the proof that qjCl D 0
is similar. First suppose that j … x . Condition (iii) of Lemma 5.4 then implies that
pjC1 D 0. Now suppose that j 2 x . By the definition of generating interval, the
coordinate j is not fully used, so j … y . Since line j C 1 is not crossed, we must
have line j crossed with vj .x;y/D�1, and Lemma 5.14 then ensures that pj D 0
and qj is odd. From here, condition (ii) of Lemma 5.4 implies that pjC1 D 0.

The fact that the restriction commutes with the differential amounts to ensuring that
@jC1aD @jClaD 0, since (5-2) of Lemma 5.12 implies that @jC1ajG D @jClajG D 0
(all other summands of the differential commute trivially). For @jC1a , if j … x then
@jC1a D 0 by (5-2), while if j 2 x then qj is odd, so @jC1a D 0 by the final case
of (5-3). The analysis for @jCla is similar.

We have analogous statements when G is an edge interval, with similar proofs.

Lemma 8.8 Given a standard basis element

aD

�
p1

q1

�
1

: : :

�
pn

qn

�
n

2 JxA.n; k/Jy

and a left edge interval G D ŒŒ1; l� from x to y , the restriction

ajG D

�
p1

q1

�
1

� � �

�
pl

ql

�
l

of a to G is a well-defined basis element of JŒ0;l�1�A.n; l/JŒ0;l�1� .

Moreover, the differential @G satisfies .@Ga/jG D @.ajG/.
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Lemma 8.9 Given a standard basis element

aD

�
p1

q1

�
1

: : :

�
pn

qn

�
n

2 JxA.n; k/Jy

and a right edge interval G D Œn� l C 1; n�� from x to y , the restriction

ajG D

�
pn�lC1

qn�lC1

�
n�lC1

� � �

�
pn

qn

�
n

of a to G is a well-defined basis element of JŒn�lC1;n�A.n; l/JŒn�lC1;n� .

Moreover, the differential @G satisfies .@Ga/jG D @.ajG/.

Suppose that x and y are not far. Let G1; : : : ; Gb denote the generating intervals, and
G� and G� denote the edge intervals if they exist.

Definition 8.10 For a basis element

aD

�
p1

q1

�
1

� � �

�
pn

qn

�
n

of JxA.n; k/Jy , we define  .a/D a if ŒŒ1; n�� is a two-faced edge interval from x

to y . Otherwise, we define

 .a/ WD

� Y
i2CLx;y

U
.piCqi�1/=2
i

�
˝ G�.ajG�/˝ G1.ajG1/˝ � � �˝ Gb .ajGb /

˝ G�.ajG�/;

where we set  G�.ajG�/D 1F2 (resp.  G�.ajG�/D 1F2 ) if there is no left (resp. right)
edge interval (the various maps  Gj are the isomorphisms described in (8-1), (8-2)
and (8-3)).

Next, we will show that  is a chain map and that it preserves the gradings.

Lemma 8.11 The differential @ on JxA.n; k/Jy satisfies

@D @G� C @G1 C � � �C @Gb C @G�

for the various intervals Gj described above (if either G� or G� is empty, we have
@¿ D 0).

Proof By Proposition 2.16, generating intervals, edge intervals and crossed lines form
a partition of Œ1; n�. Therefore, by Corollary 8.3,

@D @G� C @G1 C � � �C @Gb C @G� C
X

i2CLx;y

@i
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on JxA.n; k/Jy . If line i is crossed, then by Lemma 5.14 any basis element a
of JxA.n; k/Jy has only one strand on the i th backbone. Thus, by Definition 4.5,
@ia D 0. It follows that, for all i 2 CLx;y , @i vanishes on JxA.n; k/Jy , and the
lemma is proved.

Corollary 8.12 The map  of Definition 8.10 is a chain map.

Proof For any basis element a2JxA.n; k/Jy , we rename G0 WDG� and GbC1 WDG�
(again allowing for either to be the empty interval). We then use Lemmas 8.11 and 8.7
to compute

 .@a/D  .@G0aC @G1aC � � �C @GbaC @GbC1a/D

bC1X
dD0

 .@Gda/

D

bC1X
dD0

� Y
i2CLx;y

U
.piCqi�1/=2
i

�
˝ G0.ajG0/˝ � � �˝ Gd .@ajGd /

˝ � � �˝ GbC1.ajGbC1/

D

bC1X
dD0

� Y
i2CLx;y

U
.piCqi�1/=2
i

�
˝ G0.ajG0/˝ � � �˝ @. Gd .ajGd //

˝ � � �˝ GbC1.ajGbC1/

D @. .a//:

To derive the equality on the second line, note that no term in the differential can affect
strands on backbones corresponding to crossed lines (see the proof of Lemma 8.11), so
that

Q
i2CLx;y

U
.piCqi�1/=2
i is indeed the first factor of each term in the sum. Similarly,

@Gd .ajGe /D ajGe whenever d ¤ e , while @Gd .ajGd /D @.ajGd /.

Lemma 8.13 The map  of Definition 8.10 preserves the Alexander multigrading
and the Maslov grading.

Proof We have already seen how the Alexander multigrading wi is preserved under
each  Gj for i in a generating or edge interval Gj , and since generating intervals, edge
intervals and crossed lines form a partition of Œ1; n� (Proposition 2.16), it only remains
to verify the preservation for the crossed lines. This claim follows from the definition
of the grading on the crossed-lines algebra (recall that wi .1/ WD 1

2
if i 2 CLx;y , which

offsets the �1 in the numerator of U .piCqi�1/=2i ).

The Maslov grading is similar. Since the grading on the tensor product will be a sum of
gradings on each factor, and the generating interval factors preserve their contributions
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to this sum, we again only mention the crossed lines. Note that for a crossed line i , one
of pi or qi is zero, so that jpi � qi j D pi C qi , and so the corresponding summand in
Definition 6.1 is

1
2
jpi � qi j � .pi C qi /C

�
0C 1

2
.pi C qi /

�
D

1
2
.jpi � qi j � .pi C qi //D 0;

agreeing with the Maslov grading on the crossed-lines algebra.

8.3 Definition of �

In this subsection we define a map

�W F2ŒUi j i 2 CLx;y �˝ xAı.l0/˝ xA.l1/˝ � � �˝ xA.lb/˝ xAı.lbC1/! JxA.n; k/Jy

which will be the inverse to  .

For a crossed line i from x to y , we define, for a nonnegative integer r ,

(8-4) �ix;y.r/D

(�
1C2r
0

�
i

if vi .x;y/DC1;�
0

1C2r

�
i

if vi .x;y/D�1:

Recall that, given a generating interval Œj C1; j C l � from x to y and a standard basis
element a 2 JŒjC1;jCl�1�A.n; l � 1/JŒjC1;jCl�1� , we denote the array of vectors
defining it by

Ar.a/D
�
pjC1

qjC1

�
jC1

� � �

�
pjCl

qjCl

�
jCl

(see Lemma 5.4, noting that all of the other vectors would have zeroes as entries). Note
that Ar.a/ itself does not record the ingoing and outgoing idempotents, so we can
interpret it as a standard basis element in another idempotent as necessary. Arrays
Ar.a/ for edge intervals are defined similarly.

Definition 8.14 Given a monomial
Q
i2CLx;y

U
ri
i in F2ŒUi j i 2 CLx;y � and standard

basis elements ac 2 xA.lc/, define an array of vectors

(8-5) Ar
� Y
i2CLx;y

U
ri
i ; a1; : : : ; ab

�

WD

� Y
i2CLx;y

�ix;y.ri /

�
�Ar. �1G1 .a1// � � �Ar. �1Gb .ab//;

where we implicitly put the vectors appearing on the right side of the equation in
increasing order. By Proposition 2.16, no line can be a crossed line while also belonging
to a generating interval, so each vector in (8-5) appears with a different index.

Algebraic & Geometric Topology, Volume 20 (2020)



3680 Andrew Manion, Marco Marengon and Michael Willis

If there is a left edge interval G� D ŒŒ1; l0�, and we have a0 2 xA�.l0/, then in (8-5)
we should include the term Ar. �1G�.a0// as well. If there is a right edge interval
G� D Œn � lbC1 C 1; n��, and we have abC1 2 xA�.lbC1/, then in (8-5) we should
include the term Ar. �1G� .abC1// as well. Lastly, if x D y D Œ0; n�, ie there is a two-
faced interval, then our monomial

Q
i2CLx;y

U
ri
i is 1 and we have a single standard

basis element a1 DW a of xA��.n/. We define Ar.a/ to be the array associated to this
basis element in Lemma 5.4.

