Volume 21, issue 6 (2021)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 25, 1 issue

Volume 24, 9 issues

Volume 23, 9 issues

Volume 22, 8 issues

Volume 21, 7 issues

Volume 20, 7 issues

Volume 19, 7 issues

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the Journal
Editorial Board
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN 1472-2739 (online)
ISSN 1472-2747 (print)
Author Index
To Appear
 
Other MSP Journals
Augmentations and link group representations

Honghao Gao

Algebraic & Geometric Topology 21 (2021) 2857–2898
Bibliography
1 M Aganagic, T Ekholm, L Ng, C Vafa, Topological strings, D–model, and knot contact homology, Adv. Theor. Math. Phys. 18 (2014) 827 MR3277674
2 J W Alexander, A lemma on systems of knotted curves, Proc. Natl. Acad. Sci. USA 9 (1923) 93
3 L Ben Abdelghani, M Heusener, Irreducible representations of knot groups into SL(n, ), Publ. Mat. 61 (2017) 363 MR3677866
4 S Boyer, X Zhang, Every nontrivial knot in S3 has nontrivial A–polynomial, Proc. Amer. Math. Soc. 133 (2005) 2813 MR2146231
5 K Cieliebak, T Ekholm, J Latschev, L Ng, Knot contact homology, string topology, and the cord algebra, J. Éc. Polytech. Math. 4 (2017) 661 MR3665612
6 D Cooper, M Culler, H Gillet, D D Long, P B Shalen, Plane curves associated to character varieties of 3–manifolds, Invent. Math. 118 (1994) 47 MR1288467
7 C R Cornwell, KCH representations, augmentations, and A–polynomials, J. Symplectic Geom. 15 (2017) 983 MR3734607
8 M Culler, P B Shalen, Varieties of group representations and splittings of 3–manifolds, Ann. of Math. 117 (1983) 109 MR683804
9 N M Dunfield, S Garoufalidis, Non-triviality of the A–polynomial for knots in S3, Algebr. Geom. Topol. 4 (2004) 1145 MR2113900
10 T Ekholm, J B Etnyre, L Ng, M G Sullivan, Knot contact homology, Geom. Topol. 17 (2013) 975 MR3070519
11 T Ekholm, L Ng, V Shende, A complete knot invariant from contact homology, Invent. Math. 211 (2018) 1149 MR3763406
12 Y Eliashberg, Invariants in contact topology, from: "Proceedings of the International Congress of Mathematicians, II" (editors G Fischer, U Rehmann), Deutsche Mathematiker Vereinigung (1998) 327 MR1648083
13 Y Eliashberg, A Givental, H Hofer, Introduction to symplectic field theory, from: "Visions in mathematics" (editors N Alon, J Bourgain, A Connes, M Gromov, V Milman), Birkhäuser (= GAFA special volume) (2000) 560 MR1826267
14 H Gao, Radon transform for sheaves, preprint (2017) arXiv:1712.06453
15 H Gao, Simple sheaves for knot conormals, J. Symplectic Geom. 18 (2020) 1027 MR4174293
16 S Garoufalidis, D P Thurston, C K Zickert, The complex volume of SL(n, )–representations of 3–manifolds, Duke Math. J. 164 (2015) 2099 MR3385130
17 S Guillermou, M Kashiwara, P Schapira, Sheaf quantization of Hamiltonian isotopies and applications to nondisplaceability problems, Duke Math. J. 161 (2012) 201 MR2876930
18 A Guilloux, P Will, On SL(3, )–representations of the Whitehead link group, Geom. Dedicata 202 (2019) 81 MR4001809
19 M Heusener, V Muñoz, J Porti, The SL(3, )–character variety of the figure eight knot, Illinois J. Math. 60 (2016) 55 MR3665172
20 M Kashiwara, P Schapira, Sheaves on manifolds, 292, Springer (1990) MR1074006
21 P B Kronheimer, T S Mrowka, Dehn surgery, the fundamental group and SU(2), Math. Res. Lett. 11 (2004) 741 MR2106239
22 K Mishachev, The N–copy of a topologically trivial Legendrian knot, J. Symplectic Geom. 1 (2003) 659 MR2039159
23 V Muñoz, J Porti, Geometry of the SL(3, )–character variety of torus knots, Algebr. Geom. Topol. 16 (2016) 397 MR3470704
24 D Nadler, Microlocal branes are constructible sheaves, Selecta Math. 15 (2009) 563 MR2565051
25 D Nadler, E Zaslow, Constructible sheaves and the Fukaya category, J. Amer. Math. Soc. 22 (2009) 233 MR2449059
26 L Ng, Knot and braid invariants from contact homology, I, Geom. Topol. 9 (2005) 247 MR2116316
27 L Ng, Knot and braid invariants from contact homology, II, Geom. Topol. 9 (2005) 1603 MR2175153
28 L Ng, Framed knot contact homology, Duke Math. J. 141 (2008) 365 MR2376818
29 L Ng, A topological introduction to knot contact homology, from: "Contact and symplectic topology" (editors F Bourgeois, V Colin, A Stipsicz), Bolyai Soc. Math. Stud. 26, János Bolyai Math. Soc. (2014) 485 MR3220948
30 L Ng, D Rutherford, V Shende, S Sivek, E Zaslow, Augmentations are sheaves, Geom. Topol. 24 (2020) 2149 MR4194293
31 Y Ni, X Zhang, Detection of knots and a cabling formula for A–polynomials, Algebr. Geom. Topol. 17 (2017) 65 MR3604373
32 D Rolfsen, Knots and links, 7, Publish or Perish (1976) MR0515288
33 K Sackel, Augmentations are colorings, MR3861709
34 V Shende, D Treumann, E Zaslow, Legendrian knots and constructible sheaves, Invent. Math. 207 (2017) 1031 MR3608288
35 P Vogel, Representation of links by braids: a new algorithm, Comment. Math. Helv. 65 (1990) 104 MR1036132
36 F Waldhausen, On irreducible 3–manifolds which are sufficiently large, Ann. of Math. 87 (1968) 56 MR224099
37 S Yamada, The minimal number of Seifert circles equals the braid index of a link, Invent. Math. 89 (1987) 347 MR894383