Volume 20, issue 7 (2020)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 25
Issue 6, 3145–3787
Issue 5, 2527–3144
Issue 4, 1917–2526
Issue 3, 1265–1915
Issue 2, 645–1264
Issue 1, 1–644

Volume 24, 9 issues

Volume 23, 9 issues

Volume 22, 8 issues

Volume 21, 7 issues

Volume 20, 7 issues

Volume 19, 7 issues

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
 
Subscriptions
 
ISSN (electronic): 1472-2739
ISSN (print): 1472-2747
 
Author index
To appear
 
Other MSP journals
A note on the complexity of $h$–cobordisms

Hannah R Schwartz

Algebraic & Geometric Topology 20 (2020) 3313–3327
Abstract

We show that the number of double points of smoothly immersed 2–spheres representing certain homology classes of an oriented, smooth, closed, simply connected 4–manifold X must increase with the complexity of corresponding h–cobordisms from X to X. As an application, we give results restricting the minimal number of double points of immersed spheres in manifolds homeomorphic to rational surfaces.

Keywords
topology, manifold, smooth structures, spheres, $h$–cobordism
Mathematical Subject Classification 2010
Primary: 57Q20, 57Q99
References
Publication
Received: 1 December 2018
Revised: 19 January 2020
Accepted: 2 April 2020
Published: 29 December 2020
Authors
Hannah R Schwartz
Max Planck Institute of Mathematics
Bonn
Germany