Lemma 8.15 The array Ar
�Q

i2CLx;y
U
ri
i ; a1; : : : ; ab

�
from Definition 8.14 repre-

sents a basis element of JxA.n; k/Jy under the correspondence of Lemma 5.4.

Proof We prove the lemma in the case where there are no edge intervals. The other
cases are a straightforward variation of this proof (where one uses Lemmas 5.8 and/or 5.9
in addition to Lemma 5.6 below). We check that Ar

�Q
i2CLx;y

U
ri
i ; a1; : : : ; an

�
sat-

isfies the conditions of Lemma 5.4, hence it represents a standard basis element of
JxA.n; k/, and that the right idempotent of this basis element is Jy . Note that by
hypothesis we know that x and y are not far. We will use j below for the index i in
items (ii)–(vi) of Lemma 5.4.

Condition (i) of Lemma 5.4 is immediate because there are no Cj variables under
consideration, so we begin with condition (ii). Each of j and j C 1 is either a crossed
line or belongs to a generating interval. If j and j C 1 belong to the same generating
interval Gc , condition (ii) follows immediately from (ii) for ac . If j belongs to a
generating interval G, but j C1 does not, then qj D 0 (see Lemma 5.6). Analogously,
if j C 1 belongs to a generating interval G, but j does not, then pjC1 D 0. Lastly,
if both j and j C 1 are crossed lines, suppose that both qj and pjC1 are nonzero.
Then, by (8-4), vj .x;y/D�1 and vjC1.x;y/D 1, from which we deduce

y \ Œj; n��y \ Œj C 1; n�D x\ Œj; n��x\ Œj C 1; n�� 2 < 0;

contradicting that Œj C 1; n�� Œj; n�. Thus we must have at least one of qj or pjC1
equal to zero, and in all cases condition (ii) is satisfied.

For condition (iv) of Lemma 5.4, we consider the same cases. If j; jC12Gc , then the
condition is guaranteed by the same condition for ac . If only j (respectively j C1) is
in some G, then Lemma 5.6 implies qj D 0 (respectively pjC1 D 0) which in turn
forces pj even (respectively qjC1 even), and both cases satisfy condition (iv). Finally,
if both j and jC1 are crossed lines, equation (8-4) allows for a proof by contradiction
as above, so that in all cases condition (iv) is satisfied.
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For condition (iii), we prove the contrapositive. Assume that qj ¤ 0. If j is a crossed
line, then vj .x;y/D�1 by (8-4), so j 2 x because x and y are not far. If j belongs
to some generating interval instead, then by Lemma 5.6(2), we can conclude that line
j C 1 is also in the generating interval, so that coordinate j must be fully used and
j 2 x . The argument is similar when one assumes that pjC1 ¤ 0.

For condition (v) of Lemma 5.4, equation (8-4) implies that j belongs to a generating
interval, so condition (3) of Lemma 5.6 guarantees that pj � qj .mod 2/, as desired.

Finally, for condition (vi) of Lemma 5.4, the assumption that one of pj or qj is odd
while the other is zero implies that j is a crossed line (by condition (3) of Lemma 5.6,
j cannot be contained in a generating interval). If pj is odd, then vj .x;y/ D 1

by (8-4). Since j 2x , we must have vjC1.x;y/D 1 as well, so that jC1 is a crossed
line and (8-4) gives pjC1 odd, as desired. If qj is odd, a similar argument forces
j � 1 to be a crossed line with qj�1 odd.

We now check that the ending I–state of the element a2JxA.n; k/ defined by the array
of vectors in (8-5) is indeed y . Let y 0 denote the ending I–state of a as characterized
in Lemma 5.4. We will show that y � y 0, which is sufficient since jyj D jxj D jy 0j.

Suppose j 2 y . If j …x , then we must have either vj .x;y/D 1 or vjC1.x;y/D�1.
In the first case, Ar

�Q
i2CLx;y

U
ri
i ; a1; : : : ; an

�
contains

�2rjC1
0

�
j

, and in the second
case, Ar

�Q
i2CLx;y

U
ri
i ; a1; : : : ; an

�
contains

�
0

2rjC1C1

�
jC1

. Either way, we have
j 2 y 0 by Lemma 5.4. On the other hand, if j 2 x , we have several cases to consider.
If line j is crossed, first suppose pj is odd and qj is zero. Then j 2y 0 by Lemma 5.4.
Alternatively, if pj is zero and qj is odd, then vj .x;y/D�1. Since j 2 y , we must
have vjC1.x;y/D�1. It follows that qjC1 is odd, so j 2 y 0. The argument when
line j C 1 is crossed is analogous. Finally, if neither line j nor j C 1 is crossed,
then j and j C 1 are part of a generating interval and we have pj � qj .mod 2/ and
pjC1 � qjC1 .mod 2/ by Lemma 5.6. Since j 2 x , even in the case when some or
all of these integers are zero, we must have j 2 y 0 by Lemma 5.4 and we are done.

Definition 8.16 Let
Q
i2CLx;y

U
ri
i be a monomial in F2ŒUi j i 2 CLx;y � and let

ac 2 xA.lc/ be standard basis elements. Define

�

� Y
i2CLx;y

U
ri
i ˝ a1˝ � � �˝ ab

�
to be the element of JxA.n; k/Jy represented by Ar

�Q
i2CLx;y

U
ri
i ; a1; : : : ; ab

�
.

By Lemma 8.15, � is well-defined.
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8.4 Proof of the splitting theorem

In this subsection we prove Theorem 8.5.

Lemma 8.17 The maps  and � defined in Sections 8.2 and 8.3 are inverses to each
other.

Proof Let
aD

�
p1

q1

�
1

� � �

�
pn

qn

�
n

2 JxA.n; k/Jy

be a standard basis element (we resume our practice of identifying algebra elements
and the arrays of vectors representing them). If line i is crossed, then by Lemma 5.14
we have �

pi

qi

�
i

D

(�
piCqi
0

�
i

if vi .x;y/DC1;�
0

piCqi

�
i

if vi .x;y/D�1:

In  .a/ we get a factor U .piCqi�1/=2i , which produces a factor �ix;y
�
1
2
.pi Cqi �1/

�
in �. .a//. By (8-4), this factor agrees with

�
pi
qi

�
i
. If i is in a generating or edge

interval, then
�
pi
qi

�
i

also appears as a factor in �ı .a/. As we noted after the definition
of � , a factor indexed by some number i does not appear more than once in the formula
for � ı .a/. Thus, aD � ı .a/. The proof that  ı� D id is similar and is left to
the reader.

Proof of Theorem 8.5 The map  defined in Section 8.2 is a chain map (Corollary
8.12), it preserves the Alexander multigrading and the Maslov grading (Lemma 8.13),
and it is bijective, since we exhibited an inverse map � (Lemma 8.17). Thus, it is an
isomorphism of chain complexes.

With Theorem 8.5 in hand, we set out to compute the homology JxH�.A.n; k//Jy .
By the Künneth theorem, it is enough to understand the homology of each generating
algebra and edge algebra in the decomposition of Theorem 8.5. The next several
sections are devoted to computing these homology groups.

8.5 Elements of the generating algebra in Maslov degree zero

Note that when S D ¿, Definition 6.1 implies that the Maslov degree m.a/ is
nonpositive for any a 2 A.n; k/ D A.n; k;¿/. In this subsection we study some
homogeneous elements of the generating algebra in the maximal Maslov degree, namely
zero. Throughout this section, the Alexander grading refers to the refined Alexander
grading of Definition 6.1.
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Definition 8.18 For a vector r D .r1; : : : ; rl/ 2 Zl
�0 , define

xAr.l/D fx 2 xA.l/ j w.x/D rg;

the vector subspace (or subcomplex) of xA.l/ consisting of all Alexander-homogeneous
elements of Alexander degree r .

