Volume 21, issue 2 (2021)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 25, 1 issue

Volume 24, 9 issues

Volume 23, 9 issues

Volume 22, 8 issues

Volume 21, 7 issues

Volume 20, 7 issues

Volume 19, 7 issues

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the Journal
Editorial Board
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN 1472-2739 (online)
ISSN 1472-2747 (print)
Author Index
To Appear
 
Other MSP Journals
Minimal genus problem for $T^{2}$–bundles over surfaces

Reito Nakashima

Algebraic & Geometric Topology 21 (2021) 893–916
Bibliography
1 B Farb, D Margalit, A primer on mapping class groups, 49, Princeton Univ. Press (2012) MR2850125
2 S Friedl, S Vidussi, Minimal genus in 4–manifolds with a free circle action, Adv. Math. 250 (2014) 570 MR3122176
3 P B Kronheimer, Minimal genus in S1 × M3, Invent. Math. 135 (1999) 45 MR1664695
4 P B Kronheimer, T S Mrowka, The genus of embedded surfaces in the projective plane, Math. Res. Lett. 1 (1994) 797 MR1306022
5 T Lawson, The minimal genus problem, Expo. Math. 15 (1997) 385 MR1486407
6 B H Li, T J Li, Minimal genus embeddings in S2–bundles over surfaces, Math. Res. Lett. 4 (1997) 379 MR1453068
7 B H Li, T J Li, Circle-sum and minimal genus surfaces in ruled 4–manifolds, Proc. Amer. Math. Soc. 135 (2007) 3745 MR2336591
8 M Nagel, Surfaces of minimal complexity in low-dimensional topology, PhD thesis, Universität Regensburg (2015)
9 M Nagel, Minimal genus in circle bundles over 3–manifolds, J. Topol. 9 (2016) 747 MR3551836
10 L Rudolph, Some topologically locally-flat surfaces in the complex projective plane, Comment. Math. Helv. 59 (1984) 592 MR780078
11 C H Taubes, The Seiberg–Witten invariants and symplectic forms, Math. Res. Lett. 1 (1994) 809 MR1306023