Volume 21, issue 5 (2021)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 22
Issue 5, 2007–2532
Issue 4, 1497–2006
Issue 3, 991–1495
Issue 2, 473–990
Issue 1, 1–472

Volume 21, 7 issues

Volume 20, 7 issues

Volume 19, 7 issues

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the Journal
Editorial Board
Editorial Interests
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN (electronic): 1472-2739
ISSN (print): 1472-2747
Author Index
To Appear
 
Other MSP Journals
Two-bridge knots admit no purely cosmetic surgeries

Kazuhiro Ichihara, In Dae Jong, Thomas W Mattman and Toshio Saito

Algebraic & Geometric Topology 21 (2021) 2411–2424
Bibliography
1 H U Boden, C L Curtis, The SL(2, ) Casson invariant for Dehn surgeries on two-bridge knots, Algebr. Geom. Topol. 12 (2012) 2095 MR3020202
2 S Boyer, D Lines, Surgery formulae for Casson’s invariant and extensions to homology lens spaces, J. Reine Angew. Math. 405 (1990) 181 MR1041002
3 T D Cochran, R E Gompf, Applications of Donaldson’s theorems to classical knot concordance, homology 3–spheres and property P, Topology 27 (1988) 495 MR976591
4 R Crowell, Genus of alternating link types, Ann. of Math. 69 (1959) 258 MR99665
5 C L Curtis, An intersection theory count of the SL2()–representations of the fundamental group of a 3–manifold, Topology 40 (2001) 773 MR1851563
6 J Hanselman, Heegaard Floer homology and cosmetic surgeries in S3, preprint (2019) arXiv:1906.06773
7 A Hatcher, W Thurston, Incompressible surfaces in 2–bridge knot complements, Invent. Math. 79 (1985) 225 MR778125
8 K Ichihara, T Saito, Cosmetic surgery and the SL(2, ) Casson invariant for two-bridge knots, Hiroshima Math. J. 48 (2018) 21 MR3771998
9 K Ichihara, Z Wu, A note on Jones polynomial and cosmetic surgery, Comm. Anal. Geom. 27 (2019) 1087 MR4037376
10 T Ito, On LMO invariant constraints for cosmetic surgery and other surgery problems for knots in S3, Comm. Anal. Geom. 28 (2020) 321 MR4101341
11 I D Jong, Alexander polynomials of alternating knots of genus two, Osaka J. Math. 46 (2009) 353 MR2549591
12 R C Kirby editor, Problems in low-dimensional topology, from: "Geometric topology, II" (editor W H Kazez), AMS/IP Stud. Adv. Math. 2, Amer. Math. Soc. (1997) 35 MR1470751
13 K Kishimoto, T Shibuya, T Tsukamoto, Sliceness of alternating pretzel knots and links, Topology Appl. 282 (2020) MR4123275
14 E S Lee, An endomorphism of the Khovanov invariant, Adv. Math. 197 (2005) 554 MR2173845
15 T W Mattman, G Maybrun, K Robinson, 2–bridge knot boundary slopes : diameter and genus, Osaka J. Math. 45 (2008) 471 MR2441951
16 W Menasco, Closed incompressible surfaces in alternating knot and link complements, Topology 23 (1984) 37 MR721450
17 K Murasugi, On the genus of the alternating knot, I, J. Math. Soc. Japan 10 (1958) 94 MR99664
18 K Murasugi, On the genus of the alternating knot, II, J. Math. Soc. Japan 10 (1958) 235 MR99664
19 K Murasugi, On a certain subgroup of the group of an alternating link, Amer. J. Math. 85 (1963) 544 MR157375
20 L Neuwirth, The algebraic determination of the genus of knots, Amer. J. Math. 82 (1960) 791 MR120648
21 J H Przytycki, Positive knots have negative signature, Bull. Polish Acad. Sci. Math. 37 (1989) 559 MR1101920
22 A Stoimenow, Knots of genus one or on the number of alternating knots of given genus, Proc. Amer. Math. Soc. 129 (2001) 2141 MR1825928
23 A Stoimenow, Knots of (canonical) genus two, Fund. Math. 200 (2008) 1 MR2443760
24 P Traczyk, Nontrivial negative links have positive signature, Manuscripta Math. 61 (1988) 279 MR949818
25 P Traczyk, A combinatorial formula for the signature of alternating diagrams, Fund. Math. 184 (2004) 311 MR2128055