Note that for every standard basis element x 2 xA.l/, condition (3) of Lemma 5.6
implies that we have w.x/ 2 Zl

�0 , rather than just
�
1
2
Z�0

�l .
We start with the following observation:

Proposition 8.19 If ri > 0 for all i D 1; : : : ; l , then xAr.l/D 0.

Proof If a standard basis element

aD

�
p1

q1

�
1

� � �

�
pl

ql

�
l

is in xAr.l/, then qipiC1 D 0 for all i 2 Œ1; l � 1� by Lemma 5.6, and p1 D ql D 0
by the same lemma. Therefore, at least l C 1 numbers among p1; q1; : : : ; pl ; ql must
vanish. By the pigeonhole principle, there must exist i such that pi D qi D 0, hence
ri D 0. The result follows.

Definition 8.20 For each r 2 Zl
�0 , we define an element ar 2 xAr.l/ by

(8-6) ar WD JŒ1;l�1�
Y
i Wri¤0

��
2ri

0

�
i

C

�
0

2ri

�
i

�
JŒ1;l�1�:

Note that after expanding the product defining ar , some terms may vanish. For example,
if ri ¤ 0 for all i , then ar must vanish by Proposition 8.19. The role of the two factors
JŒ1;l�1� is to kill the possible terms containing

�
2r1
0

�
1

or
�
0
2rl

�
l
, which are not in the

generating algebra.

Lemma 8.21 For each r 2 Zl
�0 , we have m.ar/D 0.

Proof Each factor
�
2ri
0

�
i
C
�
0
2ri

�
i

of ar appearing in (8-6) has vanishing Maslov
degree by Definition 6.1. The Maslov degree of their product therefore vanishes too.

Remark 8.22 By Definition 6.1, the Maslov degree m.a/ of any homogeneous ele-
ment a 2 xAr.l/ is nonnegative. By expanding (8-6), one can check that if ri D 0 for
some i , then ar¤0, so the Maslov degree of ar is the maximal Maslov degree in xAr.l/.
In fact, ar is the sum of all standard basis elements of xAr.l/ in Maslov degree 0.
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Lemma 8.23 For all r and r 0, we have ar � ar
0

D arCr
0

(taking the product in xA.l/).

Proof First note that if both ri and r 0i are nonvanishing, then��
2ri

0

�
i

C

�
0

2ri

�
i

�
�

��
2r 0i
0

�
i

C

�
0

2r 0i

�
i

�
D

�
2.ri C r

0
i /

0

�
i

C

�
0

2.ri C r
0
i /

�
i

;

since the products
�
2ri
0

�
i
�
�
0
2r 0
i

�
i

and
�
0
2ri

�
i
�
�2r 0

i

0

�
i

vanish by condition (V) of Lemma 5.11.
It follows that ar � ar

0

is the product of the elements�
2.ri C r

0
i /

0

�
i

C

�
0

2.ri C r
0
i /

�
i

over i such that at least one of ri and r 0i is nonzero. The result is arCr
0

.

A separate note should be made for the cases i D 1 and i D l , for which the factor�
2ri
0

�
i
C
�
0
2ri

�
i

is replaced by either
�
0
2ri

�
i

or
�
2ri
0

�
i
. In these cases, we have�

0

2r1

�
1

�

�
0

2r 01

�
1

D

�
0

2.r1C r
0
1/

�
1

and
�
2rl

0

�
l

�

�
2r 0
l

0

�
l

D

�
2.rl C r

0
l
/

0

�
l

:

8.6 Elements of the edge algebras in Maslov degree zero

In the case of the edge algebras, we have elements ar
�

, ar� and ar
��

analogous to ar .
In this subsection, ı denotes either �, � or �� .

Definition 8.24 For a vector r D .r1; : : : ; rl/ 2 Zl
�0 , define

xA
r
ı .l/D fx 2 xAı.l/ j w.x/D rg;

the vector subspace (or subcomplex) of xAı.l/ consisting of all Alexander-homogeneous
elements of Alexander degree r .

Definition 8.25 For each r 2 Zl
�0 , we define

a
r

�
WD JŒ0;l�1�

Y
i Wri¤0

��
2ri

0

�
i

C

�
0

2ri

�
i

�
JŒ0;l�1� 2 xA�.l/;

a
r
� WD JŒ1;l�

Y
i Wri¤0

��
2ri

0

�
i

C

�
0

2ri

�
i

�
JŒ1;l� 2 xA�.l/;

a
r

��
WD JŒ0;l�

Y
i Wri¤0

��
2ri

0

�
i

C

�
0

2ri

�
i

�
JŒ0;l� 2 xA��.l/:
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The proofs of the next two lemmas are similar to those of Lemmas 8.21 and 8.23, and
are omitted.

Lemma 8.26 For each r 2 Zl
�0 , we have m.a

r
ı/D 0.

Remark 8.27 By expanding the equations in Definition 8.25, we have that arı ¤ 0
for all r 2 Zl

�0 . Thus, as in Remark 8.22, the Maslov degree of arı is the maximal
Maslov degree in xArı .l/. Moreover, one could characterize arı as the sum of standard
basis elements of xArı .l/ in Maslov degree 0.

Lemma 8.28 For all r and r 0, we have arı � a
r 0

ı D a
rCr 0

ı .

8.7 The homology of A.n; k/

The main technical result we use in this section is the following lemma, whose proof
we postpone.

Lemma 8.29 For all l > 0 and r 2 Zl
�0 :

(1) If ri D 0 for some i 2 Œ1; l�, then H�. xAr.l//Š F2 ; otherwise , H�. xAr.l//D 0.

(2) H�. xA
r

�
.l//Š F2 .

(3) H�. xA
r
�.l//Š F2 .

(4) H�. xA
r

��
.l//Š F2 .

In all nonzero cases, the homology is generated by the cycle arı . In particular, by
Lemmas 8.21 and 8.26, it is concentrated in Maslov degree zero.

We will prove that arı is indeed a cycle while proving Lemma 8.29.

From Lemma 8.29 we deduce the following theorem, in which F2ŒU1; : : : ; Ul � is
endowed with an Alexander multigrading by setting

wi .1/D 0; wi .Uj /D ıi;j for all i; j 2 f1; : : : ; lg:

We define the Maslov grading to be zero on F2ŒU1; : : : ; Ul �.

Theorem 8.30 For all l > 0, we have the following isomorphisms of graded F2–
vector spaces:

(1) H�. xA.l//Š F2ŒU1; : : : ; Ul �=.U1 � � �Ul/.

(2) H�. xA�.l//Š F2ŒU1; : : : ; Ul �.
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(3) H�. xA�.l//Š F2ŒU1; : : : ; Ul �.

(4) H�. xA��.l//Š F2ŒU1; : : : ; Ul �.

In all the cases , the isomorphism sends arı to U r11 � � �U
rl
l

.

Proof We prove case (1); the proof in the other cases requires only slight modification.
Note that we have a splitting

xA.l/D
M
r2Zl

�0

xAr.l/

as chain complexes, by Proposition 6.2. Thus we have a natural splitting

H�. xA.l//D
M
r2Zl

�0

H�. xA
r.l//D

M
r2Zl

�0

9i WriD0

F2Œa
r �;

by Lemma 8.29.

We define a linear map

LW H�. xA.l//!
F2ŒU1; : : : ; Ul �

U1 � � �Ul

by setting L.ar/DU r11 � � �U
rl
l

. The check that the map is bijective and that it preserves
the gradings is left to the reader.

Note that L is in fact an isomorphism of F2–algebras by Lemmas 8.23 and 8.28.

Corollary 8.31 For x;y 2 V.n; k/, there is an isomorphism

(8-7)  W JxH�.A.n; k//Jy

��!

�
0 if x and y are far,
F2ŒU1; : : : ; Un�=.pG jG generating interval/ otherwise.

The Maslov grading on the right-hand side of (8-7) is zero, and the Alexander multi-
grading on the right-hand side of (8-7) is defined as

wi .1/ WD

�1
2

if i 2 CLx;y ;

0 otherwise,
wi .Uj / WD ıi;j :

Proof Theorem 8.5 gives us a decomposition of JxA.n; k/Jy into a tensor product,
and the Künneth theorem for tensor products over F2 guarantees that we can compute
the overall homology by tensoring together the homologies of the different factors.
The factor F2ŒUi j i 2 CLx;y � corresponding to the crossed lines has no differential,
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while the homologies of the generating intervals and edge intervals are computed
in Theorem 8.30. When tensored all together, we get a graded vector space that is
isomorphic to the right-hand side of (8-7).

