Volume 21, issue 6 (2021)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 24
Issue 9, 4731–5219
Issue 8, 4139–4730
Issue 7, 3571–4137
Issue 6, 2971–3570
Issue 5, 2389–2970
Issue 4, 1809–2387
Issue 3, 1225–1808
Issue 2, 595–1223
Issue 1, 1–594

Volume 23, 9 issues

Volume 22, 8 issues

Volume 21, 7 issues

Volume 20, 7 issues

Volume 19, 7 issues

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the Journal
Editorial Board
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN 1472-2739 (online)
ISSN 1472-2747 (print)
Author Index
To Appear
 
Other MSP Journals
A basis for the Kauffman skein module of the product of a surface and a circle

Renaud Detcherry and Maxime Wolff

Algebraic & Geometric Topology 21 (2021) 2959–2993
Abstract

The Kauffman bracket skein module 𝒮(M) of a 3–manifold M is a (A)–vector space spanned by links in M modulo the so-called Kauffman relations. For any closed oriented surface Σ we provide an explicit spanning family for the skein modules 𝒮(Σ × S1). Combined with earlier work of Gilmer and Masbaum (Proc. Amer. Math. Soc. 147 (2019) 4091–4106), we answer their question about the dimension of 𝒮(Σ × S1) being 22g+1 + 2g 1.

Keywords
knot theory, skein modules, quantum topology
Mathematical Subject Classification 2010
Primary: 57M27
References
Publication
Received: 27 January 2020
Revised: 10 July 2020
Accepted: 5 August 2020
Published: 22 November 2021
Authors
Renaud Detcherry
Max Planck Institute for Mathematics
Bonn
Germany
Institut de Mathématiques de Bourgogne
Université de Bourgogne
Dijon
France
http://detcherry.perso.math.cnrs.fr/
Maxime Wolff
Université Pierre et Marie Curie - Paris 6
Institut de Mathématiques de Jussieu
Paris
France
https://webusers.imj-prg.fr/~maxime.wolff/