Volume 21, issue 4 (2021)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 24
Issue 6, 2971–3570
Issue 5, 2389–2970
Issue 4, 1809–2387
Issue 3, 1225–1808
Issue 2, 595–1223
Issue 1, 1–594

Volume 23, 9 issues

Volume 22, 8 issues

Volume 21, 7 issues

Volume 20, 7 issues

Volume 19, 7 issues

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the Journal
Editorial Board
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN 1472-2739 (online)
ISSN 1472-2747 (print)
Author Index
To Appear
 
Other MSP Journals
Realising $\pi_\ast^eR$–algebras by global ring spectra

Jack Morgan Davies

Algebraic & Geometric Topology 21 (2021) 1745–1790
Abstract

We approach a problem of realising algebraic objects in a certain universal equivariant stable homotopy theory, the global homotopy theory of Schwede (2018). Specifically, for a global ring spectrum R, we consider which classes of ring homomorphisms η: πeR S can be realised by a map η: R S in the category of global R–modules, and what multiplicative structures can be placed on S. If η witnesses S as a projective πeR–module, then such an η exists as a map between homotopy commutative global R–algebras. If η is in addition étale or S0 is a –algebra, then η can be upgraded to a map of 𝔼–global R–algebras or a map of 𝔾R–algebras, respectively. Various global spectra and 𝔼–global ring spectra are then obtained from classical homotopy-theoretic and algebraic constructions, with a controllable global homotopy type.

Keywords
global homotopy theory, stable homotopy theory, higher algebra, equivariant homotopy theory, étale morphisms, realising algebra
Mathematical Subject Classification
Primary: 55P43, 55P91, 55P92, 55Q91
References
Publication
Received: 12 September 2019
Revised: 20 June 2020
Accepted: 27 July 2020
Published: 18 August 2021
Authors
Jack Morgan Davies
Mathematisch Instituut
Universiteit Utrecht
Utrecht
Netherlands