Corollary 8.32 Applying the inverse of the isomorphism from Corollary 8.31 to a
monomial U r11 � � �U

rn
n , we get the homology class of the element

(8-8) Jx �

Y
i2CLx;y

vi .x;y/D1

�
1C 2ri

0

�
i

�

Y
j2CLx;y

vj .x;y/D�1

�
0

1C 2rj

�
j

�

Y
k…CLx;y

rk¤0

��
2rk

0

�
k

C

�
0

2rk

�
k

�
�Jy

of JxH�.A.n; k//Jy , where again the idempotents Jx and Jy force some of these
summands to be zero.

Remark 8.33 If we compare Corollary 8.31 to Theorem 2.20, we see that the two
algebras JxA.n; k/Jy and IxB.n; k/Iy do indeed have isomorphic homology, at
least as graded vector spaces. Using the explicit formulas of [16, Corollary 4.12] and
Corollary 8.32, one can check without too much work that this isomorphism holds on
the level of graded algebras. Section 9 will be devoted to realizing this isomorphism
via a genuine map of dg algebras from B.n; k/ to A.n; k/, and more generally from
B.n; k;S/ to A.n; k;S/.

8.8 Proof of Lemma 8.29

As a first step toward proving Lemma 8.29, we study the homology of xAr
��
.1/, which

will constitute the base case for an inductive proof of the aforementioned lemma. Note
that in this case r D r is just a natural number. To simplify the notation, we will denote
the element

�
p
q

�
1

by
�
p
q

�
.

Lemma 8.34 For all r 2Z�0 , we have H�. xAr��.1//ŠF2 , generated by the cycle ar
��

and concentrated in Maslov degree zero.

Proof Let Cs � xAr��.1/ be the span of the standard basis elements
�
p
q

�
with w

�
p
q

�
D r

and m
�
p
q

�
D s . By the formulas of Definition 6.1, basis elements in Cs satisfy jp�qjD

2s C 2r , so Cs is 1–dimensional if s D �r , 2–dimensional if �r < s � 0, and 0
otherwise (recall that no element of xAr

��
.1/ has positive Maslov degree). Using the
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standard basis elements
�
p
q

�
as bases for each vector space Cs , we get isomorphisms

to F2 , F22 or 0. We do not specify how we make each basis an ordered basis, because
any order will give the same result.

Since a basis for xAr
��
.1/ is given by all vectors

�
p
q

�
with w

�
p
q

�
D r , we obtain a

splitting xAr
��
.1/ D

L0
sD�r Cs . Moreover, @.Cs/ � Cs�1 . Using the formulas of

Lemma 5.12, we can compute the matrix of each map @W Cs! Cs�1 . The resulting
chain complex is

C0
@ //

w

��

C�1
@ //

w

��

� � �
@ //C�rC1

@ //

w

��

C�r

w

��

F22 �1
1
1
1

� //F22 �1
1
1
1

� // � � � �
1
1
1
1

� //F22 . 1 1 /
//F2

The homology of this complex is 1–dimensional, concentrated in Maslov degree zero.
It is generated by the sum of the two basis elements

�
2r
0

�
C
�
0
2r

�
if r ¤ 0 and by

�
0
0

�
if

r D 0. This sum equals ar
��

by definition.

Proof of Lemma 8.29 We argue by induction on l . First suppose that l D 1.

(1) This claim follows from the fact that the only nontrivial element of xA.1/ is
a0 D

�
0
0

�
1

.

(2) For every r 2 Z�0 , there is a unique nontrivial element in xAr
�
.1/, namely ar

�
D�

2r
0

�
1

(note that in this algebra
�
0
2r

�
1

is set to 0, because it is not an element of
Jf0gA.1; 1/Jf0g ). The claim follows.

(3) This claim is analogous to (2).

(4) This claim is the content of Lemma 8.34.

For the inductive step, we now suppose that claims (1)–(4) are true for all k < l , and
we prove them for l .

(1) When ri > 0 for all i 2 Œ1; l�, by Proposition 8.19 the algebra xAr.l/ is trivial and
so is its homology. Now suppose that ri D 0 for some fixed i 2 Œ1; l�. If a 2 xAr.l/ is
a standard basis element, then pi D qi D 0. Let ILD Œ1; i �1� and IR D ŒiC1; l�1�.
Then ajIL and ajIR completely determine a . In fact, there is an isomorphism of
complexes

˛W xAr.l/! xA
r 0

� .i � 1/˝ xA
r 00

�
.l � i/
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sending a standard basis element a to  IL.ajIL/˝ IR.ajIR/, where r 0 and r 00 are
the restrictions of r to the first i �1 and the last l� i coordinates. It is straightforward
to check that the correspondence is bijective, and that it preserves the gradings (after
shifting the Alexander multigrading on xAr

00

�
.n� i/ as in Section 8.1). The fact that ˛

is a chain map follows from Lemmas 8.8 and 8.9:

˛.@a/D ˛ ı .@IL C @figC @IR/.a/D ˛ ı .@ILaC @IRa/

D . IL ı @.ajIL//˝ IR.ajIR/C IL.ajIL/˝ . IR ı @.ajIR//

D @˛.a/:

Lastly, it follows from the definition of ar that ˛.ar/D ar
0

� ˝a
r 00

�
. Thus, by induction,

H�. xA
r.l//Š F2 , generated by ar .

(2) For a standard basis element a 2 xAr
�
.l/, we have ql D 0 and pl D 2rl (see

Lemma 5.8). The map

ˇW xA
r

�
.l/! xA

r 0

��
.l � 1/frlg; a 7!  Œ1;l�1�.ajŒ1;l�1�/;

is an isomorphism of chain complexes, where frlg denotes an upward translation in
the final component of the Alexander multigrading by rl and r 0 is the restriction of r
to the first l � 1 coordinates. The result then follows from case (4) for l � 1.

(3) This claim is analogous to (2).

(4) For convenience, write r D .r; r 0/. For all p; q 2 Z�0 such that pC q D 2r ,
define Cp;q to be the submodule of xAr

��
.l/ generated by the standard basis elements a

such that ajf1g D
�
p
q

�
1

. For m 2 Z, define

Cm WD
M

p;q2Z�0
pCqD2r

mD 1
2
jp�qj�r

Cp;q:

Note that C�r D Cr;r . If �r < m � 0, then Cm D C2rCm;�m˚C�m;2rCm . For all
other values of m, we have Cm D 0. Moreover,

xA
r

��
.l/D

0M
mD�r

Cm D
M

p;q2Z�0
pCqD2r

Cp;q:

The number m is in fact the first summand of the Maslov grading, as one can check
from Definition 6.1.
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By Corollary 8.3, we have that @D @f1gC@Œ2;l� . To simplify the notation, let @1 WD @f1g
and @0 WD @Œ2;l� . For every p and q such that pC q D 2r , we have @0.Cp;q/� Cp;q .
For all m, we have @0.Cm/�Cm and @1.Cm/�Cm�1 . Thus, we can define a filtration
on xAr

��
.l/ by setting

Fs D
M
m�s

Cm:

Every filtered chain complex induces a spectral sequence. We refer the reader to [18],
and in particular to Section 2.2, for a discussion about spectral sequences arising from
filtered chain complexes. In the proof below, in Ets , the index s denotes the filtration
level (usually denoted by p ), and t denotes the page of the spectral sequence. We skip
the homological grading (usually denoted by q ) to simplify the notation. Note that
in [18] subscripts and superscripts are swapped, since McCleary deals with cochain
complexes rather than chain complexes.

The zeroth page .E0s ; d0/ of the associated spectral sequence is the associated graded
module, with differential induced by @D @1C @0 . Therefore, E0s D Fs=Fs�1 Š Cs
under the projection map sending each other summand of Fs to 0, and the differential d0
is identified with @0 . Thus we have

.E0s ; d0/Š .Cs; @0/Š
M

p;q2Z�0
pCqD2r

sD 1
2
jp�qj�r

.Cp;q; @0/;

since, as we observed, Cp;q is a @0–subcomplex of Cs .

For each p; q 2Z�0 with pCqD 2r and jp�qj D 2sC2r , we have an isomorphism
of complexes

.Cp;q; @0/
��!

