Volume 21, issue 1 (2021)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 22
Issue 8, 3533–4008
Issue 7, 3059–3532
Issue 6, 2533–3057
Issue 5, 2007–2532
Issue 4, 1497–2006
Issue 3, 991–1495
Issue 2, 473–990
Issue 1, 1–472

Volume 21, 7 issues

Volume 20, 7 issues

Volume 19, 7 issues

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the Journal
Editorial Board
Editorial Interests
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN (electronic): 1472-2739
ISSN (print): 1472-2747
Author Index
To Appear
 
Other MSP Journals
$2$–Segal spaces as invertible infinity-operads

Tashi Walde

Algebraic & Geometric Topology 21 (2021) 211–246
Bibliography
1 D Ara, D C Cisinski, I Moerdijk, The dendroidal category is a test category, Math. Proc. Cambridge Philos. Soc. 167 (2019) 107 MR3968823
2 J E Bergner, A M Osorno, V Ozornova, M Rovelli, C I Scheimbauer, 2–Segal sets and the Waldhausen construction, Topology Appl. 235 (2018) 445 MR3760213
3 J M Boardman, R M Vogt, Homotopy invariant algebraic structures on topological spaces, 347, Springer (1973) MR0420609
4 P Boavida de Brito, I Moerdijk, Dendroidal spaces, Γ–spaces and the special Barratt–Priddy–Quillen theorem, J. Reine Angew. Math. 760 (2020) 229 MR4069891
5 D C Cisinski, I Moerdijk, Dendroidal sets as models for homotopy operads, J. Topol. 4 (2011) 257 MR2805991
6 D C Cisinski, I Moerdijk, Dendroidal Segal spaces and –operads, J. Topol. 6 (2013) 675 MR3100887
7 A Connes, Cohomologie cyclique et foncteurs Extn, C. R. Acad. Sci. Paris Sér. I Math. 296 (1983) 953 MR777584
8 G C Drummond-Cole, P Hackney, Dwyer–Kan homotopy theory for cyclic operads, preprint (2018) arXiv:1809.06322
9 T Dyckerhoff, Higher categorical aspects of Hall algebras, from: "Building bridges between algebra and topology" (editors D Herbera, W Pitsch, S Zarzuela), Springer (2018) 1 MR3793857
10 T Dyckerhoff, M Kapranov, Triangulated surfaces in triangulated categories, J. Eur. Math. Soc. 20 (2018) 1473 MR3801819
11 T Dyckerhoff, M Kapranov, Higher Segal spaces, 2244, Springer (2019) MR3970975
12 M Feller, R Garner, J Kock, M U Proulx, M Weber, Every 2–Segal space is unital, preprint (2019) arXiv:1905.09580
13 I Gálvez-Carrillo, J Kock, A Tonks, Decomposition spaces, incidence algebras and Möbius inversion I : Basic theory, Adv. Math. 331 (2018) 952 MR3804694
14 I Gálvez-Carrillo, J Kock, A Tonks, Decomposition spaces, incidence algebras and Möbius inversion, II : Completeness, length filtration, and finiteness, Adv. Math. 333 (2018) 1242 MR3818099
15 I Gálvez-Carrillo, J Kock, A Tonks, Decomposition spaces, incidence algebras and Möbius inversion, III : The decomposition space of Möbius intervals, Adv. Math. 334 (2018) 544 MR3828744
16 E Getzler, M M Kapranov, Cyclic operads and cyclic homology, from: "Geometry, topology, & physics" (editor S T Yau), Conf. Proc. Lecture Notes Geom. Topology 4, International (1995) 167 MR1358617
17 P Hackney, M Robertson, D Yau, Higher cyclic operads, Algebr. Geom. Topol. 19 (2019) 863 MR3924179
18 A Joyal, Quasi-categories and Kan complexes, J. Pure Appl. Algebra 175 (2002) 207 MR1935979
19 A Joyal, Notes on quasicategories, unpublished manuscript (2008)
20 A Joyal, J Kock, Feynman graphs, and nerve theorem for compact symmetric multicategories (extended abstract), Electon. Notes Theor. Comp. Sci. 270 (2011) 105
21 M Kontsevich, Y Soibelman, Cohomological Hall algebra, exponential Hodge structures and motivic Donaldson–Thomas invariants, Commun. Number Theory Phys. 5 (2011) 231 MR2851153
22 J Lurie, Higher topos theory, 170, Princeton Univ. Press (2009) MR2522659
23 J Lurie, Higher algebra, book project (2017)
24 J P May, The geometry of iterated loop spaces, 271, Springer (1972) MR0420610
25 I Moerdijk, I Weiss, Dendroidal sets, Algebr. Geom. Topol. 7 (2007) 1441 MR2366165
26 D G Quillen, Homotopical algebra, 43, Springer (1967) MR0223432
27 C Rezk, A model for the homotopy theory of homotopy theory, Trans. Amer. Math. Soc. 353 (2001) 973 MR1804411
28 E Riehl, D Verity, The theory and practice of Reedy categories, Theory Appl. Categ. 29 (2014) 256 MR3217884
29 G Segal, Categories and cohomology theories, Topology 13 (1974) 293 MR353298
30 W H Stern, 2–Segal objects and algebras in spans, preprint (2019) arXiv:1905.06671
31 B Toën, Derived Hall algebras, Duke Math. J. 135 (2006) 587 MR2272977
32 F Waldhausen, Algebraic K–theory of spaces, from: "Algebraic and geometric topology" (editors A Ranicki, N Levitt, F Quinn), Lecture Notes in Math. 1126, Springer (1985) 318 MR802796