Volume 21, issue 6 (2021)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 24
Issue 9, 4731–5219
Issue 8, 4139–4730
Issue 7, 3571–4137
Issue 6, 2971–3570
Issue 5, 2389–2970
Issue 4, 1809–2387
Issue 3, 1225–1808
Issue 2, 595–1223
Issue 1, 1–594

Volume 23, 9 issues

Volume 22, 8 issues

Volume 21, 7 issues

Volume 20, 7 issues

Volume 19, 7 issues

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the Journal
Editorial Board
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN 1472-2739 (online)
ISSN 1472-2747 (print)
Author Index
To Appear
 
Other MSP Journals
Equivariant fundamental classes in $\mathrm{RO}(C_2)$–graded cohomology with $\underline{\mathbb{Z}/2}$–coefficients

Christy Hazel

Algebraic & Geometric Topology 21 (2021) 2799–2856
Bibliography
1 S Araki, M Murayama, τ–cohomology theories, Japan. J. Math. 4 (1978) 363 MR528864
2 S R Costenoble, T Hudson, S Tilson, The 2–equivariant cohomology of complex projective spaces, preprint (2018) arXiv:1811.07355
3 S R Costenoble, S Waner, Equivariant Poincaré duality, Michigan Math. J. 39 (1992) 325 MR1162040
4 D Dugger, An Atiyah–Hirzebruch spectral sequence for KR–theory, K–Theory 35 (2005) 213 MR2240234
5 D Dugger, Involutions on surfaces, J. Homotopy Relat. Struct. 14 (2019) 919 MR4025595
6 C Hazel, The RO(C2)–graded cohomology of C2–surfaces in 2–coefficients, Math. Z. 297 (2021) 961 MR4204721
7 M A Hill, M J Hopkins, D C Ravenel, On the nonexistence of elements of Kervaire invariant one, Ann. of Math. 184 (2016) 1 MR3505179
8 E Hogle, RO(C2)–graded cohomology of equivariant Grassmannian manifolds, preprint (2018) arXiv:1806.01537
9 W C Kronholm, A freeness theorem for RO(2)–graded cohomology, Topology Appl. 157 (2010) 902 MR2593703
10 W Kronholm, On the equivariant cohomology of rotation groups and Stiefel manifolds, Topology Appl. 159 (2012) 1380 MR2879367
11 L G Lewis Jr., The RO(G)–graded equivariant ordinary cohomology of complex projective spaces with linear ∕p actions, from: "Algebraic topology and transformation groups" (editor T tom Dieck), Lecture Notes in Math. 1361, Springer (1988) 53 MR979507
12 C May, A structure theorem for RO(C2)–graded Bredon cohomology, Algebr. Geom. Topol. 20 (2020) 1691 MR4127082
13 J P May, Equivariant homotopy and cohomology theory, 91, Amer. Math. Soc. (1996) MR1413302
14 P F dos Santos, P Lima-Filho, Bigraded invariants for real curves, Algebr. Geom. Topol. 14 (2014) 2809 MR3276849
15 G Segal, Equivariant K–theory, Inst. Hautes Études Sci. Publ. Math. 34 (1968) 129 MR234452
16 M E Shulman, Equivariant local coefficients and the RO(G)–graded cohomology of classifying spaces, PhD thesis, University of Chicago (2010) MR2941379
17 R Thom, Quelques propriétés globales des variétés différentiables, Comment. Math. Helv. 28 (1954) 17 MR61823