(
. xA
r 0

��
.l � 1/; @/f.r; 0/gŒs� if q D 0;

. xA
r 0

� .l � 1/; @/f.r; 0/gŒs� if q ¤ 0;
induced by the map a 7!  Œ2;l�.ajŒ2;l�/ (here the brackets f � g denote an upward shift
in the Alexander multigrading and the brackets Œ � � denote an upward shift in the
Maslov grading). Note that the element brp;q WD

�
p
q

�
1
a
.0;r 0/

��
is sent under the above

isomorphism of complexes to ar
0

ı .

Thus, it follows from the inductive hypothesis that

E1s D
M

p;q2Z�0
pCqD2r

sD 1
2
jp�qj�r

F2hŒb
r
p;q�i:

Algebraic & Geometric Topology, Volume 20 (2020)



Strands algebras and Ozsváth and Szabó’s Kauffman-states functor 3691

The differential d1 on E1 is induced by @D @1C @0 . Since all elements of E1 are
represented by @0–cycles, d1D Œ@1�. Therefore, the restriction map a 7! ajf1g induces
an isomorphism of complexes

.E1; d1/Š . xA
r
��.1/; @/f.0; r

0/g

which sends Œbrp;q� 7!
�
p
q

�
. By Lemma 8.34, the second page E2 of the spectral

sequence is 1–dimensional, spanned by the homology class of the element(��2r
0

�
1
C
�
0
2r

�
1

�
� a
.0;r 0/

��
if r > 0;�

0
0

�
1
� a
.0;r 0/

��
if r D 0;

which is the element ar
��

by definition.

Therefore, E2 Š F2hŒa
r

��
�i, and we note that ar

��
must be a nonzero @0–cycle as

well as a @1–cycle. Thus, ar
��

is a @–cycle too.

Since E2 is 1–dimensional, it follows that the spectral sequence collapses at the second
page, so E2 Š E1 is the associated graded module of the homology H�. xA

r

��
.l//.

Thus, H�. xA
r

��
.l// must be 1–dimensional as well. We noted above that ar

��
is a

@–cycle, and it cannot be a @–boundary because it has Maslov degree zero, which is
maximal. Thus, fŒar

��
�g is a basis for H�. xA

r

��
.l//..

9 The quasi-isomorphism ˆ

9.1 Defining ˆ

We are now in a position to define our map ˆW B.n; k;S/!A.n; k;S/. We will use
Theorem 2.8. Recall that both B.n; k;S/ and A.n; k;S/ can be viewed as algebras
over I.n; k/.

Remark 9.1 Even when viewing B.n; k;S/ and A.n; k;S/ as algebras over the same
ring I.n; k/, we will continue to denote the basic idempotents of B.n; k;S/ by Ix

and the basic idempotents of A.n; k;S/ by Jx .

Remark 9.2 In this section, we will implicitly make the identification

B.n; k;S/Š Quiv.�.n; k;S/; zRS/

as in Section 2.
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Definition 9.3 Let x;y 2 V.n; k/ and let 
 be an edge in �.n; k;S/ from x to y .
To 
 , we associate an element ˆ.
/ of JxA.n; k;S/Jy as follows:

(1) If 
 has label Ri , let ˆ.
/D
�
1
0

�
i
.

(2) If 
 has label Li , let ˆ.
/D
�
0
1

�
i
.

(3) If 
 has label Ui and x\fi � 1; ig D¿, then let ˆ.
/D 0.

(4) If 
 has label Ui and x \ fi � 1; ig D fi � 1g, then, in B.n; k;S/, we can
factor 
 uniquely as 
 D 
 0 � 
 00, where 
 0 has label Ri and 
 00 has label Li .
Let ˆ.
/ WDˆ.
 0/ˆ.
 00/D

�
2
0

�
i
.

(5) If e has label Ui and x\fi � 1; ig D fig, then, in B.n; k;S/, we can factor 

uniquely as 
 D 
 0 � 
 00, where 
 0 has label Li and 
 00 has label Ri . Let
ˆ.
/ WDˆ.
 0/ˆ.
 00/D

�
0
2

�
i
.

(6) If 
 has label Ui and x\fi � 1; ig D fi � 1; ig, then let ˆ.
/D
�
2
0

�
i
C
�
0
2

�
i
.

(7) If 
 has label Ci , then let ˆ.
/D Ci .

By [16, Proposition 2.6], the above data defines a homomorphism of I.n; k/–algebras
ˆW Path.�.n; k;S//!A.n; k;S/. In Lemma 9.4 below, we will show that ˆ sends
the relation ideal zRS defining B.n; k;S/ to zero, so that ˆ induces a homomorphism
of I.n; k/–algebras from B.n; k;S/ to A.n; k;S/.

Visually, we imagine the map ˆ as follows. A multiplicative generator of B.n; k;S/
is an arrow in the quiver algebra, visualized as a motion of a dot across a line or as a
formal Ui or Ci generator. In mapping this motion to the strands algebra A.n; k;S/,
we imagine the line i of B.n; k;S/ as the core of the corresponding cylinder Œ0; 1��S1i
in Œ0; 1��Z.n/. A dot between two lines i and i C 1 in B.n; k;S/ corresponds to
a choice of matching .zCi ; z

�
iC1/ for A.n; k/. A motion of a dot across a line i in

B.n; k/ corresponds to the shortest oriented path around the cylinder Œ0; 1��S1i from
one matched basepoint to another in A.n; k;S/. Stationary dots are interpreted as
pairs of dashed strands for the corresponding matchings in A.n; k;S/. A Ui loop that
factors as RiLi or LiRi gets mapped to a path that loops once around S1i , starting
and ending at z�i or zCi , respectively. A nonzero Ui loop that does not factor must be
based at a vertex x with fi � 1; ig � x . This type of Ui loop corresponds to a sum
of two terms, each with a strand starting at z�i or zCi looping once around S1i and
an adjacent pair of dashed strands. Finally, a Ci generator in B.n; k;S/ is sent to a
closed loop on the cylinder Œ0; 1�� S1i . See Figures 21 and 22 for an illustration of
Definition 9.3.
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Figure 21: From left to right: images under ˆ of generators of B.5; 3/
starting at x D f0; 1; 3g and labeled R2 , L3 , U3 and C1 , respectively.

Lemma 9.4 ˆ is well-defined and respects multiplication.

Proof We must show that the relations given in Definition 2.4 are satisfied in A.n; k;S/
after applying ˆ. The description below Definition 9.3, along with the examples, should
make this lemma very plausible. We carry through the algebraic checks one case at a
time. Recall that in the visualization of B.n; k;S/, line i sits between regions i�1 and
i , and similarly in A.n; k;S/ the cylinder Œ0; 1��S1i sits between matchings .zCi�1; z

�
i /

C

Figure 22: Image under ˆ of the generator of B.5; 3/ starting at xDf0; 2; 3g
and labeled U3 .
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ˆ.R2/ˆ.R4/Dˆ.R4/ˆ.R2/ ˆ.R2/ˆ.L4/Dˆ.L4/ˆ.R2/

ˆ.L2/ˆ.L4/Dˆ.L4/ˆ.L2/ ˆ.L2/ˆ.R4/Dˆ.R4/ˆ.L2/

Figure 23: Distant commutation relations in B.5; 2/ .

and .zCi ; z
�
iC1/ (these can be viewed as matchings i � 1 and i , respectively). We will

be using Lemma 5.11 together with the convention of (5-1) throughout the proof.

� The “U vanishing relations” Ui D 0 if 
 is a loop at a vertex x 2 V.n; k/ with
x\fi � 1; ig D¿. These follow from item (3) in Definition 9.3.

� The “loop relations” RiLi D Ui and LiRi D Ui . In such a relation, let 
 be the
edge labeled Ui . By item (4) or (5) of Definition 9.3, ˆ maps the relation to zero.

� The “distant commutation relations” RiRj DRjRi , LiLj D LjLi and RiLj D
LjRi for ji � j j> 1. For a relation of the form RiRj DRjRi , both ˆ.Ri /ˆ.Rj /
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and ˆ.Rj /ˆ.Ri / are the basis element
�
1
0

�
i

�
1
0

�
j

by the formulas of Lemma 5.11. The
other cases are similar; see Figure 23.

