Volume 21, issue 1 (2021)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 24
Issue 6, 2971–3570
Issue 5, 2389–2970
Issue 4, 1809–2387
Issue 3, 1225–1808
Issue 2, 595–1223
Issue 1, 1–594

Volume 23, 9 issues

Volume 22, 8 issues

Volume 21, 7 issues

Volume 20, 7 issues

Volume 19, 7 issues

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the Journal
Editorial Board
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN 1472-2739 (online)
ISSN 1472-2747 (print)
Author Index
To Appear
 
Other MSP Journals
The dual Bonahon–Schläfli formula

Filippo Mazzoli

Algebraic & Geometric Topology 21 (2021) 279–315
Bibliography
1 F Bonahon, The geometry of Teichmüller space via geodesic currents, Invent. Math. 92 (1988) 139 MR931208
2 F Bonahon, Shearing hyperbolic surfaces, bending pleated surfaces and Thurston’s symplectic form, Ann. Fac. Sci. Toulouse Math. 5 (1996) 233 MR1413855
3 F Bonahon, Geodesic laminations with transverse Hölder distributions, Ann. Sci. École Norm. Sup. 30 (1997) 205 MR1432054
4 F Bonahon, Transverse Hölder distributions for geodesic laminations, Topology 36 (1997) 103 MR1410466
5 F Bonahon, A Schläfli-type formula for convex cores of hyperbolic 3–manifolds, J. Differential Geom. 50 (1998) 25 MR1678473
6 F Bonahon, Variations of the boundary geometry of 3–dimensional hyperbolic convex cores, J. Differential Geom. 50 (1998) 1 MR1678469
7 M Bridgeman, J Brock, K Bromberg, Schwarzian derivatives, projective structures, and the Weil–Petersson gradient flow for renormalized volume, Duke Math. J. 168 (2019) 867 MR3934591
8 R D Canary, D Epstein, A Marden, editors, Fundamentals of hyperbolic geometry: selected expositions, 328, Cambridge Univ. Press (2006) MR2230672
9 C L Epstein, Envelopes of horospheres and Weingarten surfaces in hyperbolic 3–space, preprint (1984)
10 C D Hodgson, I Rivin, A characterization of compact convex polyhedra in hyperbolic 3–space, Invent. Math. 111 (1993) 77 MR1193599
11 L Keen, C Series, Continuity of convex hull boundaries, Pacific J. Math. 168 (1995) 183 MR1331998
12 S P Kerckhoff, Earthquakes are analytic, Comment. Math. Helv. 60 (1985) 17 MR787659
13 K Krasnov, J M Schlenker, On the renormalized volume of hyperbolic 3–manifolds, Comm. Math. Phys. 279 (2008) 637 MR2386723
14 K Krasnov, J M Schlenker, A symplectic map between hyperbolic and complex Teichmüller theory, Duke Math. J. 150 (2009) 331 MR2569616
15 F Mazzoli, The dual volume of quasifuchsian manifolds and the Weil–Petersson distance, preprint (2019) arXiv:1907.04754
16 F Mazzoli, Constant curvature surfaces and volumes of convex co-compact hyperbolic manifolds, PhD thesis, Université du Luxembourg (2020)
17 I Rivin, J M Schlenker, The Schläfli formula in Einstein manifolds with boundary, Electron. Res. Announc. Amer. Math. Soc. 5 (1999) 18 MR1669399
18 H L Royden, Real analysis, Macmillan (1963) MR0151555
19 L Schläfli, On the multiple integral ndx dydz, whose limits are p1 = a1x + b1y + + h1z > 0, p2 > 0,,pn > 0, and x2 + y2 + + z2 < 1, Q. J. Pure Appl. Math. 168 (1858) 269
20 J M Schlenker, The renormalized volume and the volume of the convex core of quasifuchsian manifolds, Math. Res. Lett. 20 (2013) 773 MR3188032
21 J M Schlenker, Notes on the Schwarzian tensor and measured foliations at infinity of quasifuchsian manifolds, preprint (2017) arXiv:1708.01852
22 D Sullivan, Travaux de Thurston sur les groupes quasi-fuchsiens et les variétés hyperboliques de dimension 3 fibrées sur S1, from: "Séminaire Bourbaki, 1979/1980", Lecture Notes in Math. 842, Springer (1981) 196 MR636524
23 W P Thurston, The geometry and topology of three-manifolds, lecture notes (1980)