Volume 21, issue 6 (2021)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 22, 1 issue

Volume 21, 7 issues

Volume 20, 7 issues

Volume 19, 7 issues

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the Journal
Editorial Board
Editorial Interests
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN (electronic): 1472-2739
ISSN (print): 1472-2747
Author Index
To Appear
 
Other MSP Journals
Equivariant fundamental classes in $\mathrm{RO}(C_2)$–graded cohomology with $\underline{\mathbb{Z}/2}$–coefficients

Christy Hazel

Algebraic & Geometric Topology 21 (2021) 2799–2856
Bibliography
1 S Araki, M Murayama, τ–cohomology theories, Japan. J. Math. 4 (1978) 363 MR528864
2 S R Costenoble, T Hudson, S Tilson, The 2–equivariant cohomology of complex projective spaces, preprint (2018) arXiv:1811.07355
3 S R Costenoble, S Waner, Equivariant Poincaré duality, Michigan Math. J. 39 (1992) 325 MR1162040
4 D Dugger, An Atiyah–Hirzebruch spectral sequence for KR–theory, K–Theory 35 (2005) 213 MR2240234
5 D Dugger, Involutions on surfaces, J. Homotopy Relat. Struct. 14 (2019) 919 MR4025595
6 C Hazel, The RO(C2)–graded cohomology of C2–surfaces in 2–coefficients, Math. Z. 297 (2021) 961 MR4204721
7 M A Hill, M J Hopkins, D C Ravenel, On the nonexistence of elements of Kervaire invariant one, Ann. of Math. 184 (2016) 1 MR3505179
8 E Hogle, RO(C2)–graded cohomology of equivariant Grassmannian manifolds, preprint (2018) arXiv:1806.01537
9 W C Kronholm, A freeness theorem for RO(2)–graded cohomology, Topology Appl. 157 (2010) 902 MR2593703
10 W Kronholm, On the equivariant cohomology of rotation groups and Stiefel manifolds, Topology Appl. 159 (2012) 1380 MR2879367
11 L G Lewis Jr., The RO(G)–graded equivariant ordinary cohomology of complex projective spaces with linear ∕p actions, from: "Algebraic topology and transformation groups" (editor T tom Dieck), Lecture Notes in Math. 1361, Springer (1988) 53 MR979507
12 C May, A structure theorem for RO(C2)–graded Bredon cohomology, Algebr. Geom. Topol. 20 (2020) 1691 MR4127082
13 J P May, Equivariant homotopy and cohomology theory, 91, Amer. Math. Soc. (1996) MR1413302
14 P F dos Santos, P Lima-Filho, Bigraded invariants for real curves, Algebr. Geom. Topol. 14 (2014) 2809 MR3276849
15 G Segal, Equivariant K–theory, Inst. Hautes Études Sci. Publ. Math. 34 (1968) 129 MR234452
16 M E Shulman, Equivariant local coefficients and the RO(G)–graded cohomology of classifying spaces, PhD thesis, University of Chicago (2010) MR2941379
17 R Thom, Quelques propriétés globales des variétés différentiables, Comment. Math. Helv. 28 (1954) 17 MR61823