Volume 21, issue 6 (2021)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 25
Issue 6, 3145–3787
Issue 5, 2527–3144
Issue 4, 1917–2526
Issue 3, 1265–1915
Issue 2, 645–1264
Issue 1, 1–644

Volume 24, 9 issues

Volume 23, 9 issues

Volume 22, 8 issues

Volume 21, 7 issues

Volume 20, 7 issues

Volume 19, 7 issues

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
 
Subscriptions
 
ISSN (electronic): 1472-2739
ISSN (print): 1472-2747
 
Author index
To appear
 
Other MSP journals
The diameter of random Belyĭ surfaces

Thomas Budzinski, Nicolas Curien and Bram Petri

Algebraic & Geometric Topology 21 (2021) 2929–2957
Bibliography
1 R Bacher, A Vdovina, Counting 1–vertex triangulations of oriented surfaces, Discrete Math. 246 (2002) 13 MR1884884
2 A F Beardon, The geometry of discrete groups, 91, Springer (1983) MR698777
3 G V Belyi, Galois extensions of a maximal cyclotomic field, Izv. Akad. Nauk SSSR Ser. Mat. 43 (1979) 267 MR534593
4 B Benson, The Cheeger constant, isoperimetric problems, and hyperbolic surfaces, preprint (2015) arXiv:1509.08993
5 B Bollobás, A probabilistic proof of an asymptotic formula for the number of labelled regular graphs, European J. Combin. 1 (1980) 311 MR595929
6 B Bollobás, W Fernandez de la Vega, The diameter of random regular graphs, Combinatorica 2 (1982) 125 MR685038
7 R Brooks, Some relations between spectral geometry and number theory, from: "Topology ’90" (editors B Apanasov, W D Neumann, A W Reid, L Siebenmann), Ohio State Univ. Math. Res. Inst. Publ. 1, de Gruyter (1992) 61 MR1184403
8 R Brooks, Platonic surfaces, Comment. Math. Helv. 74 (1999) 156 MR1677565
9 R Brooks, E Makover, Random construction of Riemann surfaces, J. Differential Geom. 68 (2004) 121 MR2152911
10 T Budzinski, N Curien, B Petri, Universality for random surfaces in unconstrained genus, Electron. J. Combin. 26 (2019) MR4025406
11 T Budzinski, N Curien, B Petri, On the minimal diameter of closed hyperbolic surfaces, Duke Math. J. 170 (2021) 365 MR4202496
12 P Buser, A note on the isoperimetric constant, Ann. Sci. École Norm. Sup. 15 (1982) 213 MR683635
13 P Buser, Geometry and spectra of compact Riemann surfaces, 106, Birkhäuser (1992) MR1183224
14 J Cheeger, A lower bound for the smallest eigenvalue of the Laplacian, from: "Problems in analysis" (editor R C Gunning), Princeton Univ. Press (1970) 195 MR0402831
15 S Y Cheng, Eigenvalue comparison theorems and its geometric applications, Math. Z. 143 (1975) 289 MR378001
16 S Chmutov, B Pittel, On a surface formed by randomly gluing together polygonal discs, Adv. Appl. Math. 73 (2016) 23 MR3433499
17 N Curien, Peeling random planar maps, lecture notes (2016)
18 A Gamburd, Poisson–Dirichlet distribution for random Belyi surfaces, Ann. Probab. 34 (2006) 1827 MR2271484
19 L Guth, H Parlier, R Young, Pants decompositions of random surfaces, Geom. Funct. Anal. 21 (2011) 1069 MR2846383
20 H Huber, Über den ersten Eigenwert des Laplace-Operators auf kompakten Riemannschen Flächen, Comment. Math. Helv. 49 (1974) 251 MR365408
21 H H Kim, P Sarnak, Refined estimates towards the Ramanujan and Selberg conjectures, MR1937203
22 M Magee, letter to Bram Petri (2020)
23 M Magee, F Naud, D Puder, A random cover of a compact hyperbolic surface has relative spectral gap -3 16 𝜀, preprint (2020) arXiv:2003.10911
24 M Mirzakhani, Growth of Weil–Petersson volumes and random hyperbolic surfaces of large genus, J. Differential Geom. 94 (2013) 267 MR3080483
25 R C Penner, Weil–Petersson volumes, J. Differential Geom. 35 (1992) 559 MR1163449
26 A Wright, A tour through Mirzakhani’s work on moduli spaces of Riemann surfaces, Bull. Amer. Math. Soc. 57 (2020) 359 MR4108090