� The “two-line pass” relations RiRiC1 D 0 and LiLi�1 D 0. For RiRiC1 D 0,
we have

ˆ.Ri /ˆ.RiC1/D
�1
0

�
i
�

�1
0

�
iC1
D 0

by condition (I) of Lemma 5.11. The relation LiLi�1 D 0 is similar, using condi-
tion (III).

� The “U central relations”, part 1: RiUj D UjRi and LiUj D UjLi . First
consider a relation of the form RiUj D UjRi . We consider several cases; first assume
ji � j j> 1. In this case we have x\fj � 1; j g D .x n fi � 1g[ fig/\fj � 1; j g.

– If x\fj � 1; j g D 0, then ˆ.Uj / is zero on both sides of the relation.

– If x\fj � 1; j g D fj � 1g, then we have

ˆ.Ri /ˆ.Uj /Dˆ.Ri /ˆ.Rj /ˆ.Lj /Dˆ.Rj /ˆ.Lj /ˆ.Ri /Dˆ.Uj /ˆ.Ri /;

using the “distant commutation relations” twice in the middle equality. The case
where x\fj � 1; j g D fj g is similar.

– If x\fj � 1; j g D fj � 1; j g, then by Lemma 5.11 we have

ˆ.Ri /ˆ.Uj /D
�1
0

�
i

�2
0

�
j
C

�1
0

�
i

�0
2

�
j
;

and ˆ.Uj /ˆ.Ri / gives the same result.

For the cases when ji � j j � 1, we note that the presence of Ri as the only nonloop
edge implies that x\fi � 1; ig D fi � 1g. First suppose j D i � 1. We consider two
subcases:

– If x\fi � 2; i � 1; ig D fi � 1g, we have

ˆ.Uj /ˆ.Ri /Dˆ.Li�1/ˆ.Ri�1/ˆ.Ri /D 0

by the “two-line pass” relations. We also have ˆ.Ri /ˆ.Uj /D 0 because the
second factor is zero.

– If x\fi � 2; i � 1; ig D fi � 2; i � 1g, we have

ˆ.Uj /ˆ.Ri /D
h�2
0

�
i�1
C

�0
2

�
i�1

i
�

�1
0

�
i
D

�2
0

�
i�1

�1
0

�
i

by Lemma 5.11 (the second summand is zero by condition (IV) of that lemma).
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Meanwhile, we have

ˆ.Ri /ˆ.Uj /D
�1
0

�
i
�

�2
0

�
i�1
D

�2
0

�
i�1

�1
0

�
i
;

so the relation holds.

If j D i C 1, we follow a parallel argument:

– If x\fi � 1; i; i C 1g D fi � 1g, we have

ˆ.Ri /ˆ.Uj /Dˆ.Ri /ˆ.RiC1/ˆ.LiC1/D 0

by the “two-line pass” relations. We also have ˆ.Uj /ˆ.Ri /D 0 because the
first factor is zero.

– If x\fi � 1; i; i C 1g D fi � 1; i C 1g, we have

ˆ.Ri /ˆ.Uj /D
�1
0

�
i
�

h�2
0

�
iC1
C

�0
2

�
iC1

i
D

�1
0

�
i

�0
2

�
iC1

by Lemma 5.11 (the first summand is zero by condition (I) of that lemma).
Meanwhile, we have

ˆ.Uj /ˆ.Ri /D
�0
2

�
iC1
�

�1
0

�
i
D

�1
0

�
i

�0
2

�
iC1

;

so the relation holds.

Finally, if j D i , then again since x\ fi � 1; ig D fi � 1g, we have ˆ.Ri /ˆ.Ui /D
ˆ.Ri /ˆ.Li /ˆ.Ri / D ˆ.Ui /ˆ.Ri /. The relations LiUj D UjLi are analogous to
RiUj D UjRi .

� The “U central relations”, part 2: UiUj D UjUi . Since both Ui and Uj are
loops, we have xD y in this case regardless of i and j, so the meaning of ˆ.Ui / and
ˆ.Uj / does not change depending on the order in which they are taken. We may also
assume i ¤ j.

– If x \ fi � 1; ig D ¿ or x \ fj � 1; j g D ¿, then either ˆ.Ui / or ˆ.Uj / is
zero and the relation holds.

– If x\fi � 1; ig D fi � 1g, then

ˆ.Ui /ˆ.Uj /Dˆ.Ri /ˆ.Li /ˆ.Uj /

Dˆ.Ri /ˆ.Uj /ˆ.Li /

Dˆ.Uj /ˆ.Ri /ˆ.Li /

Dˆ.Uj /ˆ.Ui /:
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A similar argument shows that the relation also holds if x\fi � 1; ig D fig; by
symmetry, it holds if x\fj � 1; j g D fj � 1g or x\fj � 1; j g D fj g.

– If x\fi � 1; ig D fi � 1; ig and x\fj � 1; j g D fj � 1; j g, then we consider
subcases:

� If ji � j j> 1, then ˆ.Ui /ˆ.Uj / and ˆ.Uj /ˆ.Ui / are both equal to�2
0

�
i

�2
0

�
j
C

�2
0

�
i

�0
2

�
j
C

�0
2

�
i

�2
0

�
j
C

�0
2

�
i

�0
2

�
j
:

� If j D i � 1, then

ˆ.Ui /ˆ.Uj /D
h�2
0

�
i
C

�0
2

�
i

i
�

h�2
0

�
i�1
C

�0
2

�
i�1

i
:

We have�2
0

�
i
�

�2
0

�
i�1
D

�2
0

�
i�1

�2
0

�
i
;
�2
0

�
i
�

�0
2

�
i�1
D 0;�0

2

�
i
�

�2
0

�
i�1
D

�2
0

�
i�1

�0
2

�
i
;
�0
2

�
i
�

�0
2

�
i�1
D

�0
2

�
i�1

�0
2

�
i
:

On the other hand,

ˆ.Uj /ˆ.Ui /D
h�2
0

�
i�1
C

�0
2

�
i�1

i
�

h�2
0

�
i
C

�0
2

�
i

i
:

We have�2
0

�
i�1
�

�2
0

�
i
D

�2
0

�
i�1

�2
0

�
i
;
�2
0

�
i�1
�

�0
2

�
i
D

�2
0

�
i�1

�0
2

�
i
;�0

2

�
i�1
�

�2
0

�
i
D 0;

�0
2

�
i�1
�

�0
2

�
i
D

�0
2

�
i�1

�0
2

�
i
:

Thus,

ˆ.Ui /ˆ.Ui�1/Dˆ.Ui�1/ˆ.Ui /

when x\fi � 2; i � 1; ig D fi � 2; i � 1; ig.

� The case j D i C 1 follows by symmetry.

� The “C central relations” CiAD ACi for all generators A labeled Rj , Lj , Uj
or Cj . These relations hold in A.n; k;S/ because multiplication in A.n; k;S/ is
defined using addition of the components Ec of generators E.s; Ec/, and addition is
commutative. Visually, a closed loop may be isotoped to near the beginning or the end
of a cylinder without changing the corresponding element of A.n; k;S/.
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� The “C 2 vanishing relations” C 2i D0. These relations hold in A.n; k;S/ because
the product of E.s; Ec/ with E.s0; Ec 0/ was defined to be zero if .Ec C Ec 0/.i/ D 2 for
any i . Visually, the product results in a degenerate annulus.

Lemma 9.5 The map ˆ is a homomorphism of differential graded algebras.

Proof The reader may use the grading formulas of Definitions 2.5 and 6.1 to confirm
that ˆ does indeed preserve gradings.

For the differential, we first show @.ˆ.
//D 0 for an edge 
 with label Ri , Li or Ui
of B.n; k;S/. In all of these cases, the array for ˆ.
/ has no monomial of Cj variables
out front, so @c.ˆ.
// D 0. The array also has pj D qj D 0 for all j ¤ i , so that
Mj Dmj D 0 in the language of Lemma 5.12. Thus, @0j .ˆ.
//D 0 for j ¤ i .

To compute @0i .ˆ.
//, let x denote the starting vertex of 
 . First note that @0i .ˆ.
//D0
if fi � 1; ig š x . This observation takes care of all cases of 
 under consideration
except the case when 
 is labeled by Ui and fi�1; ig�x , for which we have ˆ.
/D�
2
0

�
i
C
�
0
2

�
i
. By formula (5-3) in Lemma 5.12, we have @0i

��
2
0

�
i

�
D
�
1
1

�
i
D @0i

��
0
2

�
i

�
.

