Volume 21, issue 6 (2021)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 24
Issue 5, 2389–2970
Issue 4, 1809–2387
Issue 3, 1225–1808
Issue 2, 595–1223
Issue 1, 1–594

Volume 23, 9 issues

Volume 22, 8 issues

Volume 21, 7 issues

Volume 20, 7 issues

Volume 19, 7 issues

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the Journal
Editorial Board
Editorial Interests
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN (electronic): 1472-2739
ISSN (print): 1472-2747
Author Index
To Appear
 
Other MSP Journals
Augmentations and link group representations

Honghao Gao

Algebraic & Geometric Topology 21 (2021) 2857–2898
Bibliography
1 M Aganagic, T Ekholm, L Ng, C Vafa, Topological strings, D–model, and knot contact homology, Adv. Theor. Math. Phys. 18 (2014) 827 MR3277674
2 J W Alexander, A lemma on systems of knotted curves, Proc. Natl. Acad. Sci. USA 9 (1923) 93
3 L Ben Abdelghani, M Heusener, Irreducible representations of knot groups into SL(n, ), Publ. Mat. 61 (2017) 363 MR3677866
4 S Boyer, X Zhang, Every nontrivial knot in S3 has nontrivial A–polynomial, Proc. Amer. Math. Soc. 133 (2005) 2813 MR2146231
5 K Cieliebak, T Ekholm, J Latschev, L Ng, Knot contact homology, string topology, and the cord algebra, J. Éc. Polytech. Math. 4 (2017) 661 MR3665612
6 D Cooper, M Culler, H Gillet, D D Long, P B Shalen, Plane curves associated to character varieties of 3–manifolds, Invent. Math. 118 (1994) 47 MR1288467
7 C R Cornwell, KCH representations, augmentations, and A–polynomials, J. Symplectic Geom. 15 (2017) 983 MR3734607
8 M Culler, P B Shalen, Varieties of group representations and splittings of 3–manifolds, Ann. of Math. 117 (1983) 109 MR683804
9 N M Dunfield, S Garoufalidis, Non-triviality of the A–polynomial for knots in S3, Algebr. Geom. Topol. 4 (2004) 1145 MR2113900
10 T Ekholm, J B Etnyre, L Ng, M G Sullivan, Knot contact homology, Geom. Topol. 17 (2013) 975 MR3070519
11 T Ekholm, L Ng, V Shende, A complete knot invariant from contact homology, Invent. Math. 211 (2018) 1149 MR3763406
12 Y Eliashberg, Invariants in contact topology, from: "Proceedings of the International Congress of Mathematicians, II" (editors G Fischer, U Rehmann), Deutsche Mathematiker Vereinigung (1998) 327 MR1648083
13 Y Eliashberg, A Givental, H Hofer, Introduction to symplectic field theory, from: "Visions in mathematics" (editors N Alon, J Bourgain, A Connes, M Gromov, V Milman), Birkhäuser (= GAFA special volume) (2000) 560 MR1826267
14 H Gao, Radon transform for sheaves, preprint (2017) arXiv:1712.06453
15 H Gao, Simple sheaves for knot conormals, J. Symplectic Geom. 18 (2020) 1027 MR4174293
16 S Garoufalidis, D P Thurston, C K Zickert, The complex volume of SL(n, )–representations of 3–manifolds, Duke Math. J. 164 (2015) 2099 MR3385130
17 S Guillermou, M Kashiwara, P Schapira, Sheaf quantization of Hamiltonian isotopies and applications to nondisplaceability problems, Duke Math. J. 161 (2012) 201 MR2876930
18 A Guilloux, P Will, On SL(3, )–representations of the Whitehead link group, Geom. Dedicata 202 (2019) 81 MR4001809
19 M Heusener, V Muñoz, J Porti, The SL(3, )–character variety of the figure eight knot, Illinois J. Math. 60 (2016) 55 MR3665172
20 M Kashiwara, P Schapira, Sheaves on manifolds, 292, Springer (1990) MR1074006
21 P B Kronheimer, T S Mrowka, Dehn surgery, the fundamental group and SU(2), Math. Res. Lett. 11 (2004) 741 MR2106239
22 K Mishachev, The N–copy of a topologically trivial Legendrian knot, J. Symplectic Geom. 1 (2003) 659 MR2039159
23 V Muñoz, J Porti, Geometry of the SL(3, )–character variety of torus knots, Algebr. Geom. Topol. 16 (2016) 397 MR3470704
24 D Nadler, Microlocal branes are constructible sheaves, Selecta Math. 15 (2009) 563 MR2565051
25 D Nadler, E Zaslow, Constructible sheaves and the Fukaya category, J. Amer. Math. Soc. 22 (2009) 233 MR2449059
26 L Ng, Knot and braid invariants from contact homology, I, Geom. Topol. 9 (2005) 247 MR2116316
27 L Ng, Knot and braid invariants from contact homology, II, Geom. Topol. 9 (2005) 1603 MR2175153
28 L Ng, Framed knot contact homology, Duke Math. J. 141 (2008) 365 MR2376818
29 L Ng, A topological introduction to knot contact homology, from: "Contact and symplectic topology" (editors F Bourgeois, V Colin, A Stipsicz), Bolyai Soc. Math. Stud. 26, János Bolyai Math. Soc. (2014) 485 MR3220948
30 L Ng, D Rutherford, V Shende, S Sivek, E Zaslow, Augmentations are sheaves, Geom. Topol. 24 (2020) 2149 MR4194293
31 Y Ni, X Zhang, Detection of knots and a cabling formula for A–polynomials, Algebr. Geom. Topol. 17 (2017) 65 MR3604373
32 D Rolfsen, Knots and links, 7, Publish or Perish (1976) MR0515288
33 K Sackel, Augmentations are colorings, MR3861709
34 V Shende, D Treumann, E Zaslow, Legendrian knots and constructible sheaves, Invent. Math. 207 (2017) 1031 MR3608288
35 P Vogel, Representation of links by braids: a new algorithm, Comment. Math. Helv. 65 (1990) 104 MR1036132
36 F Waldhausen, On irreducible 3–manifolds which are sufficiently large, Ann. of Math. 87 (1968) 56 MR224099
37 S Yamada, The minimal number of Seifert circles equals the braid index of a link, Invent. Math. 89 (1987) 347 MR894383