Volume 21, issue 3 (2021)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 24
Issue 9, 4731–5219
Issue 8, 4139–4730
Issue 7, 3571–4137
Issue 6, 2971–3570
Issue 5, 2389–2970
Issue 4, 1809–2387
Issue 3, 1225–1808
Issue 2, 595–1223
Issue 1, 1–594

Volume 23, 9 issues

Volume 22, 8 issues

Volume 21, 7 issues

Volume 20, 7 issues

Volume 19, 7 issues

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the Journal
Editorial Board
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN 1472-2739 (online)
ISSN 1472-2747 (print)
Author Index
To Appear
 
Other MSP Journals
Barcode embeddings for metric graphs

Steve Oudot and Elchanan Solomon

Algebraic & Geometric Topology 21 (2021) 1209–1266
Bibliography
1 U Bauer, X Ge, Y Wang, Measuring distance between Reeb graphs, from: "Proceedings of the 30th annual Symposium on Computational Geometry" (editors S W Cheng, O Devillers, K Buchin), ACM (2014) 464 MR3382328
2 M R Bridson, A Haefliger, Metric spaces of non-positive curvature, 319, Springer (1999) MR1744486
3 D Burago, Y Burago, S Ivanov, A course in metric geometry, 33, Amer. Math. Soc. (2001) MR1835418
4 M Carrière, S Oudot, Local equivalence and intrinsic metrics between Reeb graphs, from: "33rd International Symposium on Computational Geometry" (editors B Aronov, M J Katz), Leibniz Int. Proc. Informatics 77, Schloss Dagstuhl. Leibniz-Zent. Inform. (2017) MR3685697
5 F Chazal, V de Silva, M Glisse, S Oudot, The structure and stability of persistence modules, Springer (2016) MR3524869
6 F Chazal, V de Silva, S Oudot, Persistence stability for geometric complexes, Geom. Dedicata 173 (2014) 193 MR3275299
7 D Cohen-Steiner, H Edelsbrunner, J Harer, Extending persistence using Poincaré and Lefschetz duality, Found. Comput. Math. 9 (2009) 79 MR2472288
8 J Curry, The fiber of the persistence map for functions on the interval, J. Appl. Comput. Topol. 2 (2018) 301 MR3927355
9 T K Dey, D Shi, Y Wang, Comparing graphs via persistence distortion, from: "31st International Symposium on Computational Geometry" (editor L Arge), Leibniz Int. Proc. Informatics 34, Schloss Dagstuhl. Leibniz-Zent. Inform. (2015) 491 MR3392801
10 M Gameiro, Y Hiraoka, I Obayashi, Continuation of point clouds via persistence diagrams, Phys. D 334 (2016) 118 MR3545973
11 E Gasparovic, M Gommel, E Purvine, R Sazdanovic, B Wang, Y Wang, L Ziegelmeier, A complete characterization of the one-dimensional intrinsic Čech persistence diagrams for metric graphs, from: "Research in computational topology" (editors E W Chambers, B T Fasy, L Ziegelmeier), Assoc. Women Math. Ser. 13, Springer (2018) 33 MR3905000
12 A Ivanov, S Iliadis, A Tuzhilin, Realizations of Gromov–Hausdorff distance, preprint (2016) arXiv:1603.08850
13 M Kerber, D Morozov, A Nigmetov, Geometry helps to compare persistence diagrams, ACM J. Exp. Algorithmics 22 (2017) MR3707737
14 F Mémoli, Gromov–Wasserstein distances and the metric approach to object matching, Found. Comput. Math. 11 (2011) 417 MR2811584
15 K Turner, S Mukherjee, D M Boyer, Persistent homology transform for modeling shapes and surfaces, Inf. Inference 3 (2014) 310 MR3311455