Since we are in characteristic 2, it follows that @0i .ˆ.
//D 0, and so we may conclude
that @.ˆ.
//D 0 in all of these cases.

Now consider a loop 
 labeled by Ci in B.n; k;S/ at vertex x . The array ˆ.
/D Ci
has all pj D qj D 0, so Lemma 5.12 again ensures that @0.ˆ.
//D 0. Meanwhile,
Lemma 5.13 allows us to compute @c.ˆ.
// case-by-case by analyzing ıi�1 and �i
in (5-6):

� If x\fi � 1; ig D¿, then @c.ˆ.Ci //D 0.

� If x\fi � 1; ig D fi � 1g, then @c.ˆ.Ci //D
�
2
0

�
i
.

� If x\fi � 1; ig D fig, then @c.ˆ.Ci //D
�
0
2

�
i
.

� If x\fi � 1; ig D fi � 1; ig, then @c.ˆ.Ci //D
�
2
0

�
i
C
�
0
2

�
i
.

Using Definition 9.3 in each case, we have @c.ˆ.
// D ˆ.
 0/ for the loop 
 0 at x
labeled by Ui instead of Ci (note that 
 0 D 0 in B.n; k;S/ if x \ fi � 1; ig D ¿).
These four cases are illustrated in Figure 24.

We have shown that @.ˆ.
//D ˆ.@.
// for all edges 
 in the quiver �.n; k;S/. It
follows from the Leibniz rule that @.ˆ.
//D ˆ.@.
// for all 
 2 B.n; k;S/. Thus,
ˆ is a homomorphism of dg algebras.
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@

7�
!

@

7�
!

@

7�
!

@

7�
!

0 C

Figure 24: Differential of ˆ.Ci / in various cases.

Recall B.n; k;S/ is a dg algebra over F2ŒU1; : : : ; Un�V.n;k/ , so we have a dg ring homo-
morphism from F2ŒU1; : : : ; Un�V.n;k/ to B.n; k;S/. The natural inclusion I.n; k/!
F2ŒU1; : : : ; Un�V.n;k/ recovers the usual I.n; k/–algebra structure of B.n; k;S/. We
now have another dg ring homomorphism ˆW B.n; k;S/! A.n; k;S/, and we can
compose to give A.n; k;S/ the structure of a dg algebra over F2ŒU1; : : : ; Un�V.n;k/ ,
compatible with the dg algebra structure over I.n; k/. Tautologically, ˆ is a homo-
morphism of dg F2ŒU1; : : : ; Un�V.n;k/–algebras. One can check that the natural map

F2ŒU1; : : : ; Un�! F2ŒU1; : : : ; Un�
V.n;k/

!A.n; k;S/

sends each variable Ui to a central element of A.n; k;S/, where the first map in the
composition is the inclusion of constant functions.

Lemma 9.6 For x;y 2 V.n; k/ not far, the isomorphism

 W JxH�.A.n; k//Jy ! F2ŒU1; : : : ; Un�=.pG/

given in (8-7) of Corollary 8.31 is linear over F2ŒU1; : : : ; Un�.
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Proof The action of Ui on a basis element of JxA.n; k/Jy is given by multiplication
(on either side) by ˆ.
/, where 
 is a loop in �.n; k;S/ labeled Ui . For concreteness,
let 
 be based at x , so that the action of Ui is left multiplication by ˆ.
/.

If x\fi � 1; ig D¿, then 
 D 0, so ˆ.
/D 0. Correspondingly, line i is contained
in a generating interval of length 1, so the action of Ui on F2ŒU1; : : : ; Un�=.pG/ is
also zero.

If x \ fi � 1; ig D fi � 1g, then ˆ.
/ D
�
2
0

�
i
. We cannot have vi .x;y/ D �1. If

vi .x;y/D 1, then line i is crossed, and by Lemma 5.11, ˆ.
/ acts on a homology
basis element of Corollary 8.32 by increasing the value of ri by one. If vi .x;y/D 0,
then line i is not crossed, but the term

�
0
2ri

�
i

in this homology basis element is zero
because i … x (see Lemma 5.4). Thus, ˆ.
/ acts by increasing the value of ri by one
in this case too. The argument when x\fi � 1; ig D fig is similar.

Finally, if fi �1; ig � x , we have ˆ.
/D
�
2
0

�
i
C
�
0
2

�
i
. If vi .x;y/D�1, then

�
2
0

�
i

be-
comes zero when multiplied by a basis element of JxH�.A.n; k//Jy . If vi .x;y/D 1,
then

�
0
2

�
i

becomes zero when multiplied by a basis element of JxH�.A.n; k//Jy . If
vi .x;y/D 0 (so i … CLx;y ) and ri ¤ 0, we see a product of the form��

2

0

�
i

C

�
0

2

�
i

�
�

��
2ri

0

�
i

C

�
0

2ri

�
i

�
:

The cross terms
�
2
0

�
i
�
�
0
2ri

�
i

and
�
0
2

�
i
�
�
2ri
0

�
i

are both zero due to degenerate bigons
(see Lemma 5.11), while the remaining terms give

�
2.riC1/

0

�
i
C
�

0
2.riC1/

�
i
. The case

when ri D 0 is left to the reader. In all three cases, we see that multiplication by ˆ.
/
on the left has the effect of increasing the value of ri by one in a basis element from
Corollary 8.32.

Lemma 9.7 Suppose x;y 2 V.n; k/ are not far. If 
x;y is the element of B.n; k/
represented by the path from Definition 2.18, then ˆ.
x;y/ is the basis element from
Corollary 8.32 with all ri equal to zero.

Proof We use the recursive definition of 
x;y and induct on k� jx\yj. When this
quantity is zero, we have xDy and 
x;y is the empty path. Thus, ˆ.x;y/DJx , which
is the strands element corresponding to 12F2ŒU1; : : : ; Un�=.pG/ under Corollary 8.32.

Now assume that ˆ.
x0;y 0/ is as described whenever k � jx0 \ y 0j < k � jx \ yj.
If we have xa < ya for some a 2 Œ1; k�, let a be the maximal such index. Let
x0 D .x n xa/[ fyag. By Definition 2.18, we have 
x;y D 
 � 
x0;y , where 
 is the
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unique edge from x to x0 labeled RxaC1 . By item (1) in Definition 9.3, we have
ˆ.
/D

�
1
0

�
xaC1

, and by induction ˆ.
x0;y/ is the strands element whose array has
vectors

�
1
0

�
i

for i with vi .x0;y/D 1,
�
0
1

�
i

for i with vi .x0;y/D �1, and no other
nontrivial factors.

We can use Lemma 5.11 to show that the product of these strands elements has
vector

�
1
0

�
i

for i with vi .x;y/ D 1,
�
0
1

�
i

for i with vi .x;y/ D �1, and no other
nontrivial factors. We first show that the product is nonzero. The main thing to
check is condition (I); conditions (II)–(VII) are tautological. We only have pi odd for
i D xaC 1, so we want to show that p0xaC2 D 0. Indeed, if p0xaC2 is nonzero, then
we have xaC1 D xaC 1D ya < yaC1 , contradicting that a is the maximal index with
xa < ya . Thus, condition (I) holds, so the product under consideration is nonzero.

It follows that the product is given by the formula in Lemma 5.11; we must show
this product is the desired strands element. We have rxaC1 D pxaC1C q

0
xaC1

and
pxaC1 D 1; we claim that q0xaC1 D 0. Indeed, if it is nonzero then q0xaC1 D 1 and
p0xaC1 D 0, so, by Lemma 5.14, line xa C 1 is crossed from x0 to y and we have
vxaC1.x

0;y/¤ 0. But the equality x0a D ya implies that vxaC1.x
0;y/D 0, since

jx0\ Œx0aC 1; n�j D k� aD jy \ ŒyaC 1; n�j;

so we have a contradiction. It follows that rxaC1D 1. We also have sxaC1D 0 because
pxaC1 is odd, so vector i in the product is equal to

�
1
0

�
i

when i D xaC 1. Note that
vxaC1.x;y/D 1.

