Volume 21, issue 4 (2021)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 22
Issue 2, 473–990
Issue 1, 1–472

Volume 21, 7 issues

Volume 20, 7 issues

Volume 19, 7 issues

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the Journal
Editorial Board
Editorial Interests
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN (electronic): 1472-2739
ISSN (print): 1472-2747
Author Index
To Appear
 
Other MSP Journals
Thom isomorphisms in triangulated motivic categories

Alexey Ananyevskiy

Algebraic & Geometric Topology 21 (2021) 2085–2106
Bibliography
1 A Ananyevskiy, SL-oriented cohomology theories, from: "Motivic homotopy theory and refined enumerative geometry" (editors F Binda, M Levine, M T Nguyen, O Röndigs), Contemp. Math. 745, Amer. Math. Soc. (2020) 1 MR4071210
2 A Asok, J Fasel, B Williams, Motivic spheres and the image of the Suslin–Hurewicz map, Invent. Math. 219 (2020) 39 MR4050101
3 J Ayoub, La réalisation étale et les opérations de Grothendieck, Ann. Sci. École Norm. Sup. 47 (2014) 1 MR3205601
4 T Bachmann, B Calmès, F Déglise, J Fasel, P A Østvær, Milnor–Witt motives, preprint (2020) arXiv:2004.06634
5 T Bachmann, M Hoyois, Norms in motivic homotopy theory, preprint (2017) arXiv:1711.03061
6 T Bachmann, K Wickelgren, 𝔸1–Euler classes : six functors formalisms, dualities, integrality and linear subspaces of complete intersections, preprint (2020) arXiv:2002.01848
7 D C Cisinski, F Déglise, Triangulated categories of mixed motives, Springer (2019) MR3971240
8 A Druzhinin, H Kolderup, Cohomological correspondence categories, Algebr. Geom. Topol. 20 (2020) 1487 MR4105557
9 D Dugger, D C Isaksen, Motivic Hopf elements and relations, New York J. Math. 19 (2013) 823 MR3141814
10 E Elmanto, H Kolderup, On modules over motivic ring spectra, Ann. K–Theory 5 (2020) 327 MR4113773
11 G Garkusha, Reconstructing rational stable motivic homotopy theory, Compos. Math. 155 (2019) 1424 MR3975501
12 D C Isaksen, Étale realization on the 𝔸1–homotopy theory of schemes, Adv. Math. 184 (2004) 37 MR2047848
13 C Mazza, V Voevodsky, C Weibel, Lecture notes on motivic cohomology, 2, Amer. Math. Soc. (2006) MR2242284
14 F Morel, An introduction to 𝔸1–homotopy theory, from: "Contemporary developments in algebraic K–theory" (editors M Karoubi, A O Kuku, C Pedrini), ICTP Lect. Notes 15, Abdus Salam Int. Cent. Theoret. Phys. (2004) 357 MR2175638
15 F Morel, 𝔸1–algebraic topology over a field, 2052, Springer (2012) MR2934577
16 F Morel, V Voevodsky, 𝔸1–homotopy theory of schemes, Inst. Hautes Études Sci. Publ. Math. 90 (1999) 45 MR1813224
17 I Panin, K Pimenov, O Röndigs, A universality theorem for Voevodsky’s algebraic cobordism spectrum, Homology Homotopy Appl. 10 (2008) 211 MR2475610
18 I Panin, C Walter, On the algebraic cobordism spectra MSL and MSp, preprint (2010) arXiv:1011.0651
19 G Quick, Stable étale realization and étale cobordism, Adv. Math. 214 (2007) 730 MR2349718
20 O Röndigs, P A Østvær, Modules over motivic cohomology, Adv. Math. 219 (2008) 689 MR2435654
21 O Röndigs, M Spitzweck, P A Østvær, The first stable homotopy groups of motivic spheres, Ann. of Math. 189 (2019) 1 MR3898173
22 V Voevodsky, 𝔸1–homotopy theory, from: "Proceedings of the International Congress of Mathematicians, I" (editors G Fischer, U Rehmann), Deutsche Mathematiker Vereinigung (1998) 579 MR1648048
23 N Yang, Quaternionic projective bundle theorem and Gysin triangle in MW-motivic cohomology, Manuscripta Math. 164 (2021) 39 MR4203683