Now consider i ¤ xa C 1. We have pi D qi D 0, so Lemma 5.11 gives us ri D
pi C p

0
i D p

0
i and si D qi C q0i D q

0
i . Thus, ri D 1 if and only if vi .x0;y/ D 1 (in

which case si D 0) and si D 1 if and only if vi .x0;y/D�1 (in which case ri D 0).
For i ¤ xaC 1, we have jx\ Œi; n�j D jx0\ Œi; n�j, so vi .x0;y/D vi .x;y/, proving
that ˆ.
/ˆ.
x0;y/ is the strands element described above.

The case when xa � ya for all a 2 Œ1; k� and xa > ya for some minimal index a is
analogous. By induction, ˆ.
x;y/ is the strands element whose vector has

�
1
0

�
i

for
i with vi .x;y/D 1,

�
0
1

�
i

for i with vi .x;y/D�1, and no other nontrivial factors,
proving the lemma.

Theorem 9.8 The map
ˆW B.n; k/!A.n; k/

is a quasi-isomorphism of dg algebras over F2ŒU1; : : : ; Un�V.n;k/ .
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Proof The algebra B.n; k/ D B.n; k;¿/ has no differential, so it is equal to its
homology. Given x and y in V.n; k/ that are not far, let U r11 � � �U

rn
n 
x;y be the basis

element of IxB.n; k/Iy given by Theorem 2.20.

Since ˆ is linear over F2ŒU1; : : : ;Un�, ˆ sends this element to U r11 � � �U
rn
n ˆ.
x;y/. By

Lemmas 9.6 and 9.7, the basis element for JxA.n; k/Jy corresponding to U r11 � � �U
rn
n

is also U r11 � � �U
rn
n ˆ.
x;y/.

Since ˆ sends a basis for the homology of IxB.n; k/Iy to a basis for the homology of
JxA.n; k/Jy , ˆ induces an isomorphism on homology, so ˆ is a quasi-isomorphism.

9.2 Homology of the strands algebra: general case

Finally, we compute the homology of A.n; k;S/ and show that ˆ is a quasi-isomor-
phism for general S .

Theorem 9.9 The map ˆW B.n; k;S/!A.n; k;S/ is a quasi-isomorphism.

Proof We will induct on jSj. The base case jSj D 0 follows from Theorem 9.8.

For the inductive step, write SDfi1; : : : ; ilg, and let S 0DS nfilg. As a chain complex,
A.n; k;S/ has a two-step filtration by powers of the variable Cil . Since we may write
this variable Cil as ˆ.Cil / and we have

@.ˆ.Cil //Dˆ.@.Cil //Dˆ.Uil /;

the complex A.n; k;S/ is isomorphic to the mapping cone on the endomorphism
ˆ.Uil / of A.n; k;S 0/. The mapping cone gives us a long exact sequence on homology
from which we can extract a short exact sequence by taking kernels and cokernels (as
in the proof of [16, Lemma 5.3]). The short exact sequence must split over F2 , giving

H�.A.n; k;S//Š
H�.A.n; k;S 0//

imˆ.ŒUil �/
˚ kerˆ.ŒUil �/:

By induction, ˆ identifies these summands with the cokernel and kernel of ŒUil � acting
on H�.B.n; k;S 0//. The chain complex B.n; k;S/ also has a two-step filtration by
powers of the variable Cil . Since the corresponding short exact sequence for B.n; k;S/
splits in the same way to give

H�.B.n; k;S//Š
H�.B.n; k;S 0//

im.ŒUil �/
˚ ker.ŒUil �/;

ˆ is a quasi-isomorphism from B.n; k;S/ to A.n; k;S/.
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By [16, Definition A.20], we can restrict quasi-isomorphisms to full dg subcategories,
so we get the following corollary:

Corollary 9.10 The map ˆ restricts to quasi-isomorphisms from Br.n; k;S/ to
Ar.n; k;S/, from Bl.n; k;S/ to Al.n; k;S/ and from B0.n; k;S/ to A0.n; k;S/.

Since formality is preserved by quasi-isomorphisms, we deduce the next corollary from
the results of [16].

Corollary 9.11 (see Corollary 1.3) The dg algebra A.n; k;S/ is formal if and only
if

� S D¿, or

� k 2 f0; n; nC 1g.

The dg algebra Ar.n; k;S/ is formal if and only if

� S D¿ or f1g, or

� k 2 f0; ng, or

� k D n� 1 and 1 2 S .

The dg algebra Al.n; k;S/ is formal if and only if

� S D¿ or fng, or

� k 2 f0; ng, or

� k D n� 1 and n 2 S .

The dg algebra A0.n; k;S/ is formal if and only if

� S D¿, f1g, fng or f1; ng, or

� k 2 f0; n� 1g, or

� k D n� 2 and f1; ng � S .

Proof These results follow from Theorem 9.9 and Corollary 9.10, as well as [16,
Theorems 5.10, 5.13, 5.14 and 5.17].

9.3 Symmetries

Here we show that the quasi-isomorphism ˆ of Theorem 9.9 intertwines the symmetries
� and o from [16, Section 4.5] with the symmetries of the same name from Section 7.
We start with the symmetry � .
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Proposition 9.12 The diagram

B.n; k;S/ ˆ
//

�
��

A.n; k;S/
�
��

B.n; k; �.S//
ˆ
// A.n; k; �.S//

of morphisms of dg algebras commutes.

Proof It suffices to check commutativity on the quiver generators of B.n; k;S/.
For an edge 
 of �.n; k;S/ from x to y with label Ri , we have ˆ.
/ D

�
1
0

�
i
, so

�.ˆ.
//D
�
0
1

�
nC1�i

. On the other hand, �.
/ is the edge of �.n; k; �.S// from �.x/

to �.y/ (with label LnC1�i ), so we have ˆ.�.
//D
�
0
1

�
nC1�i

as well. The argument
for edges labeled Li is similar.

For an edge 
 of �.n; k;S/ from x to x with label Ui , we may assume that
x\fi �1; ig ¤¿, so that 
 represents a nonzero generator. If x\fi �1; ig D fi �1g,
then ˆ.Ui /Dˆ.Ri /ˆ.Li /, so commutativity follows from the above paragraph. If
x\fi�1; ig D fig, the argument is similar. If fi�1; ig � x , then ˆ.
/D

�
2
0

�
i
C
�
0
2

�
i
,

so �.ˆ.
// D
�
0
2

�
nC1�i

C
�
2
0

�
nC1�i

. On the other hand, �.
/ is the edge from
�.x/ to �.x/ with label UnC1�i , and we have fn � i; nC 1 � ig � �.x/. Thus,
ˆ.�.
//D

�
2
0

�
nC1�i

C
�
0
2

�
nC1�i

, so ˆ.�.
//D �.ˆ.
//.

Finally, for an edge 
 of �.n; k;S/ from x to x with label Ci , we have �.ˆ.
//D
CnC1�i Dˆ.�.
//. Thus, the square commutes.

Next we consider the symmetry o.

Proposition 9.13 The diagram

B.n; k;S/ ˆ
//

o
��

A.n; k;S/
o
��

B.n; k;S/op
ˆ
// A.n; k;S/op

of morphisms of dg algebras commutes.

Proof As in Proposition 9.12, we check compatibility on the quiver generators
of B.n; k;S/. For an edge 
 of �.n; k;S/ from x to y with label Ri , we have
o.ˆ.
//D

�
0
1

�
i
. On the other hand, o.
/ is the edge of �.n; k;S/op from x to y (with

label Li ), so ˆ.o.
//D
�
0
1

�
i

as well. The argument for edges labeled Li is similar.

For an edge 
 of �.n; k;S/ from x to x with label Ui , we may again assume that
x\fi �1; ig ¤¿. If x\fi �1; ig D fi �1g or fig, then commutativity follows from
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the above paragraph. If fi �1; ig � x , then o.ˆ.
//D
�
0
2

�
i
C
�
2
0

�
i
. On the other hand,

o.
/D 
 , so ˆ.o.
//Dˆ.
/D
�
2
0

�
i
C
�
0
2

�
i

and we have ˆ.o.
//D o.ˆ.
//.

Finally, for an edge 
 of �.n; k;S/ from x to x with label Ci , we have o.ˆ.
//D
Ci Dˆ.o.
//. Thus, the square commutes.
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